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DEFORMATIONS IN LOCALLY HEATED LIQUID LAYER
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Abstract The problem of thermocapillary deformation of the locally heated horizontal liquid
layer is considered. The numerical solution of the problem has been obtained in the lubri-
cation approximation theory for two-dimensional axisymmetric thermocapillary flow. The
model takes into account surface tension, viscosity, gravity and heat transfer in the substrate
and liquid. Evaporation is neglected. The numerical algorithm for the joint solution of the
energy equation and the evolution equation for the liquid layer thickness has been developed.
Stationary solutions have been obtained by the establishment method. There have been mea-
sured and numerically calculated deformations in locally heated horizontal layers of silicone
oils of different types and thickness. The dependencies of the depth of thermocapillary defor-
mations on the layer thickness have been obtained for silicone oils of different viscosities. It
has been found that the value of the relative deformation of the layer decreases nonlinearly
with increasing the layer thickness, when other conditions being equal. It has been found a
good qualitative agreement of numerical results and experimental data.
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1 Introduction

At the present time a great attention is paid to the study of mechanisms that lead
to the dynamic deformations of the liquid-gas interface. Studying the dynamics of
deformations in the horizontal liquid layers under the local heating is a challenge of
technological processes, since thin films provide a high intensity of heat and mass
transfer. Moreover, thin liquid films are widely used in various systems and apparatus,
for example, in heat pipes, evaporators, condensers, cooling systems for electronic
equipment. Apart from this, film flows are specially created in various devices of
chemical technology, food and pharmaceutical industry.

In systems with a liquid-gas interface one of the main role is played by thermocapil-
lary flows that can be caused even by slight inhomogeneities in the temperature of the
interface [1-4]. It is perspective to use the thermocapillary effect when the thin layers
of liquid are heated locally to determine the properties of the liquid and the thickness
of the layer [5, 6]. Thermocapillary phenomena in thin films lead to deformation of the
free liquid surface [7].

In most theoretical works processes in thin liquid layers are modeled using an evolu-
tion equation for the layer thickness obtained in the lubrication approximation theory
(long-wave approximation) [8]. Velocity, temperature, pressure of the liquid, etc. are
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defined as a function of film thickness (the solution of this equation). This approach
eliminates the complexity of the problem caused by the presence of the free surface.

The aim of investigation and tasks of this work are the theoretical study of ther-
mocapillary deformations in the locally heated horizontal liquid layers with different
properties and numerical modeling based on the thin layer approximation, creating of
the basis for solving the inverse problems of thermocapillary convection (determination
of the thermophysical coefficients of the investigated liquid); comparison of calculation
results with available experimental data.

2 Physical statement of the problem

A thin horizontal liquid layer of silicone oil under the local heating is considered,
Fig.1. Heater is a thin uniform heat source. Local heating of the liquid layer occurs
from the substrate side. The geometry and conditions of the investigated system are
axisymmetric. Initially the temperature of the entire system is constant. At the initial
moment of time the heater is turned on, and the cuvette and liquid start to warm up.
There is a tangential stress on the surface of the liquid, caused by the inhomogeneity
of its temperature. Thermocapillary flow and deformation of the liquid surface are
formed.

3 Numerical modeling

The problem of thermocapillary deformation of the locally heated horizontal layer of
silicone oil with free surface has been solved using the lubrication approximation theory
for two-dimensional axisymmetric statement. The model takes into account important
parameters such as gravity, surface tension, capillary pressure, thermocapillary effect,
viscosity, heat transfer in the substrate and liquid. Evaporation is neglected. Initially
the liquid layer has flat surface and uniform temperature. The substrate is locally
heated from the bottom side. Deformations of the liquid surface are determined by
the properties of the liquid, substrate and heater. Stationary solutions have been
obtained by the establishment method. Dynamics of thin films is well described by
the evolution equation, which has been obtained using the lubrication approximation
theory [8,10,11]:

ht + divq = 0 (1)

where h is film thickness, ht is velocity of the surface motion, q = h3

3µ
f + h2

2µ
τ is vector

of local liquid flow rate along the surface, f = grad(ρgh + σH) is pressure gradient,
τ = σTgradT is thermocapillary tangent stress, µ is coefficient of dynamic viscosity, ρ
is density of the liquid, g is gravitational acceleration, σ is surface tension, σT is surface
tension temperature coefficient, T is temperature, H = hrr

(1+h2r)
3/2 + hr

r(1+h2r)
1/2 is double

mean curvature of the liquid surface, where hr and hrr are the first and the second
order derivatives with respect to r.

Substituting expressions for the curvature of the surface and the vector of the local
flow rate we obtain the equation in cylindrical coordinates for the axial symmetrical
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case:
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Equation (2) is a nonlinear differential equation of the first order in time and the
fourth order in spatial variables relative to unknown function h(t, r).

Boundary conditions for equation (2) have a clear physical meaning. Here, Rc is a
cuvette radius, t is time.

• hr(t, 0) = 0 the condition of the axial symmetry in the center of the cuvette;

• hr(t, Rc) = 0 the contact angle is given on the border of the cuvette;

• q(t, 0) = 0 flow rate is equal to 0 in the center;

• q(t, Rc) = 0 the condition of impermeability of liquid through the walls.

The temperature of the liquid layer and cuvette is determined by the energy equa-
tion in cylindrical coordinates:
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where λ is coefficient of thermal conductivity, Cp is specific heat of the medium (solid
or liquid), ρ is density of the liquid, u, v are components of the velocity vector, Q is

bulk density of the heat sources, Q = Q(r, t, z) =

{
0, outside heater
const > 0, on heater .

The heated surface is as a thin circular layer in the center of the cuvette bottom with
heater radius Rh, where absorption of laser beams takes place.

Boundary conditions for equation (3) have form:

• ∂T
∂r
|r=0= 0 axial symmetry condition;

• ∂T
∂r
|r=Rc = 0 adiabatic right side wall;

• λ∂T
∂n
|W = αw(TW − Ta) convective heat transfer coefficient is specified on cuvette

bottom;

• λ∂T
∂n
|S = α(TS − Ta) convective heat transfer coefficient is specified on free liquid

surface.

IndexW determines the conditions at the bottom of the cuvette, index S determines
the conditions on the free liquid surface, α is convective heat transfer coefficient, Ta is
ambient temperature, n is normal vector to the surface.

Initially liquid surface is flat and temperature of the liquid surface and cuvette is
uniform:

h|t=0(r, z) = h0, T |t=0(r, z) = T0 = const (4)
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4 Calculating method

For calculations there has been used splitting into physical processes, such as thermal
conduction and liquid motion. The grid in the space variables in the liquid and solid
phases is uniform: ri = i · dr, i = 0, .., N , zj = j · dz, j = 0, ..,M where dr and dz
are space steps in r and z directions correspondingly. Number of points in space for
numerical calculations is (N + 1 x M + 1). The time step dt is constant. The value of
the liquid layer thickness in the time tk and node i is hki = h(ri, tk).

The evolution equation of the liquid layer thickness (2) is approximated at grid’s
nodes with finite volume method [11] with an implicit finite-difference scheme of first
order in time and of second order in space [9, 10]. The implicit scheme is chosen to
ensure stability [11]. A discrete analogue of eq. (2) is written for each volume Vi:

hk+1
i − hki
dt

+
1

ri

qi+1/2ri+1/2 − qi−1/2ri−1/2

dr
= 0 (5)

Expression for approximation of the vector of local liquid flow rate along the surface
q = h3

3µ
f + h2

2µ
τ is following:

qi+1/2 =
(hk+1

i+1/2)
3

3µ

(fk+1
i − fk+1

i+1 )

dr
+

(hk+1
i+1/2)

2

2µ
τ k+1
i+1/2. (6)

Here pressure f is expressed in such way:

fki = ρghi + σHi; (7)

thermocapillary tangent stress is

τi+1/2 = σT
(Ti + Ti+1)

dr
; (8)

double mean curvature of the liquid surface H contains the first and the second order
derivatives of liquid layer thickness, which approximated in such way:

hr,i =
hi+1 − hi−1

2dr
, hrr,i =

hi+1 − 2hi + hi−1

dr2
; (9)

and approximation of layer thickness is:

hi+1/2 =
hi + hi+1

2
. (10)

The system of nonlinear algebraic equations (5) obtained in the approximation is
solved at each time step by the Newton’s method, and the Jacobians are calculated
using numerical linearization [9, 10]. The scheme has the second-order approximation
for the spatial coordinates and the first-order in time.

For calculating the temperature in the liquid, deformations of the surface are not
taken into account. Since the heater is thin, we assume that the heat source is concen-
trated only in one layer of nodes. The energy equation (3) is approximated by a finite
difference scheme using the fractional step method [11]:
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where Qn
ij =

{
P

πR2
hdz

at i < NRh

Rc
, j = M/2 + 1,

0 for others i, j.
, here P is given value of the heater

power, Rc is cuvette radius, Rh is heater radius.
Boundary and initial conditions are set in the finite differences equations:

• T (j, 0) = T (j, 2) , j = 1, ..,M symmetry condition;

• T (j,N + 1) = T (j,N − 1) , j = 1, ..,M adiabatic right wall;

• T (0, i) = T (2, i)− α/λ(T (1, i)− Ta)2dh , i = 1, .., N heat transfer coefficient on
the liquid surface;

• T (M + 1, i) = T (M − 1, i)−αw/λw(T (M, i)−Ta)2dhw , i = 1, .., N heat transfer
coefficient on the cuvette bottom.

Initial conditions: T 0
i,j = 0, i = 0, .., N, j = 1, ..,M − 1.

The obtained systems of linear algebraic equations at each step were solved by the
tridiagonal matrix algorithm. Problem’s data satisfies sufficient conditions for deter-
mining the correctness and stability of tridiagonal matrix algorithm. The numerical
algorithm for the joint solution of the energy equation and the evolution equation for
the liquid layer thickness has been developed. The calculations are performed sequen-
tially. The time step for the evolution equation is done after the time step for the energy
equation. Since the process of heat conduction is much slower than the changings in
the layer thickness, there are no problems in combining such steps. The mathematical
model accounted such defining parameters as the geometry of the problem, parameters
of the liquid (table 1), properties of the substrate and the heater materials, heating
methods. The calculation results have shown that all these parameters have a signifi-
cant impact on the distribution of the heat and deformations of the liquid surface.

Table 1: Properties of silicone oils of different types, temperature condition T = 200C
oil type σ, N/m σT , N/(m·K) ρ, kg/m3 Cp, J/(kg·К)
PMS-5 18.27 -0.066 911.4 1640
PMS-50 19.24 -0.052 960 1549

5 Analysis of calculation results

Comparisons with experimental data [13] have been made. Thermocapillary deforma-
tion of dimethylpolysiloxane layer (PMS or silicone oil) was investigated using laser
scanning confocal microscope Zeiss LSM 510 Meta. This microscope allowed obtaining
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highly accurate data on thermocapillary deformation at the stage of steady flow. Ex-
perimental measurements were conducted for five types of silicone oil: PMS-5, PMS-50,
PMS-100, PMS-200 and PMS-400.

Initial thickness of silicone oil is of the order of several hundred micrometres. The
taken types of silicone oil cover the range of viscosity from 5 to 365 cP, other thermal
properties are slightly varied. Heater power is Q = 16.5± 5 mW.

The experimental scheme is shown in Fig.1. One of the special feature of exper-
imental setup was that the bottom of glass cuvette was colored with a layer lacquer
based on nitrocellulose. The lacquer coating was transparent to the beam of scan-
ning microscope,thus, absorbed about 99% of the semiconductor laser. In this way the
bottom layer was induced by the heat source (heater).

Figure 1: The experimental scheme. 1 microscope lens, 2 scanning beam microscope
(wavelength λ = 488 nm), 3 glass cuvette (cuvette radius Rc = 18 mm), 4 layer of
colored lacquer based on nitrocellulose, 5 layer of silicone oil, 6 ray semiconductor laser
(wavelength 650 nm, power P = 16.5± 0.5 mW).

Dependencies on the silicone oil thickness of the thermocapillary deformation’s
depth have been measured experimentally and calculated by the model (Fig.2). Nu-
merical calculations were made for two marks of silicone oil: PMS-5 and PMS-50.

The depth of the thermocapillary deformation depends strongly on the initial thick-
ness of the layer and the oil viscosity. The thinner the layer, the greater the difference
∆h, when other things being equal. In thin layers thermocapillary deformation depth
reaches 30% or more of the initial thickness, but quickly decreases with increasing h0
(see Fig.3). When the layer thickness is h > 400 µm values of deformations are practi-
cally the same, because viscosity variations for thick layers have less effect on the value
of deformation. There is a good qualitative agreement between the calculating results
and experimental data. The differences in the calculating results for PMS-5 and PMS-
50 are explained by differences in the coefficients of surface tension and coefficients of
dependence of the surface tension on temperature for these liquids.

Stationary states for different types of silicone oil under the heating power Q =
16.5 mW and different initial layer thicknesses are shown in Fig.3. The thickness
distributions of PMS-5 and PMS-50 layers with the initial thickness of the silicone
oil layer h0 = 238 µm and h0 = 538 µm are shown on Fig. 3 along the cuvette of
radius Rc = 18 mm. Differences in the calculation results for PMS-5 and PMS-50 are
explained by differences in the coefficients of surface tension σ and differences in the
coefficient σT which determines the dependence of the surface tension on temperature.
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PMS-5 has a lower surface tension and, at the same time, depends more on temperature
than PMS-50. Both of these contribute to the fact that the deformation for PMS-5 is
greater than for PMS-50.

Figure 2: Thermocapillary deformation depth dependence on the thickness of the layer
of silicone oil. ∆h = h0−hC is thermocapillary deformation depth, h0 is initial thickness
of the liquid layer, hC is layer thickness over the center of the heater at the stage of
steady thermocapillary flow. 1 - PMS-5; 2 - PMS-50; 3 - PMS-100; 4 - PMS-200; 5 -
PMS-400; 6 - PMS-5 calculations; 7 - PMS-50 calculations.

Figure 3: The distribution of the liquid film thickness along the cuvette with radius
Rc = 18mm for different types of silicone oil, t = 100 s, Q = 0.0165 W. 1 - PMS-5; 2 -
PMS-50. а) h0 = 238 µm; b) h0 = 538 µm.

The thickness distributions for PMS-5 and PMS-50 along the cuvette of radius Rc

at different heating powers, after 2 seconds from the start of heating, are shown on
Fig.4. The unsteady state of the process is clearly visible in Fig.4a in the case of
PMS-50, where a liquid bump is located at the boundary of the heater, formed due
to displacement of the liquid from the center of the cuvette. Since the liquid PMS-50
is more viscous, then within 2 seconds the layer does not have time to spread under
the influence of gravity and surface tension. There is a decreasing in the value of
the thermocapillary deepening above the heater with increasing thickness of the initial
liquid layer, with the same heating of the same liquid.
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Figure 4: The distribution of the liquid film thickness along the cuvette for different
heating values, time t = 2s. 1 - Q = 0.0165 W; 2 - Q = 0.3 W; a) PMS-50, h0 = 238
µm; b) PMS-50, h0 = 538 µm; c) PMS-5, h0 = 238 µm; d) PMS-5, h0 = 538 µm

6 Conclusions

There have been measured and numerically calculated deformations in locally heated
horizontal layers of silicone oils of different types and thickness. Numerical calcula-
tions have shown that if horizontal liquid layer is locally heated then thermocapillary
deformations and thermocapillary flow occurs.

It has been found that the value of the relative deformation of the layer decreases
nonlinearly with increasing the layer thickness, when other conditions being equal.
The results of modeling using the thin layer approximation are predicting well the
main features of the experimental dependences of the thermocapillary deformations on
the layer thickness for silicone oils of different types. So the experimental results can
be used to test a wide class of computer programs that simulate the processes of heat
and mass transfer in multiphase systems with liquid-gas interfaces.

Stationary and unsteady solutions have been obtained for silicone oils of different
types. It has been shown that the greater the thickness of the initial layer of silicone
oil, the smaller the value of the thermocapillary deepening over the heater with the
same heating of the same type of silicone oil.

Dependencies of the depth of thermocapillary deformation on the layer thickness
for silicone oils with different viscosities were obtained. It is established that the value
of the relative deformation value decreases nonlinearly with increasing initial thickness
of the layer. The calculation results are in good qualitative and quantitative agreement
with experimental data that had been obtained using confocal microscopy.
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