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Abstract We consider two distinct techniques for estimating random parameters in random
differential equation (RDE) models. In one approach, the solution to a RDE is represented
by a collection of solution trajectories in the form of sample deterministic equations. In
a second approach we employ pointwise equivalent stochastic differential equation (SDE)
representations for certain RDEs. Each of the approaches is tested using deterministic model
comparison techniques for a logistic growth model which is viewed as a special case of a
more general Bernoulli growth model. We demonstrate efficacy of the preferred method with
experimental data using algae growth model comparisons.
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1 Introduction
In this paper, we examine techniques for estimating random variable parameters in
random differential equation (RDE) models. Our ultimate research effort lies in the
development of model comparison techniques for RDE models which are presented in
a separate article [5]. However, in that effort, it is necessary to estimate optimal pa-
rameters for use in the test statistic. Overall, the theory [4, 12] for RDE is much less
advanced than that for stochastic differential equations (SDE). While the questions
of existence and uniqueness of solutions are without question important, for this pre-
sentation we simply assume that the RDE we investigate have a unique solution, and
focus on discussion of the equation for the probability density function of the solution.
Due in part to their wide applicability [7, 11, 13], RDE have enjoyed considerable re-
search efforts on computational methods in the past decade. Widely used approaches
include Monte Carlo methods, stochastic Galerkin methods and probabilistic colloca-
tion methods (also called stochastic collocation methods) [9, 8, 14]. Specifically, both
Monte Carlo methods and probabilistic collocation methods seek to solve determin-
istic realizations of the given RDE (and thus both methods were developed in the
spirit of the sample function approach). The difference between these two methods
rests primarily in the manner in which one chooses the "sampling" points. Monte
Carlo methods are based on large sampling of the distribution of random input vari-
ables while probabilistic collocation methods are based on quadrature rules (or sparse
quadrature rules in high-dimensional space). Stochastic Galerkin methods are based



6 Banks H.T., Joyner M.L.

on (generalized) polynomial chaos expansions, which express the unknown stochastic
process by a convergent series of (global) orthogonal polynomials in terms of random
input parameters. Interested readers can refer to [14] and the references therein for
details.

Some difficulties which have arisen in dealing with RDE may be due in part to
the inability to accurately estimate parameters in the models. Here we compare two
different techniques for estimating these random variable parameters and determining
the accuracy of each method. Since the model selection criteria we have developed
[5] extends the techniques for deterministic systems, we only consider parameter es-
timation techniques which are also extensions of methods developed for estimation of
parameters in deterministic systems.

2 A Brief Overview of Random Differential Equations
A general random ordinary differential equation (RDE) containing random parameter
values can be written as

dx

dt
= g(t,x,Q), x(0) = x0 (1)

where Q is a m-dimensional random vector. For example, consider the logistic deter-
ministic model given by

dx

dt
= rx(t)

(
1− x(t)

κ

)
(2)

where r is the growth rate and κ is the limiting capacity. In this deterministic model,
both r and κ are assumed to be constant parameter values. One may formulate a
logistic RDE model by instead assuming that one or both of these parameter values
are random variables which behave according to some known (or to be determined)
distribution. For example, if R ∼ N (µR, σ

2
R) is a random variable parameter for the

growth rate and one assumes the limiting capacity κ is a constant, then

dx(t;Q)

dt
= Rx(t;Q)

(
1− x(t;Q)

κ

)
(3)

is a RDE with random variable parameter Q = R. If instead we let R ∼ N (µR, σ
2
R)

and K ∼ N (µK , σ
2
K), then

dx(t;Q)

dt
= Rx(t;Q)

(
1− x(t;Q)

K

)
(4)

is a RDE with random variable parameter Q = [R,K].
Regardless of the type of mathematical model, parameter estimation is a vital step

in the development of the model. The validation of a mathematical model with em-
pirical data allows one to use the model to gain insights into the processes inherent
in the system as well as investigate the potential effect of perturbations on or within
the system. If we re-examine each of the above models, we note that the parameter
estimation problem is slightly different for each of them. In the deterministic model
(Eq. (2)), both r and κ are constants; therefore, it is necessary to estimate only two
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parameters in this model. In Equation (3) in which κ is constant and the growth rate
is now assumed to be a random variable, R ∼ N (µR, σ

2
R), there are effectively three

values which must be estimated to fully determine the RDE model: κ, µR, and σR. If
R was assumed to satisfy a different statistical distribution, then it would be necessary
to estimate all the parameters to determine completely the assumed distribution. In
the last model in Equation (4), both the growth rate, R, and limiting capacity, K,
are assumed to be random variable parameters behaving according to a normal dis-
tribution. Hence, in this model, we must be able to estimate µR, σR, µK , and σK .
Therefore, the parameter estimation problem is different depending on which variables
are assumed to be random variables and the choice of any assumed distribution for
each random variable parameter. In Section 3, we consider the solution to the RDE
to be a collection of solution trajectories to a sample deterministic system. As such,
we develop a method for parameter estimation which utilizes the sample deterministic
system and methods for parameter estimation in deterministic systems. In Section 4,
we also utilize deterministic methods for parameter estimation; however, the method
developed in this section is based on the equivalence of an RDE model to a stochas-
tic differential equation (SDE) model and the relationship between a SDE model and
deterministic system for large population sizes.

3 Method 1: Parameter Estimation Method Using
Sample Deterministic Equation

There are two common ways to approach RDE, the mean calculus approach and the
sample function approach [2]. We use here the sample function approach in which one
considers individual realizations of the RDE. Each realization of the RDE is a solu-
tion to a deterministic differential equation, called a sample deterministic differential
equation, which is assumed here to have a unique solution [2]. For example, for every
realization r of R ∼ N (µR, σ

2
R) in the RDE model, we obtain the deterministic differ-

ential equation given by Equation (2). In this approach to RDE models, the solution to
an RDE is a collection of solution trajectories to the sample deterministic equations.
Let h(t;Q) represent the observation process in the RDE model and fd(t,q) be the
observation process in the sample deterministic differential equation. Then we can as-
sume data z = (z1, z2, ...zN)T is a realization of a random variable Z which is generated
from a stochastic process given by a ‘true’ RDE model and can be defined as

Zj = h(tj;Q0) + Ej = fd(tj;q0) + Ej, j = 1, ..., N (5)

where Ej is a normally distributed random variable with mean E(Ej) = 0 and known
variance V ar(Ej) = σ2

0, Q0 is the true random variable parameter in the RDE system,
and q0 is a realization of the random variable Q0.

Therefore, to obtain a parameter estimate, we first define

JNRDE1
(q;Z) =

1

N

N∑
k=1

(Zk − fd(tk;q))2 (6)
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to be the cost function. We then seek an estimator

qNRDE1
= argmin

q∈Ωq
JNRDE1

(q;Z)

with realization
q̂NRDE1

= argmin
q∈Ωq

JNRDE1
(q; z). (7)

This estimator could be approximated by an estimate for the realization q of Q given
a specific data set z. However, as discussed above, we need to estimate all statistical
parameters which completely define Q, not simply one realization of Q. Given multiple
data sets zk for the given physical system, we can estimate the statistical parameters
for the distribution. For example, in Equation (3), we need to estimate both the mean
µR and the standard deviation σR. If we have M data sets for the physical system,
then we can obtain estimates q̂k, k = 1, ...,M using Equation (7) for each data set zk,
k = 1, ...,M . For an arbitrary random variable parameter Qi ∼ N (µi, σi), then the
mean µi can be approximated by

µ̂i ≈
1

M

M∑
k=1

(q̂i)k. (8)

Similarly, the standard deviation can be approximated by

σi ≈

√√√√ 1

M

M∑
k=1

((q̂i)k − µi). (9)

We note that given only one data set, M = 1, Equation (8) yields µi ≈ (q̂i)1; substi-
tuting µi into Equation (9), we have σi = 0. Therefore, it is necessary to have multiple
data sets in order to approximate the standard deviation using this method. If one
assumes the random variable parameters behave according to a distribution different
from the normal distribution or the distribution is unknown, one can use tools in a com-
putational software such as Matlab or Minitab to estimate the statistical distribution
parameters and/or to determine the distribution which best fits the set of estimates
{(q̂i)k}Mk=1 for each parameter Qi.

4 Method 2: Parameter Estimation Method Using a
Pointwise Equivalent SDE Model

An alternate method is based on the pointwise equivalence between a RDE and a SDE
model. Established in [4] and summarized in [2], it was shown that there are classes
of RDEs which are pointwise equivalent to corresponding Itô SDEs. If one assumes
the solution to a RDE is a stochastic sample solution, i.e., the collection of solution
trajectories of the sample deterministic equations, then there are classes of RDEs for
which their solutions have the same probability density function at each time t as the
solutions to corresponding Itô SDEs. Two such classes are given in [2, 4].
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The first class are RDEs of the form

dx(t;X0,Q)

dt
= α(t)x(t;X0,Q) + γ(t) + Q · %(t), x (0;X0,Q) = X0, (10)

where Q = (Q0, Q1, ... Qm−1)T , Qj ∼ N (µj, σ
2
j ), j = 0, 1, 2, ..., m − 1 and % =

(%0, %1, ..., %m−1)T , γ and α are non-random functions of t. It is shown in [2] that a
random differential equation of this form is pointwise equivalent to the SDE given by

dX(t) = (α(t)X(t) + γ(t) + µ · %(t)) dt+
√

2h(t)dW (t), X(0) = X0, (11)

if % has the property that the function

h(t) =
m−1∑
j=0

σ2
j%j(t)

(∫ t

0

%j(s)exp

(∫ t

s

α(τ) dτ

)
ds

)
is non-negative for any t ≥ 0. In Equation (11), µ = (µ0, µ1, ..., µm−1)T is the vector
of mean values µj, j = 1, ...,m− 1, for each random parameter Qj in Q.

The second case considered in [2, 4] are RDEs of the form

dx(t;X0,Q)

dt
= (Q · %(t) + γ(t)) (x(t;X0,Q) + c) , x (0;X0,Q) = X0, (12)

where again Q = (Q0, Q1, ... Qm−1)T , Qj ∼ N (µj, σ
2
j ), j = 0, 1, 2, ..., m − 1, % =

(%0, %1, ..., %m−1)T is a non-random vector function of t, γ is a non-random function
of t and c is a constant. It is shown in [2] that a random differential equation of this
form is pointwise equivalent to the SDE given by

dX(t) =
(
µ · %(t) + γ(t) + h̃(t)

)
(X(t) + c) dt+

√
2h̃(t) (X(t) + c) dW (t), X(0) = X0,

(13)
if % has the property that the function

h̃(t) =
m−1∑
j=0

σ2
j%j(t)

(∫ t

0

%j(s) ds

)
is non-negative for any t ≥ 0.

If the RDE model is of the form in Equation (10) or (12) or can be transformed such
that it has one of the given forms, then as described above, a pointwise equivalence can
be established between the RDE model and a corresponding SDE model. The general
form of an Itô SDE as discussed in [1] is given by

dX(t) = µ(t,X(t))dt+B(t,X(t))dW (t), t ≥ 0, (14)

where

µ(t,X) =
E(∆X)

∆t
, B(t,X) = V 1/2 with V =

E(∆X∆XT )

∆t
,

and W is a Wiener process such that W (0) = 0 and

W (t)−W (s) ≈ N (0, t− s).
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For large population sizes [10, 6], the dynamics in the SDE are similar to the dynamics
of a deterministic system in which the stochastic effects become less important in the
overall dynamics of the solution. To approximate the SDE with a deterministic system,
we take the expectation of the SDE,

E (dX(t,q)) = E (µ(t,X(t,q))dt) + E (B(t,X(t,q))dW (t)) = µ(t,X(t,q))dt

or
E (dX(t,q))

dt
= µ(t,X(t,q))

since E(dW ) = 0. Therefore, the expected trend for an SDE is given by the expected
deterministic system. Hence, given a RDE model of the form in Equation (10) or (12)
or which can be transformed into one of these forms, we can first develop the pointwise
equivalent SDE which can then be approximated with a deterministic system if the
population size is ‘sufficiently large’.

In this method, we again assume the data, z = (z1, z2, ...zN)T is a realization of
random variable Z which is generated from a stochastic process given by a ‘true’ RDE
model but the model can be approximated by a deterministic system which is estimated
from a pointwise equivalent SDE for the purpose of parameter estimation. Let h(t,q)
represent the observation process in the RDE model and fs(t,q) the corresponding ob-
servation process in the approximate deterministic system for the pointwise equivalent
SDE, then we assume

Zj = h(tj;q0) + Ej ≈ fs(tj;q0) + Ej, j = 1, ..., N, (15)

where Ej is a normally distributed random variable with mean E(Ej) = 0 and known
variance V ar(Ej) = σ2

0. In the parameter estimation problem, define

JNRDE2
(q;Z) =

1

N

N∑
k=1

(Zk − fs(tk;q))2 (16)

to be the cost function with which we seek an estimator

qNRDE2
= argmin

q∈Ωq
JNRDE2

(q;Z)

with realization
q̂NRDE2

= argmin
q∈Ωq

JNRDE2
(q; z). (17)

In the implementation of this method, the approximate deterministic system fs(t,q)
contains all values which must be estimated to fully define the normally distributed
random variable parameter. Therefore, we do not need to estimate the parameters of
the statistical distribution separately. Two examples are given below.

5 Results
We test this methodology for two nested models, the logistic growth RDE model given
by Equation (3) and the Bernoulli growth RDE model given by

dx(t;Q)

dt
= Rx(t;Q)

(
1−

(
x(t;Q)

κ

)β)
(18)
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Figure 1: One thousand synthetic data sets without noise added using µr = 1, κ =
10000 with σr = 0.1 in the logistic RDE model (Eq. (3)) (first plot), the Bernoulli RDE
model (Eq. (18)) with β = 1.5 (second plot) and β = 3 (third plot). The deterministic
model with both r = 1 and κ = 1000 constant is given in black in each of the figures.

assuming the growth parameter R is a random variable, R ∼ N (µR, σ
2
R), while both β

and the limiting capacity κ are held constant. These are nested models, because if we
set β = 1 in Equation (18), we obtain the logistic RDE model given in Equation (3).
We consider trials using three different values of β in Equation (18), β = 1 (equivalent
to the logistic RDE model, Eq. (3)), β = 1.5 and β = 3. In each trial, we let κ = 1000,
µr = 1 and σr = 0.1. For each trial, we generated 1000 different data sets (Figure 1) by
taking 1000 realizations rj, j = 1, ..., 1000, of R ∼ N (µR, σ

2
R) and solving the sample

deterministic system

dx(t)

dt
= rjx(t)

(
1−

(
x(t)

κ

)β)
, j = 1, ..., 1000.

We then add noise using Equation (5) with σ0 = 10 for Ej; the data with noise added
is shown in Figure 2.

5.1 Method 1 Results

In implementing Method 1, we note that for the logistic model, the sample deterministic
differential equation is given by Equation (2),

dx

dt
= rx(t)

(
1− x(t)

κ

)
;

for the Bernoulli RDE model, the sample deterministic differential equation is given
by

dx(t)

dt
= rx(t)

(
1−

(
x(t)

κ

)β)
. (19)
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Figure 2: One thousand synthetic data sets with noise E ∼ N (0, 100) using µr = 1,
κ = 10000 with σr = 0.1 in the logistic RDE model (Eq. (3)) (first plot), the Bernoulli
RDE model (Eq. (18)) with β = 1.5 (second plot) and β = 3 (third plot). The
deterministic model with both r = 1 and κ = 1000 constant is given in black in each
of the figures.

We use the built-in Matlab program fminsearch to minimize the cost function given in
Equation (6) where fd(t,q) is the solution to the sample deterministic differential sys-
tem given by either Equation (2) or Equation (19) depending on the data set (synthetic
data from the Logistic or Bernoulli RDE model, respectively). The initial guess is set
as 1.10q0 where q0 is the exact value. We first test the method using data generated
from the Logistic RDE model with no noise added (first plot in Figure 1). We test the
method using a random draw of M data sets from the 1000 initial data sets generated
(this is to simulate having M data sets taken from the physical system). We consider
M = 1, 2, 3, 4, 5, 10, 15, 20, ..., 95, 100. Recall, using M = 1, we have σR = 0;
therefore, M must be chosen to be greater than 1 in order to estimate σR 6= 0. We
consider different values of M to investigate the effect that the choice of M has on
the accuracy of the estimate. Each estimate r̂k, k = 1, ...,M will each be different.
Depending on which M data sets are randomly chosen from the set of 1000, this will
result in a different estimate for µR (as well as the mean value for κ). If we examine
Figure 1, we note that the realization r of R ∼ N (µR, σR) which generated the ‘lowest’
curve (or the one with the lowest rate of growth) will be smaller than the realization
which generated the ‘highest’ curve (or one with the fastest rate of growth). If M = 2,
the value of µR will be quite different using these extreme data sets than if we have two
data sets which behave similarly. Therefore, we use different draws of M data sets to
simulate for the variation which might be seen depending on which M data sets from
the physical system are collected. The results are given in Figure 3.

In Figure 3, the red line indicates the exact values of µR = 1, σR = 0.1 and κ = 1000.
Using 100 different draws of M data sets, we have plotted the largest, smallest and
median estimated values for each parameter reflecting the extent which group of M
has on the resulting estimate. We note that when M is small (M < 30), the range of
possible estimates vary more than whenM is large, especially for µR and σR. However,
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even when using only 1 data set, the median estimate is quite accurate for both µR
and κ. In order to obtain close to the same level of accuracy for the median value
of σR, we need M ≥ 5 (also see Table 1). We do notice that the estimate for κ is
always overestimated with a median value of approximately 1001; however, this only
represents a 0.10% error in the estimated value. In fact, the maximum percent relative
error in κ does not vary much as a function of the number of data sets. We also observe
that although we are assuming κ is constant, we do have a small standard deviation of
about 0.25 in the estimate of κ simply due to the variation in the estimated value of κ
given different data sets. However, Table 1 shows much more variation in the range of
estimates for both µR and σR as a function of the number of data sets available. Ten or
more data sets are required to obtain estimates with less than 10% relative error in µR;
however, even with 100 data sets from the physical system, there is still the potential
of having more than 15% relative in the estimate of σR. Recall that the accuracy of
the estimate depends on which M data sets are used in the estimation. Even though
the potential is to have over 10% relative error using M = 100 data sets; only 16% of
the random draws of 100 data sets resulted in percent relative error more than 10%.
If M ≥ 70, then less than 25% of the time there is an estimate with a percent relative
error of greater than 10% and when M ≥ 25, then less than 40% of the time, there is
an estimate for σR with more than 10% relative error. In summary, using Method 1
for estimating the parameters in the RDE logistic model, depending on the number of
data sets available and which data sets are in this group, we were able to obtain good
estimates for both κ and µR with as little as 1 data set. However, to ensure relative
error less than 10% in µR, it was best to use 10 or more data sets if possible. The
estimate for σR was much more difficult. Since σR is smaller with an exact value of
only 0.10, it is much harder to estimate with the same degree of percent relative error.
Nonetheless, with 15 or more data sets, we could obtain estimates within 0.05 of the
actual value.

Note that even though the synthetic data was generated using the Logistic RDE
model, this is identical to generating the data using the Bernoulli RDE model with
β = 1. Therefore, the parameter estimation problem could be considered for the
Bernoulli model in which we need to estimate not only µR, σR, and κ but β as well.
Therefore, we also attempted to estimate these parameters using onlyM = 15 data sets
and obtained the results in Table 2. The estimates are comparable to those obtained
when using the sample deterministic logistic model and estimating one less parameter.

We repeat the parameter estimation problem for the Logistic RDE model using the
noisy synthetic data from the Logistic RDE Model (first plot in Figure 2). We only
consider M = 15 in this trial. The results are given in Table 3 which are comparable
to the results we saw using synthetic data without noise added. Adding the noise to
the data did, however, result in a slightly larger standard deviation of 2.49 for κ even
though κ is assumed constant. However, when noise is added to the data, it is expected
that there will be some variation simply due to the variation in the estimates. We note,
though, the calculated standard deviation in κ is small compared to the magnitude of
κ.

Again, using only M = 15 data sets, we use method 1 to estimate the parameters
in the Bernoulli growth model with β = 1.5 and β = 3 using data with and without
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Figure 3: Variation in the estimated values for µR, σR, and κ when the number of data
setsM are varied when using synthetic data from the Logistic RDE Model in Equation
(3). The red line indicates the exact parameter value. We consider 100 different random
draws of M data sets from the 1000 generated. The black star represents the median
estimated value across the different groups of M data sets; the blue upward triangle
is the maximum estimated parameter value, and the green downward triangle is the
minimum estimated value.
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Table 1: Variation of Percent Relative Error in Parameter Estimate for Logistic RDE
Model using Synthetic Data with No Noise Added Using Method 1 with 100 Different
Random Draws of M Data Sets.

µR
M Max Perc. Rel. Error Med Perc. Rel. Error
1 21.13% 0.77%
2 16.35% 0.88%
3 13.78 % 0.67%
4 14.74% 0.91%
5 11.47% 0.65%
10 9.39% 0.54%
15 7.19% 0.44%
20 5.56% 0.32%

σR
M Max Perc. Rel. Error Med Perc. Rel. Error
1 100.00% 100.00%
2 168.57% 35.05%
3 90.27% 20.86%
4 83.46% 5.04%
5 77.92% 1.89%
10 56.25% 2.01%
15 42.55% 1.50%
20 40.04% 4.11%
40 39.81% 0.15%
60 21.25% 0.82%
80 26.42% 1.04%
100 16.75% 1.09%

Table 2: Parameter Estimates for Bernoulli RDE Model using Synthetic Logistic RDE
Model Data with No Noise Added Using Method 1 with 100 Different Random Draws
of M = 15 Data Sets.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9906 0.94% 7.66%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.1010 1.04% 42.89%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.14 0.01% 0.06%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1 1.0084 0.84% 0.94%
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Table 3: Parameter Estimates for Logistic RDE Model using Synthetic Data with Noise
Added Using Method 1 with 100 Different Random Draws of M = 15 Data Sets.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9958 0.42% 7.49%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.0971 2.90% 47.46%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.17 0.02% 0.17%

Table 4: Parameter Estimates for Bernoulli RDE Model using Synthetic Data with
β = 1.5, No Noise Added, Using Method 1 with 100 Different Random Draws of
M = 15 Data Sets.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9896 1.04% 8.09%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.0956 4.34% 51.52%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.03 0.003% 0.34%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1.5 1.5131 0.87% 20.81%

noise added. The results are given in Tables 4 - 7. Using data without noise (Tables
4 and 6), we obtain estimates similar to those obtained using synthetic data from the
Logistic model for µR, σR and κ; however, the maximum relative error in the estimates
for β are slightly worse than expected. Some of the difficulty in the estimation may lie
in the identifiability of the parameters in the sample deterministic model since κ and
β are found jointly in the denominator in the term (x(t))β

κβ
. To address this issue, we

let κ̃ = κβ in the sample deterministic differential equation and seek an estimate q̂ for
q = [µR, σR, κ̃, β] in the system

dx(t)

dt
= rx(t)

(
1− (x(t))β

κ̃

)
(20)

where the estimate for κ can be calculated as κ̂ = ˆ̃κ(1/β̂).
We compare the estimation of r, κ, and β in the original sample deterministic

system to the estimates obtained in the re-parameterized sample deterministic system
for one of the data sets (with no noise added) in which the estimate for β is poor.
Figure 4 shows the results in the parameter estimation. Using the re-parameterized
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Table 5: Parameter Estimates for Bernoulli RDE Model using Synthetic Data with
β = 1.5, With Noise Added, Using Method 1 with 100 Different Random Draws of
M = 15 Data Sets.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 1.0048 0.48% 6.48%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.1001 0.06% 40.26%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 999.98 0.02% 0.27%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1.5 1.5002 0.01% 18.83%

Table 6: Parameter Estimates for Bernoulli RDE Model using Synthetic Data with
β = 3, No Noise Added, Using Method 1 with 100 Different Random Draws of M = 15
Data Sets.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9923 0.77% 7.56%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.1004 0.36% 44.76%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 998.98 0.10% 2.04%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
3 3.3928 13.09% 130.78%
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Table 7: Parameter Estimates for Bernoulli RDE Model using Synthetic Data with
β = 3, With Noise Added, Using Method 1 with 100 Different Random Draws of
M = 15 Data Sets.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 1.0068 0.68% 6.96%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.0899 10.08% 44.72%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 999.24 0.07% 1.33%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
3 3.3301 11.00% 101.83%

deterministic model produced more accurate estimates for not only β but all three
parameters. The original estimates are given by r̂ = 0.95, κ̂ = 987.34 and β̂ = 7.75.
The estimates using the re-parameterized system are given by r̂ = 0.98, κ̂ = 1000.03
and β̂ = 3.04.

Using the same type of re-parameterization to estimate the parameters for the
RDE model, we estimated the parameters using synthetic data from the RDE model
for β = 1.5 and β = 3 with noise added. If we compare the results in Table 5 of the
parameter estimation for the Bernoulli model with β = 1.5 using the original sample
deterministic system (Eq. (19)) and those results in Table 8 using the re-parameterized
sample deterministic system (Eq. (20)), we see that although the results for µR and
σR are slightly worse, the estimate for κ is slightly better and the maximum error in
β is significantly better with a maximum percent relative error of only 1.7% instead
of 18.83% when using the original model. Similar improvement can be found when
comparing Table 7 using the original sample deterministic system and Table 9 using
the re-parameterized sample deterministic system when β = 3. Although the maximum
relative error in β is still about 19%, there are only 9 trials out of the 100 which resulted
in an error of over 10%.

To summarize, using Method 1 to estimate parameters in a RDE model provided
good estimates for both the mean of the random variable parameter and all constant
parameters in the model in the examples presented for the Logistic RDE Model and
the Bernoulli RDE Model with either β = 1.5 or β = 3 when synthetic noisy data
was used in the estimation problem. When using M = 15 data sets, the accuracy
of σR depended on which data sets were used in the estimation problem. Figure
5 shows the difference in the RDE solution or collection of solution trajectories to
the sample deterministic equation when using the exact value of σR compared to the
estimate which resulted in the worse percent relative error when using β = 3 and the
re-parameterized sample deterministic system. In this case, σR was underestimated
at approximately 0.06 (compared to the exact value of 0.1). We can see that the
inaccuracy in the estimated value of σR resulted in less variability in the collection
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Table 8: Parameter Estimates for Bernoulli RDE Model using Synthetic Data with β =
1.5, With Noise Added, Using Method 1 with Reparameterized Sample Deterministic
System and 100 Different Random Draws of M = 15 Data Sets.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9958 0.42% 7.45%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.0981 1.86% 49.24%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.07 0.008% 0.15%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1.5 1.5010 0.07% 1.70%

Time
0 1 2 3 4 5 6 7 8 9 10

P
op

ul
at

io
n

0

200

400

600

800

1000

1200
Model Fits Using Original Model and Reparameterized Bernoulli Models

 Data
 Fit with Original Model 
 Fit with Reparameterized Model 

Parameter Estimates:

Original Model:
r = 0.95; κ = 987.34; β = 7.75

Reparameterized Model:
r = 0.98; κ = 1000.03; β = 3.04

Figure 4: Comparison of the estimated values of r, κ and β using synthetic Bernoulli
model data (black stars) with β = 3 in the sample deterministic Bernoulli models
given by Equation (19) (original model fit given by the solid blue line) and Equation
20 (reparameterized model fit given by the dashed blue line).
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Table 9: Parameter Estimates for Bernoulli RDE Model using Synthetic Data with
β = 3, With Noise Added, Using Method 1 with Reparameterized Sample Deterministic
System and 100 Different Random Draws of M = 15 Data Sets.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9986 0.14% 7.44%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.0949 5.08% 39.28%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 999.82 0.02% 0.62%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
3 3.0234 0.78% 19.26%

of solution trajectories. We expect this type of underestimation when the data sets
used in the estimation problem are very similar with little variability in their growth
rate. Nonetheless, the more data sets we are able to use, the more accurate we expect
the estimate for σR (see Table 1). We do note, however, that when implementing
this method, one must still address the identifiability of parameters in the sample
deterministic system. We found that a re-parameterization of the sample deterministic
system provided much better estimates of the RDE parameters than when using the
original system in which there was an issue with identifiability.

Using this method, we also tested the ability to estimate the random parameter R if
R had a Weibull distribution with scale parameter A = 1 and shape parameter B = 10,
R ∼ W(A,B). As before, we generated 1000 different solution trajectories without
noise, first plot in Figure 6, and with noise, second plot in Figure 6. We then estimated
the parameters A and B of the Weibull statistical distribution for R and the constant
limiting capacity κ. As we did in the previous trials, we estimate the realization q of Q.
Using the realizations, we estimate the parameters for the statistical distribution of the
random variable parameters. In this case, R is the only random variable. Therefore, if
we have M data sets, then we use {rk}Mk=1 to estimate the statistical parameters A and
B of the Weibull distribution. To do this, we use the built-in Matlab function fitdist.
The results using M = 15 and M = 100 synthetic data sets containing no noise are
given in Table 10 and in Table 11 respectively. Even though the maximum percent
relative error in the shape parameter B is 113% when using M = 15 data sets, the
percent relative error was less than 10% in 98 of the 100 trials. Therefore, with only
M = 15 data sets, we can use method 1 to fairly accurately estimate both the constant
and random parameter values even when the random parameter satisfies a distribution
other than the normal distribution. We obtain only slightly better estimates using
M = 100 data sets in the estimation process (Table 11). Moreover, the method was
still robust when noise was added to the data as shown in Tables 12 and in Table 13
using M = 15 and M = 100 randomly chosen synthetic data sets.
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Figure 5: Comparison of the RDE solution or collection of solution trajectories to the
sample deterministic system for the RDE Model using the exact value for σR and the
estimated value for σR, R ∼ N (µR, σR), when β = 3 and κ = 1000 in Bernoulli RDE
model given by Equation (18).

Table 10: Parameter Estimates for Logistic RDE Model using Synthetic Data with
R ∼ W(1, 10), No Noise Added, Using Method 1 with 100 Different Random Draws of
M = 15 Data Sets.

Scale Parameter A
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9961 0.3881% 9.17%
Shape Parameter B

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
10 10.6128 6.13% 113.82%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 999.99 0.0007% 0.003%



22 Banks H.T., Joyner M.L.

Time
0 1 2 3 4 5 6 7 8 9 10

P
op

ul
at

io
n

0

200

400

600

800

1000

Synthetic Logistic RDE Model Data Sets, R ~ W(1,10)

Time
0 1 2 3 4 5 6 7 8 9 10

P
op

ul
at

io
n

0

200

400

600

800

1000

Synthetic Logistic RDE Model Data Sets with Noise, R ~ W(1,10)

Figure 6: One thousand synthetic data sets without noise added (first plot) and with
noise added (second plot) for the Logistic RDEModel (Eq. (3)) assuming R ∼ W(1, 10)
and κ = 10000.

Table 11: Parameter Estimates for Logistic RDE Model using Synthetic Data with
R ∼ W(1, 10), No Noise Added, Using Method 1 with 100 Different Random Draws of
M = 100 Data Sets.

Scale Parameter A
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 1.0010 0.10% 2.98%
Shape Parameter B

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
10 10.1268 1.27% 27.18%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 999.99 2.56e-05% 0.004%
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Table 12: Parameter Estimates for Logistic RDE Model using Synthetic Data with
R ∼ W(1, 10), With Noise Added, Using Method 1 with 100 Different Random Draws
of M = 15 Data Sets.

Scale Parameter A
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9981 0.19% 7.25%
Shape Parameter B

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
10 10.1252 1.25% 82.11%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 999.76 0.02% 0.44%

Table 13: Parameter Estimates for Logistic RDE Model using Synthetic Data with
R ∼ W(1, 10), With Noise Added, Using Method 1 with 100 Different Random Draws
of M = 100 Data Sets.

Scale Parameter A
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 1.0053 0.53% 2.99%
Shape Parameter B

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
10 10.0549 0.55% 22.01%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.75 0.07% 3.23%
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5.2 Method 2 Results

In order to use Method 2, we must also first derive a pointwise equivalent SDE for each
model and then approximate the SDE with an appropriate deterministic system. In
order to use a pointwise equivalent SDE for model selection, the RDE model has to be
in the form of either Equation (10) or (12). We first transform both the logistic RDE
model and Bernoulli RDE model into the appropriate form and derive the pointwise
equivalent SDE for each in Section 5.2.1 and 5.2.2 respectively.

5.2.1 Derivation of Pointwise Equivalent SDE for Logistic Model

The deterministic logistic growth model is given by

dx

dt
= rx

(
1− x

κ

)
.

We first transform the deterministic model by letting y =
1

x
. Then

dy

dt
= − 1

x2

dx

dt

= − 1

x2

(
rx
(

1− x

κ

))
= −r

(
1

x
− 1

κ

)

= −r
(
y − 1

κ

)

with y(0) =
1

x0

. The transformed RDE is then given by

dy(t;Q)

dt
= −R

(
y(t;Q)− 1

κ

)
, y(0;Q) = y0

which has the form of Equation (12) with Q = R, % = −1, γ(t) = 0, and c = −1

κ
.

The pointwise equivalent RDE in Y (t) can be found using the form in Equation (13).
Given µ = µR and

h̃(t) = σ2
0%0(t)

∫ t

0

%0(s) ds = −σ2
R

∫ t

0

−1 ds = σ2
Rt,

the equivalent SDE is given by

dY (t) =
(
−µR + σ2

Rt
)(

Y (t)− 1

κ

)
dt+

√
2tσR

(
Y (t)− 1

κ

)
dW (t), Y (0) = y0.
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To determine the pointwise SDE in X(t), we let X(t) =
1

Y (t)
and use Itô’s formula,

the chain rule for Itô calculus ([2]), to find dX(t). Let

dY (t) = g(t, Y (t))dt+ σ(t, Y (t))dW (t),

and assume h is a function of t and y that is continuously differentiable in t and twice
differentiable in y. Then Itô’s formula gives the chain rule for differentiation as

dh(t, Y (t)) =
∂h(t, Y (t))

∂t
dt+

∂h(t, Y (t))

∂x
dY (t) +

1

2
σ2(t, Y (t))

∂2h(t, Y (t))

∂y2
dt.

Applying this to X(t) =
1

Y (t)
, we have

dX(t) = − 1

Y 2(t)

[
(−µR + σ2

Rt)

(
Y (t)− 1

κ

)
dt+

√
2tσR

(
Y (t)− 1

κ

)
dW (t)

]
+

1

Y 3(t)

[√
2tσR

(
Y (t)− 1

κ

)]2

dt

=
1

Y (t)

[
(µR − σ2

Rt)

(
1− 1

κY (t)

)
+ 2tσ2

R

(
1− 1

κY (t)

)2
]
dt

−
√

2tσR
1

Y (t)

(
1− 1

κY (t)

)
dW (t)

= X(t)

[
(µR − σ2

Rt)

(
1− X(t)

κ

)
+ 2tσ2

R

(
1− X(t)

κ

)2
]
dt

−
√

2tσRX(t)

(
1− X(t)

κ

)
dW (t)

Therefore, the pointwise equivalent SDE to the logistic RDE model given in Equation
(3) is given by

dX(t) = X(t)

[
(µR − σ2

Rt)

(
1− X(t)

κ

)
+ 2tσ2

R

(
1− X(t)

κ

)2
]
dt

−
√

2tσRX(t)

(
1− X(t)

κ

)
dW (t), X(0) = X0.

We note that the SDE deterministic approximation is given by

dx

dt
= x

[
(µR − σ2

Rt)

(
1− x(t)

κ

)
+ 2tσ2

R

(
1− x(t)

κ

)2
]
, x(0) = x0. (21)

Note, that the deterministic system contains all three parameters which must be esti-
mated to fully define the RDE model, µR, σR, and κ.
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5.2.2 Derivation of Pointwise Equivalent SDE for Bernoulli Model

In a similar manner, we can derive the pointwise equivalent RDE for the Bernoulli
model. The deterministic Bernoulli model is given by

dx

dt
= rx

(
1−

(x
κ

)β)
.

We transform this deterministic model by letting y =
1

xβ
. Then

dy

dt
= − β

xβ+1

(
rx

(
1−

(x
κ

)β))

= −rβ
(

1

xβ
− 1

κβ

)

= −rβ
(
y − 1

κβ

)

with y(0) =
1

xβ0
. The transformed RDE is then given by

dy(t;Q)

dt
= −Rβ

(
y(t;Q)− 1

κβ

)
, y(0;Q) = y0

which has the form of Equation (12) with Q = R, % = −β, γ(t) = 0, and c = − 1

κβ
.

The pointwise equivalent RDE in Y (t) can be found using the form in Equation (13).
Given µ = µR and

h̃(t) = σ2
0%0(t)

∫ t

0

%0(s) ds = −βσ2
R

∫ t

0

−β ds = β2σ2
Rt,

the pointwise equivalent SDE in Y (t) is given by

dY (t) =
(
−βµR + β2σ2

Rt
)(

Y (t)− 1

κβ

)
dt+
√

2tβσR

(
Y (t)− 1

κβ

)
dW (t), Y (0) = y0.
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As in the previous section, we need to transform the SDE into an SDE in X(t). We

let X(t) =
1

Y 1/β(t)
. Then applying Itô’s formula we have

dX(t) = − 1

βY 1/β+1(t)[
(−βµR + β2σ2

Rt)

(
Y (t)− 1

κβ

)
dt+

√
2tβσR

(
Y (t)− 1

κβ

)
dW (t)

]
+

1

βY 1/β+2(t)

(
1

β
+ 1

)[√
2tβσR

(
Y (t)− 1

κβ

)]2

dt

=
1

Y 1/β(t)

[
(µR − βσ2

Rt)

(
1− 1

κβY (t)

)
+ 2tσ2

R(1 + β)

(
1− 1

κβY (t)

)2
]
dt

−
√

2tσR
Y 1/β(t)

(
1− 1

κβY (t)

)
dW (t)

= X(t)

(µR − βσ2
Rt)

(
1−

(
X(t)

κ

)β)
+ 2tσ2

R(1 + β)

(
1−

(
X(t)

κ

)β)2
 dt

−
√

2tσRX(t)

(
1−

(
X(t)

κ

)β)
dW (t)

Therefore, the pointwise equivalent SDE to the Bernoulli RDE model given in Equation
(18) is given by

dX(t) = X(t)

(µR − βσ2
Rt)

(
1−

(
X(t)

κ

)β)
+ 2tσ2

R(1 + β)

(
1−

(
X(t)

κ

)β)2
 dt

−
√

2tσRX(t)

(
1−

(
X(t)

κ

)β)
dW (t), X(0) = X0.

We note that the deterministic approximation for this SDE is given by

dx

dt
= x

[
(µR − βσ2

Rt)

(
1−

(x
κ

)β)
+ 2tσ2

R(1 + β)

(
1−

(x
κ

)β)2
]
, x(0) = x0 (22)

which again contains all the necessary parameters µR, σR, κ and β which must be
estimated.

5.2.3 Results

We use the built-in Matlab program fminsearch to minimize the cost function given in
Equation (16) where fs(t,q) is the solution to the deterministic approximation for the
pointwise equivalent SDE given by either Equation (21) or Equation (22), depending on
the data set (synthetic data from the Logistic or Bernoulli RDE model, respectively).
As done in testing the first method, the initial guess is set as 1.10q0 where q0 is the
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exact value. We consider one random data set drawn from the 1000 possible synthetic
data sets generated without noise (see Figure 1)) and estimate µR, σR, κ, and β (for
the Bernoulli model only). We do this 100 times. The estimated values are given in
Tables 14, 15 and 16 for synthetic data from the Logistic model, Bernoulli model with
β = 1.5, and Bernoulli model with β = 3 respectively.

Analyzing all the tables, we first note that we could estimate κ and β (for the
Bernoulli models) quite well; however, although the median estimate for µR had less
than a 2.1% relative error in each case, the maximum relative error across 100 different
individual data sets was approximately 23 - 26%. We also implement the parameter
estimation problem using the re-parameterization κ̃ = κβ as above and also γ = βσ2

R

where the estimate for κ can be calculated as κ̂ = ˆ̃κ(1/β̂) and the estimate for σR is calcu-
lated as σ̂R =

√
γ̂/β̂. Results in Table 17 and 18 indicate that the re-parameterization

has little effect on the resulting estimates. We do note that there was one result when
β = 3 which resulted in a relative error of about 12% in the estimate for β; however,
this was one case in the 100 trials. The main problem in the estimation results are
in the estimation of σR. Similar to what we obtained using the first method, it was
impossible to estimate σR using only one data set. In the first method, σR was cal-
culated to be 0 when only one data set was available; in this second method, σR is
an estimated parameter in the deterministic approximation, but the estimation is still
approximately 0. However, this is understandable, since there is no variance with only
one data set. Therefore, we reformulate the cost function to incorporate multiple data
sets and seek a realization

ˆ̃qNRDE2
= argmin

q∈Ωq
J̃NRDE2

(q; z). (23)

of
q̃NRDE2

= argmin
q∈Ωq

J̃NRDE2
(q;Z)

where

J̃NRDE2
(q;Z) =

M∑
m=1

(
1

N

N∑
k=1

(Zm
k − fs(tk;q))2

)
(24)

with M the number of data sets {Zm} available.
Figure 7 shows the results using synthetic data from the Logistic RDE model with

no noise added when varying the number of data sets available and minimizing Equation
(24). We note that the median estimate for µR and κ are best when only one data set is
used, and both approach a limiting value when M > 20. The value for µR approaches
an underestimate with approximately 4-4.5% relative error, while κ approaches an
overestimate with approximately 0.8% relative error. We note that as M is increased,
the maximum relative error in the estimate for µR is decreased as we also saw using
the first method. For M ≥ 5, the maximum percent relative error in κ is between
about 1.5-2%. We see a different trend in the estimate for σR, however. Even though
the median estimate for σR also approaches a limit, the minimum estimated value of
σR is 0 when considering 100 different random choices of M data sets. The limiting
value of the median is approximately 0.16 with about a 60% relative error. However,
the estimated value of approximately 0 indicates that regardless of how many data sets
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Table 14: Parameter Estimates for Logistic RDE Model using Synthetic Data, With
No Noise Added, Using Method 2 with 100 Different Random Draws of One Data Set.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9927 0.73% 22.81%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 2.95e-08 100% 100%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.98 0.10% 0.21%

Table 15: Parameter Estimates for Bernoulli RDE Model with β = 1.5 using Synthetic
Data, With No Noise Added, and Method 2 with 100 Different Random Draws of One
Data Set.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9952 0.48% 25.76%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.0034 96.59% 100%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.04 0.004% 0.29%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1.5 1.5131 0.87% 1.93%

Table 16: Parameter Estimates for Bernoulli RDE Model with β = 3 using Synthetic
Data, With No Noise Added, and Method 2 with 100 Different Random Draws of One
Data Set.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9794 2.05% 26.01%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.0030 96.95% 100%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.04 0.004% 0.14%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
3 3.0356 1.19% 3.16%
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Table 17: Parameter Estimates for Bernoulli RDE Model with β = 1.5 using Synthetic
Data and the reparameterization κ̃ = κβ and γ = βσ2

R, With No Noise Added, and
Method 2 with 100 Different Random Draws of One Data Set.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9872 1.28% 23.02%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.02 79.81% 100%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.02 0.002% 0.02%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1.5 1.5132 0.88% 1.12%

Table 18: Parameter Estimates for Bernoulli RDE Model with β = 3 using Synthetic
Data and the reparameterization κ̃ = κβ and γ = βσ2

R, With No Noise Added, and
Method 2 with 100 Different Random Draws of One Data Set.

µR
Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error

1 0.9979 0.21% 26.01%
σR

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
0.1 0.0127 87.31% 100%

κ

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
1000 1000.03 0.003% 0.31%

β

Exact Median Estimate Med Perc. Rel. Error Max Perc. Rel. Error
3 3.0384 1.28% 11.73%
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are available, there is a potential to estimate that the random variable R is actually a
constant. This result would indicate that the entire model should be a deterministic
differential equation and not a random differential equation as assumed.

To summarize, the initial advantage of method 2 over method 1 was that the approx-
imate deterministic equation, Js, used in the cost function contained all the parameters
which must be estimated as opposed to the first method in which the standard devia-
tion of R must be calculated after estimating each realization r of N (µR, σR) for each of
the available data sets. However, using only one data set, it was practically impossible
to estimate a nonzero value for σR. Reformulating the cost function to include multi-
ple data sets allowed us to estimate a nonzero value for σR; however, regardless of the
number of data sets (M) available, in each of the 100 trials, at least one combination
of potential data sets resulted in an estimate of σR as approximately 0.
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Figure 7: Variation in the estimated values for µR, σR, and κ by minimizing Equation
(24) when the number of data sets M are varied when using synthetic data from the
Logistic RDE Model in Equation (3). The red line indicates the exact parameter value.
We consider 100 different random draws of M data sets from the 1000 generated. The
black star represents the median estimated value across the different groups of M data
sets; the blue upward triangle is the maximum estimated parameter value, and the
green downward triangle is the minimum estimated value.
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6 Parameter Estimation with Experimental Data us-
ing Method 1

In this section, we use method 1 for estimating the parameters in a RDE logistic
and RDE Bernoulli growth model using longitudinal data collected from algae growth.
In a paper by Banks et. al. [3], longitudinal data was collected from four replicate
population experiments with green algae, formally known as Raphidocelis subcapitata.
Four beakers were initially seeded with 1L of Bold’s Basal Media (BBM) and then
conditions were set to maintain a chemostat steady-state equilibrium system, constant
volume, sufficient oxygen supply, and homogeneous state; details on the experimental
collection process can be found in [3]. Two measurements for each of the four replicates
were taken twice a day at 9 am and 5 pm daily; the data is shown in Figure 8. Two
measurements were taken from each beaker initially so the data could be averaged
to minimize human measurement error; however, we consider each data set as an
individual data set regardless of whether the data came from the same beaker or a
different beaker.
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Figure 8: This figure shows the longitudinal data for the two measurements of each of
the four replicates of Raphidocelis subcapitata.

We first assume the data satisfies the logistic RDE growth model with normally
distributed random variable parameters for the growth rate R ∼ N (µR, σR) and limit-
ing capacity K ∼ N (µK , σK). In addition, we assume, as done in the paper by Banks
et. al. [3], that the initial population is also an unknown parameter which must be es-
timated; in this case, we assume it is a random variable parameter, X0 ∼ N (µX0 , σX0).
We note that we initially assume all parameters are random variable parameters; how-
ever, for a parameter Q, if the estimated value of σQ is small relative to the value µQ,
we can instead declare this parameter a constant parameter in the model. To estimate
the individual data parameters for the sample deterministic system required in method
1, we use an initial guess of r = 0.02, κ = 4100, and x0 = 414. The estimates for the
eight individual data sets are given in Table 19. We notice the variability in both the
estimates across the four beakers but also the variation in estimates even using data
from the same beaker.
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Table 19: Parameter Estimates in the Logistic Sample Deterministic Model for Indi-
vidual Algae Data Sets.

Data Set r κ x0

1a 0.0187 4611.42 399.17
1b 0.0179 4398.34 430.31
2a 0.0189 4281.04 320.84
2b 0.0171 4322.88 360.53
3a 0.0174 4348.04 358.31
3b 0.0184 4210.42 291.76
4a 0.0192 3988.83 248.42
4b 0.0180 4262.62 308.07

In the estimate of the statistical parameters for the random variable model pa-
rameters, we analyze the experimental data in the same manner as we did with the
synthetic data. We examine how the choice of the number of data sets and which
data sets were used affect the estimated values for both the mean and standard de-
viation of each random variable parameter. Since we only have eight total data sets,
we consider each combination of M data sets, M = 2, ..., 8 in the calculation of µQ
(Equation (8)) and σQ (Equation (9)) for each parameter Q. The results are shown
in Figure 9. As expected, there is a larger spread in possible estimates when only a
few data sets are used; however the median estimate is fairly constant across M . The
estimated values for all statistical parameters when using all eight data sets are given
in Table 20. Figure 10 illustrates the RDE model solution together with the data under
the assumptions that different model parameters are random variable parameters or
constant parameters. We note that σR ≈ 0.04µR, σK ≈ 0.04µK and σX0 ≈ 0.17µX0 .
The RDE solution or collection of solutions trajectories to the sample deterministic
equation appears to ‘cover’ the data best when all model variables are assumed to be
random model parameters (first plot) or when the limiting capacity K and initial cell
count X0 are assumed random (second row, second column plot). This comparison
between the data and model simulations is similar to what is illustrated in Figure 5
with synthetic data when the value of σR was underestimated. However, if the noise
level E is increased to approximately 10% of the limiting capacity, the model simula-
tions with noise added encompasses the data near the limiting capacity however is too
large for the initial cell count and can cause negative or zero cell count at the lower
cell count population; see Figure 11. Therefore, it may be more appropriate to assume
a nonconstant variance statistical model.

In fact, in the paper by Banks et. al. [3], they demonstrated that the algae data
exhibited proportional noise, or nonconstant variance noise, of the form

Zj = h(tj;q0) + hγ(tj;q0)Ej, Var(Zj) = σ2
0h

2γ(tj;q0) (25)

where the best choice for γ was shown to be γ = 1. This is different from the assump-
tions made when we formulated method 1 above. We had initially made the assumption
that the statistical model had constant variance noise, i.e.,

Zj = h(tj;q0) + Ej, Var(Zj) = σ2
0.
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Figure 9: Variation in the estimated values for µQ (first column) and σQ (second
column) in the RDE logistic growth model when the number of data sets M are varied
when using experimental longitudinal data of algae cell count along with Equations
(3), (8), and (9). The solid red line indicates the median trend across the number of
data sets. The first row shows the trend in estimated statistical parameters for Q = R;
second row is for Q = K, and third row is for X0.

To incorporate the nonconstant variance, for each individual data set, we seek a gen-
eralized least squares estimate

qNGLS = argmin
q∈Ωq

JNGLS(q;Z)

with realization
q̂NGLS = argmin

q∈Ωq
JNGLS(q; z)

where the cost function JNGLS is defined by

JNGLS(q;Z) =
1

N

N∑
k=1

wk (Zk − f(tk;q))2 (26)

with wk = f−2γ(tk,q) and f the output from the sample deterministic system. Mini-
mizing JNGLS(q; z) using the built-in Matlab function fminsearch with the same initial
guesses as above, we obtain the individual data parameter estimates for the sample
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Figure 10: Each plot shows 1000 simulations of the logistic RDE model(dark grey)
with the data (black) and with constant variance noise E ∼ N (0, 1002) (light grey).
The first plots assumes R ∼ N (µR, σR), K ∼ N (µK , σK), and X0 ∼ N (µX0 , σX0)
with estimated values given in Table 20. The second plot assumes both R and K are
random variable model parameters but x0 is a constant parameter. The third plot
assumes both R and X0 are random variable model parameters but κ is constant. The
fourth plot assumes both K and X0 are random variable model parameters but r is
constant. The fifth plot shows the simulations assuming only R is a random variable
model parameter. The sixth plot shows the simulations if only K is a random variable
parameter. The seventh plot shows the simulations if only X0 is a random variable
parameter. Finally, the last plots shows the deterministic solutions assuming all model
parameters are constant.
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Table 20: Statistical Parameter Estimates for Random Variable Model Parameters in
the Logistic RDE Model using Eight Algae Cell Count Data Sets.

Parameter Estimate
µR 1.82 · 10−2

σR 7.38 · 10−4

µK 4302.95
σK 175.67
µX0 339.68
σX0 59.18

Figure 11: This plot shows 1000 simulations of the logistic RDE model(dark grey)
with the data (black) and with increased constant variance noise E ∼ N (0, 4002) (light
grey) with random variable parameters R ∼ N (µR, σR), K ∼ N (µK , σK), and X0 ∼
N (µX0 , σX0).

deterministic system in Table 21. We calculate the statistical parameters in the same
way as before and obtain similar trends in the results as in the ordinary least squares
method. The estimated values when using all eight data sets is given in Table 22.
Figure 12 illustrates the RDE model solution with noise added using the estimated
random variable parameters defined by the statistical parameters given in Table 22.
We note that the RDE solution is similar to the one found when assuming constant
variance; however, there appears to be a slightly better estimate of X0, a smaller rela-
tive variance in the limiting capacity, σ2

K , and a larger relative variance in the growth
parameter σ2

R.
We also fit the RDE Bernoulli growth model assuming nonconstant variance in

the data (i.e., the statistical model is given by Equation (25)). We minimize JNGLS
in Equation (26) for the sample deterministic Bernoulli model for each data set and
obtain the estimates in Table 23. Comparing parameter estimates for the logistic
sample deterministic system in Table 21 and for the Bernoulli sample deterministic
system in Table 23, we note that the estimates in the Bernoulli model for r and κ
are smaller than those in the logistic model while the initial data x0 is larger in the
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Table 21: Parameter Estimates in the Logistic Sample Deterministic Model for Indi-
vidual Algae Data Sets When Minimizing JNGLS (Eq. (26)).

Data Set r κ x0

1a 0.0266 4394.85 224.49
1b 0.0253 4224.49 258.68
2a 0.0245 4237.32 209.42
2b 0.0211 4177.31 271.39
3a 0.0222 4217.35 257.20
3b 0.0238 4104.45 200.28
4a 0.0214 3957.20 243.74
4b 0.0248 4124.85 185.06

Table 22: Statistical Parameter Estimates for Random Variable Model Parameters
in the Logistic RDE Model using Eight Algae Cell Count Data Sets when Assuming
Nonconstant Variance in the Statistical Model (i.e., when minimizing JNGLS).

Parameter Estimate
µR 2.37 · 10−2

σR 1.97 · 10−3

µK 4179.73
σK 126.05
µX0 231.28
σX0 31.18

Figure 12: Each plot shows 1000 simulations of the logistic RDE model(dark grey)
with the data (black) and with 2.5% relative noise or nonconstant variance noise (first
plot) and 10% relative noise (second plot). In both plots, we assume R ∼ N (µR, σR),
K ∼ N (µK , σK), and X0 ∼ N (µX0 , σX0) with estimated values given in Table 22.
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Table 23: Parameter Estimates in the Bernoulli Sample Deterministic Model for Indi-
vidual Algae Data Sets When Minimizing JNGLS (Eq. (26)).

Data Set r κ β x0

1a 0.0247 4386.71 1.1553 236.56
1b 0.0232 4215.55 1.1721 273.21
2a 0.0228 4222.27 1.1642 219.26
2b 0.0195 4158.98 1.1647 282.61
3a 0.0205 4206.92 1.1536 269.69
3b 0.0221 4088.01 1.1691 209.64
4a 0.0198 3946.38 1.1538 255.36
4b 0.0231 4108.87 1.1664 193.61

Table 24: Statistical Parameter Estimates for Random Variable Model Parameters in
the Bernoulli RDE Model using Eight Algae Cell Count Data Sets when Assuming
Nonconstant Variance in the Statistical Model.

Parameter Estimate
µR 2.20 · 10−2

σR 1.84 · 10−3

µK 4166.71
σK 127.41
µβ 1.1624
σβ 7.20 · 10−3

µX0 242.49
σX0 32.74

Bernoulli model. Moreover, β is estimated to be slightly larger than 1 where β = 1
indicates the logistic model. Using these estimates with Equations (8) and (9), we
obtain the estimates for the statistical parameters given in Table 24 when using all
eight data sets. The trend when using a subset of M data sets is shown in Figure
13. In these results, we note that σR ≈ 0.08µR, σK ≈ 0.03µK , σX0 ≈ 0.13µX0 and
σβ ≈ 0.006µβ. Therefore, the relative value of σβ is only approximately 0.6% the value
of µβ, and hence, we assume β is a constant parameter in the Bernoulli RDE growth
model. The plot in Figure 14 shows 1000 simulations of the Bernoulli RDE growth
model assuming random variable parameters R, K and X0 with a constant parameter
β. We also include the model with 10% relative noise added in light grey. This plot
does not appear visually different that the plot for the logistic RDE model in Figure
12.
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Figure 13: Variation in the estimated values for µQ (first column) and σQ (second
column) in the RDE Bernoulli growth model when the number of data setsM are varied
when using experimental longitudinal data of algae cell count along with Equations (3),
(8), and (9). The solid red line indicates the median trend across the number of data
sets. The first row shows the trend in estimated statistical parameters for Q = R;
second row is for Q = K, and third row is for X0.
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Figure 14: This plot shows 1000 simulations of the Bernoulli RDE model(dark grey)
with the data (black) and with 10% relative noise or nonconstant variance noise under
the assumption that R ∼ N (µR, σR), K ∼ N (µK , σK), X0 ∼ N (µX0 , σX0) and β = µβ
with estimated values given in Table 24.

7 Conclusions

In this paper, we investigated two methods for parameter estimation in a RDE model.
The first method was based on approximating the RDE with its sample deterministic
equation while the second method was based on first deriving the pointwise equiva-
lent SDE model for the RDE model and then approximating the SDE model with a
deterministic model. In both parameter estimation techniques, deterministic param-
eter estimation techniques were used once the appropriate deterministic system was
identified.

In the first method, constant parameters for the deterministic system are estimated.
These constants are then used to estimate the statistical parameters for the random
variable distributions. We tested this method on two nested RDE models in which there
was one random variable parameter. Depending on the number of data sets available,
some of the statistical parameters were harder to estimate than others. We tested the
method assuming either a normally distributed random variable parameter or a random
variable parameter with a 2-parameter Weibull distribution. When testing the method
with a normally distributed random variable parameter, depending on the random
choice of data sets and how many data sets were used in the estimation, it could be
difficult to obtain an extremely accurate estimate for the standard deviation. However,
this makes intuitive sense since if the data sets behave similarly, then the variance
(and hence the standard deviation) may be estimated smaller than the actual standard
deviation. Figure 5 gives an illustration of the collection of solution trajectories if the
standard deviation is estimated smaller than the actual standard deviation. When
estimating the random variable parameter assumed to have a Weibull distribution, the
shape parameter B was slightly more difficult to estimate; however, even though there
is the potential for a poor estimate, in most cases, the relative error in both statistical
parameters was less than 10% when M = 15 or M = 100. In summary, the first
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parameter estimation technique was a viable method for the models analyzed in this
paper.

The second method for parameter estimation was a technique which was derived
for a select type of RDE models. It is assumed the random variable parameters in
the RDE model behave according to a normal distribution and the RDE model has an
appropriate form or can be transformed into an appropriate form. Next a pointwise
equivalent SDE is derived which is then approximated by a deterministic model. In
this technique, all statistical parameters for the random variable and all constant model
parameters are contained in the approximate deterministic system and can be estimated
simultaneously. In order to estimate a nonzero value for the standard deviation, it was
shown that we must use more than one data set. Although the median estimate
approaches a limiting value as M increases, in each of the 100 trials, there was at least
one trial which resulted in an estimate of approximately 0 for the standard deviation
regardless of how many data sets were used. If one were ‘unlucky’ in the choice of which
M data sets were available, one could obtain a result which would indicate the random
variable should be a constant and the model was in fact a deterministic differential
equation instead of a random differential equation. Therefore, this technique (method
2) is not a viable method for the example models presented in this paper.

Finally, we applied the first method in estimating the random variable model pa-
rameters in both the logistic and Bernoulli RDE models using experimental data from
algae growth. The resulting RDE solution using the random variable parameter es-
timates obtained from method 1 appear plausible when compared to the eight data
sets. We also illustrated the differences in the RDE solution assuming one or multiple
random variable parameters in the model and compared each scenario with the eight
data sets. Visually, the RDE solution in which all model parameters were assumed to
be random variables appears to be the best model for the data; however, unless the
noise has a large enough variance, the resulting model with noise did not encompass
the entire range in the cell count data. If we assumed a statistical model with constant
variance, when the constant variance was large enough to encompass the large cell
count, it was too large for the smaller cell count. Therefore, we reformulated method
1 to incorporate a nonconstant variance. We illustrated the slight differences in the
estimated values and resulting solution curve with noise. In this case, assuming a 10%
relative noise in the model simulation resulted in simulations which covered the range
in the data while accounting for the size of the cell count. Furthermore, we approxi-
mated the random variable model parameters in the Bernoulli RDE model as well using
the experimental data under the assumption of nonconstant variance in the statistical
model. Similar results were found as with the logistic model. In general, we have
shown that method 1 was a viable approach for estimating parameters in a random
differential equation model not only using synthetic data but with experimental data
as well.
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