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Abstract We investigate the complex-step method as applied to compute sensitivities with

respect to model �parameters� for several types of examples. We �rst consider time delayed

di�erential equations (DDEs) whose sensitivities are known to have lack of smoothness or even

discontinuities with respect to parameters such as the delays. The second type of �parame-

ter sensitivity� we consider is that of solutions to partial di�erential equations (PDEs) with

respect to boundary conditions which again may not possess smoothness. These sensitivities

are fundamental in any type of boundary control formulation such as those we motivate in

Section 4 below. Our main focus here is to evaluate the so-called �complex-step methods� for

computing such sensitivities. This is of interest since the complex-step method was derived

based on the Cauchy-Riemann equations for analytic complex functions. Our computational

�ndings are compared to those using the standard chain rule-based sensitivity di�erential

equations which can be rigorously developed even for derivatives possessing much less regu-

larity than analyticity. Our �ndings suggest that the complex-step methods are in very good

agreement with the usual sensitivity equation results up to some critical step size we call hcrit.
They can o�er signi�cant savings in computational costs for problems driven by complicated

dynamical systems with reasonable parameter size.
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1 Introduction

Sensitivity analysis continues to play a fundamental role in modeling, mathematics,
statistics and engineering for an incredibly wide range of applications. This topic plays
a critical role in widely diverse topics including:

• parameter selection and identi�ability [11] and many references therein, [6, 9] in
inverse problem formulations;

• statistics and Fisher Information Matrix [13, 25, 34, 35, 62], and in particular
asymptotic theories for large sample size problems;

• data set information content studies [12];

• optimal design of experiments [22, 23];
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• PDEs and boundary term sensitivity [19, 21] as potential control formulations
in biomedical studies�see, for example, recent references on modeling pathologies
such as glaucoma in the human eye [26, 32, 37, 42]; such studies are precursors
to general boundary control design which are also often studied in a wide range
of engineering problems;

• non-smooth problems where one does not have analyticity of response with re-
spect to the �parameters�, including delay systems with respect to delays [24],
where the usual situation is represented by a lack of smoothness, let alone ana-
lyticity; and PDE problems with respect to boundary parameters such as those
in aggregate data problems where estimated parameters are probability measures
[13, Chapter 6] and the examples and references therein.

In usual sensitivity analyses, one studies how the output of a model is a�ected by
a wide variety of inputs. In these e�orts we are concerned with calculating the rates
of change in the output variables (solutions or observables) of a system which result
from small perturbations in the problem parameters.

We outline an ODE inverse problem framework to illustrate the basic ideas even
though we will be concerned with more complicated systems and sensitivities to delays
in a DDE and to boundary inputs in PDE formulations. Consider an n-dimensional
vector system

dx

dt
= g(t,x(t),q) (1.1)

x(t0) = x0

with observation process (we assume without loss of generality a scalar observation
process)

f(t;θ) = Cx(t;θ),

where θ = [qT,x0
T]T, and q is a vector of length p so that θ is a vector of length κθ =

p+n (we could consider the case where all or part of the initial conditions x0 are known�
for simplicity in notation we do not-see [13, 25] for such more general formulations).
The inverse problem is to determine θ using given observations over time. Using an
ordinary least-squares method (OLS) for estimation (again, more general formulations
can be found in [13, 25]), we wish to �nd

θ̂OLS = arg min
θ∈Ωθ

n∑
j=1

(yj − f(tj;θ))2

where yj is the data at time tj and Ωθ is the admissible set for the parameters.We

assume that θ̂OLS follows a normal distribution with mean θ0 and covariance matrix
Σ0 ≈ σ2

0[χTχ]−1 where

χjk =
∂f(tj;θ)

∂θk
(1.2)

The matrix χ is called the sensitivity matrix. Our goal is to compute
∂f(tj ;θ)

∂θk
as ef-

�ciently and accurately as possible. There are various ways of approximating these
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derivatives. The most common ones (see [18, 13, 25] and the references therein) are
analytic methods, �nite di�erence approximation, automatic di�erentiation and the use
of sensitivity equations. Analytic methods are accurate but they require the derivation
and development of a program that is speci�c to each problem, hence ine�cient. The
�nite di�erence method, on the other hand, is relatively easy and e�cient to implement
but it su�ers from cancellation error. Sensitivity equations are known to be accurate
and computationally inexpensive for reasonably small systems.

More recently, a method referred to as the complex-step has been used to calculate
sensitivities ([55, 56]). The idea of using complex variables to estimate derivatives orig-
inated with the work of Lyness and Moler [52] and Lyness[51]. After its rediscovery by
Squire and Trapp in 1998, it has become quite popular in aerodynamic optimization
[1, 2, 55, 56, 65]. The complex-step estimate is suitable for use in numerical computing
and shown to be very accurate, extremely robust while retaining a reasonable compu-
tational cost. Martins, et al., in [55] have shown the method to have implementation
advantages over automatic di�erentiation and computational advantages over �nite-
di�erencing. Although a step size parameter is required, in most cases the numerical
derivatives are not subject to subtractive cancellation errors as in the use of �nite dif-
ferences, (see [56] for exceptions and remedies). Therefore, the method exhibits true
second-order accuracy as the step size is reduced. In addition, the procedure is easily
implemented into existing programs. The only requirements are that the �oating point
variables be declared as complex and that a complex perturbation be added to the
variable of interest.

In this report, we apply these techniques for various types of problems including
time-delayed ODEs as well as boundary sensitivity for PDEs and compare the results
with solutions of sensitivity equations. In the �rst and second sections of the report,
we provide brief summaries of the complex-step method and the method of sensitivity
equations. We provide various numerical examples in the later section, and we conclude
with our �ndings and comments in the last section.

2 The complex-step method

In this section, following [55], we summarize the complex-step method. Given (1.1), let
z = x+ iy, x, y ∈ R be a complex number and f(z) = f(x, y) = u(x, y) + iv(x, y) be a
function of a complex variable. If f is analytic, we have the following Cauchy-Riemann
equations that establish the relationship between the real and imaginary parts of the
function.

∂u

∂x
(x, y) =

∂v

∂y
(x, y),

∂u

∂y
(x, y) = −∂v

∂x
(x, y) (2.1)

For a given step size h we can derive a �nite di�erence-like �rst derivative estimate
for real functions using complex calculus. From the �rst equation in (2.1), and the
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de�nition of derivatives we have

∂u

∂x
(x, y) = lim

h→0

v(x, y + h)− v(x, y)

h
(2.2)

= lim
h→0

Im[f(x+ i(y + h))]− Im[f(x+ iy)]

h
. (2.3)

If f takes a real-valued input (as in the case where, for example, f represents the
solution to a di�erential equation model), then y = 0, f(x) = u(x, 0), and v(x, 0) =
Im[f(x)] = 0. Thus (2.2) becomes

∂f

∂x
= lim

h→0

Im[f(x+ ih)]

h
. (2.4)

Therefore, for small h, we have the complex-step derivative approximation

∂f

∂x
≈ Im[f(x+ ih)]

h
. (2.5)

This formula can also be obtained by approximating an analytic function f with a
complex variable using a Taylor series expansion:

f(x+ ih) ≈ f(x) + ihf ′(x)− h2

2!
f ′′(x)− ih

3

3!
f (3)(x) +

h4

4!
f (4)(x) + · · ·

Taking the imaginary parts of both sides and dividing by h gives

f ′(x) ≈ Im[f(x+ ih)]

h
+O(h2).

Terms of order h2 and higher can be ignored because the step size h can be chosen
up to machine precision. Thus the complex-step derivative is given by (2.5) with a
truncation error Et(h) = h2

6
f (3)(x). The method is accurate down to a speci�c step

size we call hcrit. Below hcrit, under�ow occurs and the approximation becomes useless.
It is important to note that all our computations were done on machines with the limits
of machine precision 10−324.

The derivative estimate (2.5) constitutes a big advantage over the �nite-di�erence
approach. This is because the �nite-di�erence approximation is subject to subtractive
error due to the di�erencing operation. On the other hand, the accuracy of the complex-
step estimates is only limited by the numerical precision of the algorithm that evaluates
the function f .

Note that the complex-step approximation formula (2.5) is derived based on the
Cauchy-Riemann formula for analytic functions. Therefore, it is important that the
function f be analytic. In the case when the functions have singularities or branch
cuts where they are not analytic, the complex-step method provides a correct deriva-
tive approximation up to the point of discontinuity. In addition, we get accurate
approximations of one-side derivatives if we uniquely de�ne the function at that point.
The method also provides an accurate �rst order derivative when a function has jumps
in its higher order derivatives (see examples 4.2-4.4).
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2.1 Implementation

2.1.1 Complex function de�nitions

The complex-step approximation formula (2.5) is derived based on the Cauchy-Riemann
formula assuming the function f is analytic. Then it is important to investigate to what
extent this assumption holds when the value of the function is calculated by a numerical
algorithm. In addition we need to extend functions of real variables to complex in such
a way that the Cauchy-Riemann equations are satis�ed. Even though our discussion
below is for implementation of the complex-step in Matlab, the principles are the same
for other programming languages. For further discussion and Fortran implementation,
we refer the reader to [55] and [56] .

When we convert a `real' algorithm to complex, we are mainly concerned with two
types of operations:

1. Relational operators
Relational logic operators like �greater than" and �less than" are de�ned in Matlab
to compare only the real parts of a complex number. These operators are usually
used in `if ' statements to redirect the execution thread. The original algorithm
and its complex version must follow the same execution thread. Therefore, the
Matlab de�nition of these operators is the correct one.

2. Arithmetic functions and operators
In Matlab, complex numbers are a standard data type and many functions have
complex counterparts. Functions that choose one argument like max and min
are based on relational operators. Therefore, one would assume that they are
de�ned based on their real parts in Matlab. Unfortunately, that is not the case.
In Matlab, min and max functions compare the radii of two complex numbers.
Hence, they need to be rede�ned to compare only the real parts.

Another function that we need to give attention to is the absolute value (abs)
function. abs in Matlab returns the absolute value or modulus of a complex
number. Since this de�nition was not derived assuming the Cauchy-Riemann
equations, the complex-step method does not give a correct derivative approxi-
mation. Therefore, we need to de�ne `abs ' so that it satis�es the Cauchy-Riemann
equations. Since we know what the value of the derivative must be, we can write

∂u

∂x
=
∂v

∂y
=

{
−1, x < 0
+1, x > 0

(2.6)

From (2.1), since ∂v/∂x = 0 on the real axis, we get ∂u/∂y = 0 on the same axis,
so the real part of the result must be independent of the imaginary part of the
variable. Therefore, the new sign of the imaginary part depends only on the sign
of the real part of the complex number, and an analytic absolute value function
can be de�ned as:

abs(x+ iy) =

{
−x− iy x < 0
x+ iy x ≥ 0

. (2.7)
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This function is not analytic at x = 0. But, as was mentioned earlier, the
complex-step approximation yields an accurate derivative up to the discontinu-
ity. In addition, since we have de�ned the function at x = 0 as for x > 0, the
method gives the correct right-hand side derivative at x = 0.

Similarly, for every real valued function, by requiring that its complex extension
satis�es the Cauchy-Riemann equations, and that the real and the complex have
the same properties, we can obtain a unique complex function de�nition either by
adjusting the de�nition of custom functions, or ensuring that Matlab's complex
analog function is correctly de�ned.

Many of the arithmetic operators including addition, multiplication, and trigono-
metric function have standard complex de�nitions that are analytic almost ev-
erywhere.

The transpose (′) operator in Matlab gives the complex conjugate of the matrix.
So we need to use the non-conjugate transpose (·′) instead.

We remark that before implementing the complex-step method, one always needs
to check whether the functions and operators in the algorithm need re-de�nition
and do so accordingly.

2.1.2 Implementation Procedure

Given an analytic function f , the following is an outline of the general steps for imple-
menting the complex-step method for computing the �rst derivative, df/dx.

1. De�ne all functions and operators that are not de�ned for complex arguments
such as for example max, min and abs.

2. Add a small complex step ih to the desired variable `x', run the algorithm that
evaluates f .

3. Compute df/dx using (2.5).

2.2 Generalization for vector-valued functions

Given a step size h, and the vector valued function f : Rn → Rm which takes the vector
x ∈ Rn and produces the vector f(x) ∈ Rm, the complex-step approximation of the
Jacobian matrix is given by [50]

J ≈1

h
Im


f1(x + ihe1) · · · f1(x + ihej) · · · f1(x + ihen)

...
...

...
fp(x + ihe1) · · · fp(x + ihej) · · · fp(x + ihen)

...
...

...
fm(x + ihe1) · · · fm(x + ihej) · · · fm(x + ihen)

 (2.8)



22 Banks H., Bekele-Maxwell K., Bociu L. ,Noorman M.,Tillman K.

where fp is the p−th component of f and ej is the j−th unit vector in Rn.

3 Sensitivity Equations

In this section, we brie�y summarize the derivation of sensitivity equations for the
ODE model (1.1) which can be extended for PDEs in a similar way. For extensive
discussion of the method, see [13] and [18] and references therein.

Given (1.1), �rst we derive sensitivity equations for the parameter q. Let s =
(sq1 , · · · , sqk), where

sqk(t) =
∂x

∂qk
(t;θ), k = 1, · · · , p. (3.1)

Taking the derivative of equation (1.1) with respect to q, we obtain

ds(t)

dt
=
∂g

∂x
s(t) +

∂g

∂q
(3.2)

s(t0) = 0n×p.

For the initial condition x0, let r = (rx01 , · · · , rx0n ) where

rx0j (t) =
∂x

∂x0j

(t;θ), j = 1, · · · , n. (3.3)

Then we obtain the system

dr(t)

dt
=
∂g

dx
r(t) +

∂g

∂x0

(3.4)

=
∂g

∂x
r(t),

r(t0) = In×n.

To �nd sensitivities, we solve equations (3.2) and (3.4) together with (1.1). Namely,
we solve

dx(t)

dt
= g(t,x(t),q),

ds(t)

dt
=
∂g

∂x
s(t) +

∂g

∂q
,

dr(t)

dt
=
∂g

∂x
r(t),

x(t0) = x0,

s(t0) = 0n×p,

r(t0) = In×n.
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4 Numerical Examples

In this section, we apply the complex-step method to compute sensitivities for various
kinds of examples and we compare the results with solutions of sensitivity equations
( or analytic solutions when available). The �rst example is the logistic model for
population growth which is a simple enough ODE model yet a widely applied example
in biological applications [48, 60]. This simple example can be used to calibrate our
computational times.

We then turn to two classes of examples where the underlying foundations for
the complex step method do not hold. The �rst of these is delay di�erential (also
called functional di�erential) equations where sensitivity with respect to the delays
or hysteresis kernels do not in general satisfy the analyticity requirements for use of
the Cauchy-Riemann equations. Delay equations have been used in a wide variety
of biological applications as well as in many engineering problems �see for examples
the references [3, 4, 7, 8, 27, 28, 29, 30, 33, 36, 38, 39, 40, 41, 43, 45, 49, 53, 54, 61].
Very early interest in the 1940's focused around the studies of mechanical systems by
Minorsky [57, 58, 59] and slightly later those of Hutchinson [46, 47] in biology. Both
of these authors argued that time delays in dynamical systems can produce oscillatory
phenomena in an otherwise non-oscillatory system.

In 1948 Hutchinson [46] developed a delay di�erential equation model, subsequently
known as Hutchinson's equation, which is the delayed logistic equation, to describe the
dynamics of a circular causal system. An example of an ecological circular causal system
is a parasite-host interaction where a parasite completes its life cycle without killing
the host or drastically altering the growth of the host population. The host population
can then continue to exist [46, 49]. The delay in this model can represent various
naturally occurring phenomena such as the gestation period in a growing population,
the life cycle of a parasite, cell cycle delays, etc. Hutchinson's equation (to be used
along with Minorsky's harmonic oscillator with a delayed damping in the numerical
illustrations below), its variations and other delay systems have also been used to model
physiological control systems as well as numerous other biological processes.

Delay di�erential equations (DDEs) are particularly interesting because the deriva-
tives of their solutions often have discontinuities (see [24] for a theoretical treatment
and discussions). This is generally true because the �rst derivative of a non-constant
history function at zero is almost always di�erent from the right derivative of the solu-
tion at the initial point. As we shall see below, in addition to the discontinuity at the
initial point, discontinuities in derivatives of the initial function tend to be propagated
with one degree of smoothness added per time delay interval. Since the complex-step
method is derived assuming analyticity, one would expect for the method to fail when
it comes to computing the sensitivity with respect to the time lag τ . But the results
for these examples show that the complex-step method approximates the sensitivities
accurately up to hcrit even in the presence of discontinuities in the solutions.

The second class of examples we investigate involves sensitivities of boundary con-
trol problems governed by partial di�erential equations (PDEs) where one is interested
in sensitivities of the solutions with respect to the boundary terms (the controls) them-
selves. In particular we are motivated by problems of control of [32, 37, 42] poroelastic
models for the perfusion of the lamina cribrosa in the optic nerve head. Retinal hemo-
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dynamics plays a crucial role in the pathophysiology of several ocular diseases, including
glaucoma, age-related macula degeneration and diabetic retinopathy. The retinal vas-
cular bed nourishes the retinal ganglion cells that are responsible for the transmission
of visual information from the retina to the brain, via the optic nerve. Blood is sup-
plied by the central retinal artery (CRA), and drained by the central retinal vein. The
central retinal vessels, i.e., central retinal artery and vein, run through the optic nerve
canal, where they are exposed to the retrolaminar tissue pressure (RLTp). They also
enter inside the eye globe, where they are exposed to the intraocular pressure (IOP).
The pressure di�erence between the RLTp in the optic nerve tissue (baseline value 7-10
mmHg) and the IOP inside the eye globe (baseline value 12-15 mmHg) is maintained
by the lamina cribrosa, a collagen structure that is pierced by the central retinal vessels
approximately in its center. There are clear evidences that the CRA hemodynamics
is strongly a�ected by the level of IOP inside the eye globe. Control of the IOP leads
to a natural optimization problem involving boundary control of a PDE system (a
linear poroelastic system). Again in general one does not expect analyticity of the
Dirichlet or Neumann BC map to the solution. Here we investigate performance of
the complex-step method in computing the relevant sensitivities. Again, in comparing
the sensitivity equations results to those using the complex-step method, we �nd good
agreement up to some hcrit which suggests that the complex-step method performs
well even when the model at hand is more sophisticated and lacks the appropriate
analyticity requirements of the boundary-to-solution maps.

4.1 The logistic model for population dynamics

In traditional population growth model, as developed by Malthus (1798), the growth
rate is proportional to the size of population:

dx(t)

dt
= rx(t)

where r is the intrinsic growth rate of the population and x(t) represents the population
size at time t. As a result, the population grows exponentially:

x(t) = x0e
rt,

where x0 = x(0) is the initial population. In reality, this model may only be valid for a
short time period because the environment imposes limitations to population growth.
A more accurate model by Verhulst (1836) postulates that the relative growth rate
approaches the carrying capacity K of the environment. The corresponding equation
is called the logistic di�erential equation:

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
, 0 < t ≤ T (4.1)

x(0) = x0, (4.2)

with analytic solution

x(t) =
K

1 +
(
K
x0
− 1
)
e−rt

.
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We compute the sensitivities of the solution x with respect to the parameters r, K, x0

using both the complex-step method and sensitivity equations.
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Figure 1: Solution function of the logistic equation at r = 0.7, K = 17.5, x0 = 0.1.

To derive the sensitivity equations, we take the derivative of the equation with respect
to each parameter. The sensitivity equations are, thus, given by

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
,

dsr(t)

dt
=

(
r − 2r

K
x(t)

)
sr(t) + x(t)− 1

K
x2(t),

dsK(t)

dt
=

(
r − 2r

K
x(t)

)
sK(t) +

r

K2
x2(t),

dsx0
dt

=

(
r − 2r

K
x(t)

)
sx0(t),

with initial conditions

x(0) = x0, sr(0) = sK(0) = 0, sx0(0) = 1.

where sK(t) = ∂x(t)
∂K

, sr(t) = ∂x(t)
∂r

, sx0(t) = ∂x(t)
∂x0

.

To compute the sensitivities using the complex-step method, we add ih to each pa-
rameter separately and solve the original ODE system. Then use the formula (2.5)
to compute the derivatives. In this case, we need run the program solving the ODE
system three times because we have three parameters.

In Figure 2 below, we compare the sensitivity functions computed by solving the above
sensitivity equations and the complex-step method. As it is shown, the accuracy of the
complex-step approximation starts to decline at hcrit = 10−320. We have displayed the
sensitivities at h = 10−40 and at h = 10−321 side by side. (Recall our machine accuracy
is 10−324).
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Figure 2: Comparison of sensitivity functions for the logistic equation with respect
to growth rate r, carrying capacity K, constant initial state x0, each evaluated at
(r,K, x0) = (0.7, 17.5, 0.1). The step size for the complex-step approximation is taken
to be h = 10−40 (left) and h = 10−321 (right).
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4.2 Hutchinson equation

In the previous logistic model it is assumed that the growth rate of a population at
any time t depends on the relative number of individuals at that time. In practice, the
process of reproduction is not instantaneous. For example, in a Daphnia population,
a large clutch presumably is determined not by the concentration of unconsumed food
available when the eggs hatch, but by the amount of food available when the eggs were
forming, some time before they pass into the brood pouch. Between the determination
and the time of hatching many newly hatched Daphnias may have been liberated from
the brood pouches of other Daphnia in the culture, which increases the population.
Hutchinson (1948) assumed egg formation to occur τ units of time before hatching and
proposed the following more realistic delayed logistic equation

dx(t)

dt
= rx(t)

(
1− x(t− τ)

K

)
(4.3)

where r and K have the same meaning as the logistic equation (4.1) and τ > 0 is a
constant. This equation is referred to as Hutchinson's equation or the delayed logis-
tic equation. This is a delayed di�erential equation which is an in�nite dimensional
equation which is properly posed in a function space requiring an initial function on
−τ ≤ t ≤ 0 to generate a forward solution [24]. Several solutions are depicted in Figure
3.
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Figure 3: Solution functions of the Hutchinson equation with a small delay τ = 1 (left)
and a moderate delay τ = 1.5. The initial condition z0 = (x0, x(θ)) = (0.1, 0.1) and
parameter values are r = 0.7 and K = 17.5.

There are several options for a �state space� to develop theoretical foundations for
existence, uniqueness, di�erentiability with repect to parameters, etc. One obvious
choice [44] for an n-dimensional vector delay di�erential equation is C(−τ, 0;Rn), how-
ever, the more common choice for computational e�orts is a state space that treat the
current state in a Euclidean sense while treating the history part in an L2 sense. That
is, Z = Rn × L2(−τ, 0;Rn), with elements z(t) = (x(t), x(t + θ)) where −τ ≤ θ ≤ 0.
Thus to generate forward solutions for t > 0 we must specify x(0) in the Euclidean
sense and x(θ), −τ ≤ θ < 0 in the L2 sense. Note that the initial function need not be
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continuous at t = 0, and even if it is left continuous at t = 0, the solution itself need not
be continuously di�erentiable, let alone analytic at t = 0. Moreover, non-analyticity in
initial data can be propagated in solutions in time.

The sensitivity equations are derived in similar fashion as in the previous example
and have the form (in general the sensitivity equations are also DDEs)

dx(t)

dt
= rx(t)(1− x(t− τ)

K
) (4.4)

dsr(t)

dt
= r

[
1− x(t− τ)

K

]
sr(t)− r

x(t)

K
sr(t− τ) + x(t)

[
1− x(t− τ)

K

]
(4.5)

dsK(t)

dt
= r

[
1− x(t− τ)

K

]
sK(t)− rx(t)

K
sK(t− τ) + rx(t)

[
x(t− τ)

K2

]
(4.6)

dsx0(t)

dt
= r

[
1− x(t− τ)

K

]
sx0(t)− r

x(t)

K
sr(t− τ) (4.7)

dsτ (t)

dt
= r

[
1− x(t− τ)

K

]
sτ (t)− r

x(t)

K
[sτ (t− τ)− ẋ(t− τ)] (4.8)

with initial conditions

x(θ) = x0, sr(θ) = sK(θ) = 0,−τ ≤ θ ≤ 0, sx0(0) = 1.

Sensitivities using the two methods are compared below in Figure 4 and Figure 5.
For this example, hcrit = 10−321. We observe a slight decline right below this value
as shown in the �gure and under�ow occurs for smaller values. As mentioned in the
beginning of the this section, the Hutchinson equation solution is not analytic with
respect to τ . But the result in Figure 4 and Figure 5 reveal that the complex-step
method gives a very good approximation of the derivatives with respect to τ up to
hcrit = 10−321.
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Figure 4: Comparison of sensitivity functions for the Hutchinson equation with re-
spect to growth rate r, and carrying capacity K, each evaluated at (r,K, x0, τ) =
(0.7, 17.5, 0.1, 1). The step size for the complex-step approximation is taken to be
h = 10−40 (left) and h = 10−322 (right).
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Figure 5: Comparison of sensitivity functions for the Hutchinson equation with respect
to constant initial state x(θ) = x0 − τ ≤ θ ≤ 0, and delay τ , each evaluated at
(r,K, x0, τ) = (0.7, 17.5, 0.1, 1). The step size for the complex-step approximation is
taken to be h = 10−40 (left) and h = 10−322 (right).
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4.3 Harmonic oscillator with delayed damping

As a third example we present the Minorsky harmonic oscillator with a delayed damp-
ing. This example arises in many physical applications where oscillatory phenomena
are important and delayed damping is relevant. The equation has the form

d2x(t)

dt2
+K

dx(t− τ)

dt
+ bx(t) = g(t) (4.9)

where K and b are spring and damping constants. We use the complex-step method
and sensitivity equations to determine regions of sensitivity for model parameters K, b
and the time delay τ . To derive the sensitivity equations, we take the derivative of the
equation with respect to each parameter. First let x1 = x(t) and x2 = ẋ(t) and rewrite
equation (4.9) as a �rst order system

dx1(t)

dt
= x1(t) (4.10)

dx2(t)

dt
= g(t)− bx1(t)−Kx2(t− τ). (4.11)

Letting s1(t) = ∂x1(t)
∂K

, s2(t) = ∂x1(t)
∂b

, s3(t) = ∂x1(t)
∂τ

, s4(t) = ∂x2(t)
∂K

, s5(t) = ∂x2(t)
∂b

and

s6(t) = ∂x2(t)
∂τ

, the sensitivity equations are given by

ds1(t)

dt
= s4(t), (4.12)

ds2(t)

dt
= s5(t), (4.13)

ds3(t)

dt
= s6(t), (4.14)

ds4(t)

dt
= −bs1(t)−Ks4(t− τ)− x2(t− τ), (4.15)

ds5(t)

dt
= −bs2(t)−Ks5(t− τ)− x1(t), (4.16)

ds6(t)

dt
= −bs3(t)−Ks6(t− τ) +Kẋ2(t− τ), (4.17)

with initial conditions x(θ) = x0, −τ ≤ θ ≤ 0, si(0) = 0, i = 1, 2, 3, 5, si(θ) =
0, i = 4, 6.

In Figure 6 the solutions of the sensitivity equations are shown for parameter values
K = 0.5, b = 2, g(t) = 10, and delay τ = 1, along with the sensitivities with respect to
the parameters b, K and τ using the complex-step method. The results are identical
for all the complex step size h up to the critical step size hcrit = 10−322.
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Figure 6: Comparison of sensitivity functions for the harmonic oscillator with delayed
damping with respect to the restoring rate b, damping coe�cient K, and delay τ ,
each evaluated at (b,K, x0, τ) = (2, 0.5, 0.1, 1). The step size for the complex-step
approximation is taken to be h = 10−40 (left) and hcrit = 10−322 (right).
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4.4 Time delayed di�erential equations with non-smooth his-

tory functions

In this section we test the complex-step method for DDEs with non C1 history func-
tion. Such systems arise in a wide class of applications, for example, when one has a
discontinuous initial function such as x(θ) = 0 for −τ ≤ θ < 0, x(0) = x0 6= 0 [24]. We
note that discontinuities in the history propagate to the solution in such a way that
there is a jump in subsequent higher derivatives.

1. The �rst example is the Hutchinson equation (see Example 4.2) with a history
function that has a jump in its �rst derivative at one point. We are interested
primarily in the sensitivity with respect to the delay τ , since the solution is
continuous in r and K.

ẋ(t) = rx(1− x(t− τ)

K
), 0 ≤ t ≤ 2τ (4.18)

x0(t) = φ(t) = min(−1.8t+ 0.1, 2t+ 2), −τ ≤ t ≤ 0 (4.19)
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Figure 7: History and solution functions

Let sτ = ∂x(t)
∂τ

, the sensitivity equation with respect to the delay is given by

dsτ (t)

dt
= r

[
1− x(t− τ)

K

]
sτ (t)− r

x(t)

K
[sτ (t− τ)− ẋ(t− τ)] (4.20)

sτ (θ) = 0, −τ ≤ θ ≤ 0 (4.21)

where

ẋ(t− τ) =

{
2 0 ≤ t ≤ τ/2
−1.8 τ/2 ≤ t ≤ τ

(4.22)
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Figure 8: Complex-step approximation of ∂x
∂τ

overlaid with solution of the sensitivity
equations for Hutchinson's equations for t ∈ [0, 2τ ], τ = 1. The step size for the
complex-step is taken to be h = 10−40 (left), h = 10−320 (right, where h is taken too
small).

2. Next we compute ∂x
∂τ

for the DDE:

dx

dt
= x(t− τ), (4.23)

x0(t) = φ(t) = min{2t+ 2,−2t}, −τ ≤ t ≤ 0.

The analytic solution for this problem is given by

x(t; τ) =


(t− τ)2 + 2t− τ 2 for 0 ≤ t ≤ τ/2,

−(t− τ)2 − 1/2(τ − 1)2 + 1/2 for τ/2 < t ≤ τ.
(4.24)
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Figure 9: History and solution functions of equation (4.23) at τ = 1.
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The sensitivity equation with respect to τ is given by

dsτ
∂t

= −ẋ(t− τ) + sτ (t− τ), t > 0, (4.25)

sτ (θ) = 0, −τ ≤ θ ≤ 0. (4.26)

where sτ = ∂x(t)
∂τ

and

ẋ(t− τ) =


2 for 0 ≤ t ≤ τ/2,

−2 for τ/2 < t ≤ τ.
(4.27)
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Figure 10: Sensitivity of the solution with respect to τ of equation (4.23) at τ = 1
using the complex-step method. The step size is taken to be h = 10−40 (Left) and
hcrit = 10−322.

Recall the complex-step formula (2.5) is derived using the fact that the function f
is analytic. Once again these examples demonstrate that the complex-step method
provides accurate approximation of the sensitivities when higher derivatives may have
discontinuities. From this and other examples it is very clear that analyticity of the
solution functions is su�cient but NOT necessary for the complex-step method to be
e�ective.
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4.5 Elasticity Equations

As a �nal example, we compute the sensitivities of the solution u of the linear elasticity
model with respect to the parameters µ, λ and a constant boundary condition g. Given
a domain Ω ⊂ R2 with boundary ∂Ω = Γ0∪Γ1, the linear elasticity equations are given
by the system of PDEs:

−div(σu) = f, in Ω (4.28)

u = 0, on Γ0 (4.29)

σ(u) · n̄ = g, on Γ1 (4.30)

Here the stress tensor σ(u) is given in terms of the strain ε(u) by the constitutive law:

σ(u) = λTr(ε(u))I + 2µε(u),

where ε(u) = 1
2
(Du+ (Du)T ), and λ and µ are the Lam�e parameters.

In the following, we look at the cases when we have mixed Dirichlet-Neumann
boundary and pure Dirichlet boundary conditions. We have documented a detailed
explanation of the �nite element method implementation for solving the linear elasticity
equations in [16]. To compute the sensitivities using the complex-step method, we only
add the increment ih to the desired sensitivity variable into the existing �nite element
program that solves (4.28), that is, we solve for u(λ+ ih), u(µ+ ih) and u(gk+ ihk) and

compute
∂uj
∂λ

,
∂uj
∂µ

,
∂uj
∂gk

, j, k = 1, 2, respectively using equation (2.5). The sensitivity

equations to compute sensitivities with respect to parameters µ and λ (Refer to [16]
for derivation) are given by

−div(σ(u)) = f, in Ω

−div(σ(s1))−∇(divu) = ∂f
∂λ

in Ω

−div(σ(s2))−∆u−∇(divu) = ∂f
∂µ

in Ω

σ(u)n̄ = g, on Γ1

(σ(s1) + (Tr(ε(u)))I)n̄ = ∂g
∂λ

on Γ1

(σ(s2) + 2ε(u))n̄ = ∂g
∂µ

on Γ1

u = 0, s1 = 0, s2 = 0 on Γ0

(4.31)

and the system for the sensitivity with respect to the boundary g reads:

−div(σu) = f, in Ω
−div(σr1) = 0, in Ω
−div(σr2) = 0, in Ω
u = 0, on Γ0

r1 = 0, on Γ0

r2 = 0, on Γ0

σ(u) · n̄ = g, on Γ1

σ(r1) · n̄ = (1, 0), on Γ1

σ(r2) · n̄ = (0, 1), on Γ1,

(4.32)

where s1 = ∂u
∂λ

, s2 = ∂u
∂µ
, r1 = ∂u

∂g1
, and r2 = ∂u

∂g2
.
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The above system is solved using the �nite element method (see [16] for details).
In all of our computations, we use P-2 �nite elements for spatial discretization, i.e.,
the solution u is approximated using polynomials of degree two. The mesh step size
for the �nite element discretization is taken to be k = 1/30.

As shown below in the �gures, the complex-step approximations consistently agree
with the ones obtained by deriving sensitivity equations up to some step size hcrit,
where the complex-method starts to break down due to numerical under�ow.

4.5.1 Elasticity system with mixed Neumann-Dirichlet boundary condi-

tion

In this �rst case, we consider the mixed Neumann-Dirichlet boundary problem. We
take the domain Ω to be the unit square [0, 1] × [0, 1] with boundary ∂Ω = Γ0 ∪ Γ1

where Γ0 = [0, 1]× {0} and Γ1 = ∂Ω \ Γ0.

1. Sensitivities with respect to lam�e coe�cients

We compute the sensitivities with respect to the coe�cients µ and λ for the
elasticity system at µ = λ = 1 with the right hand side and boundary data:

f =

(
2µy + 4(µ+ λ)xy − 2(2µ+ λ)
2µy2 + 2(2µ+ λ)x2 − 2µx− 3µ− λ

)

g =

(
µ(x2 − y2 + 2xy2 − 3x+ 1)
2(2µ+ λ)x2y − 4µxy − λ(2x+ y − 1)

)
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Figure 11: Finite element solution u = (u1, u2).

In Figures 12 and 13 we present a side by side comparison of the approximation of
the sensitivity functions du1

dλ
, du2

dλ
, du1

dµ
and du2

dµ
computed using the complex-step

and sensitivity equations methods.
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Figure 12: Sensitivities of the solution u = (u1, u2) with respect to λ at λ = 1 computed
using the complex-step method (left) and the method of sensitivity equations (right).
The step size for the complex-step is taken to be h = 10−40.
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Figure 13: Sensitivities of the solution u = (u1, u2) with respect to µ at µ = 1 computed
using the complex-step method (left) and the method of sensitivity equations (right).
The step size for the complex-step is taken to be h = 10−40.
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The sensitivity function approximation with the complex-step method starts to
decline after the critical step hcrit = 10−318 and it becomes meaningless for smaller
values of h than that as seen in Figure 14.
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Figure 14: Inaccurate approximations of the sensitivities by the complex-step method
at h = 10−319.
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2. Sensitivity with respect to a constant boundary function

We compute the sensitivity of the solution to the elasticity system with respect
to a constant boundary function g with the right hand side data:

f =

(
2µy + 4(µ+ λ)xy − 2(2µ+ λ)
2µy2 + 2(2µ+ λ)x2 − 2µx− 3µ− λ

)

g = (g1, g2) = (1, 1).
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Figure 15: Finite element solution u = (u1, u2).
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Figure 16: Sensitivity of the solution u = (u1, u2) with respect to a constant boundary
function g1 for g = (1, 1) computed using the complex-step method (left) and the
method of sensitivity equations (right). The step size for the complex-step is taken to
be h = 10−40.
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Figure 17: Sensitivity of the solution u = (u1, u2) with respect to a constant boundary
function g2 for g = (1, 1) computed using the complex-step method (left) and the
method of sensitivity equations (right). The step size for the complex-step is taken to
be h = 10−40.
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4.5.2 Elasticity system with homogeneous Dirichlet boundary condition

In this example, we solve the elasticity system with homogeneous Dirichlet boundary
condition. Again we take Ω to be the square domain [0, 1] × [0, 1] with boundary
∂Ω = Γ0. The right had data for the system is given by:

f =

(
−2(λ+ 2µ)(y2 − y)− (λ+ µ)(2x− 1)(3y2 − 2y)− 2µ(x2 − x)
−2(λ+ 2µ)(x2 − x)(3y − 1)− (λ+ µ)(2x− 1)(2y − 1)− 2µ(y3 − y2)

)
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Figure 18: Solution components of the elasticity system with Dirichlet boundary con-
dition
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Figure 19: Sensitivities of the solution u = (u1, u2) with respect to λ at λ = 1 computed
using the complex-step method (left) and the method of sensitivity equations (right).
The step size for the complex-step is taken to be h = 10−40.
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Figure 20: Sensitivities of the solution u = (u1, u2) with respect to µ at µ = 1 computed
using the complex-step method (left) and the method of sensitivity equations (right).
The step size for the complex-step h = 10−40.
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The sensitivity function approximation with the complex-step method starts to
decline after the critical step hcrit = 10−314 and it becomes meaningless for smaller
values of h than that as seen in the �gures below.
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Figure 21: Very inaccurate approximations of the sensitivities by the complex-step
method at h = 10−314.
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For all of our computations, we used Matlab version 2014a on a Red Hat Linux
Workstation featuring Intel(R) Core(TM) i7-2600 CPU - 3.40 GHz. For solving the
DDEs, we modi�ed the Matlab solver dde23 [63] to work for complex variables. For
solving the elasticity equations in the last example, the complex-step is built into a
�nite-element solver. In the Table 1, we report on computation time for the examples
presented.

Example No. Complex-Step Sensitivity Equations

4.1 0.29s 0.06s
4.2 0.43s 0.15s
4.3 7.59s 0.35s
4.4 (no.1) 0.04s 0.05s
4.4 (no.2) 0.03s 0.11s
4.5.1 (no.1) 5.21s 5.49s
4.5.1 (no.2) 2.92s 3.00s
4.5.2 4.81s 4.39s

Table 1: Computation times for the complex-step method and sensitivity equations in
seconds.

From the table above we see that the complex-step method provides less com-
putational time when the parameter size is less than the dimension of the problem
(Examples 4.4, 4.5.1), and runtime is large compared to solving the sensitivity equa-
tions when we have bigger number of parameters (Examples: 4.1, 4.2, 4.3 and 4.52
). The reason is that to compute sensitivity to each parameter, the increament ih is
added to the parameter while the rest are kept constant. Therefore, we need to run
the program as many times as the parameter size resulting in additional computation
time. The sensitivity equations give sensitivities with respect to all the parameters
at once as a vector, which explains the decrease in computation time in some of the
examples.

5 Conclusions

We have demonstrated use of the complex-step method for computing sensitivities. The
method is applied to examples of various complexity and the results are compared with
solutions of traditional sensitivity equations. Even though there is a step size parameter
h to be chosen, the method gives consistently second order accurate approximation of
the derivative starting from h as large as 10−2 up to h = hcrit which is on the order of
10−300 (approximately our machine precision at h = 10−324) with a true second order
accuracy. Even though the complex-step formula is derived assuming analyticity of
the sensitivity function, we observed that the approximation provides accurate one-
sided derivatives for functions with far less smoothness. Thus our conclusion is that
analyticity of the solution functions is su�cient but NOT necessary for the complex-
step method to be e�ective.
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One disadvantage of the complex-step approximation is when the number of sen-
sitivity parameters to be considered is very large. In this case the method becomes
computationally ine�cient because to compute sensitivity with respect to each param-
eter, the increment ih has to be added separately to the parameter of interest while
the rest are kept constant. Therefore, the program needs to be run as many times as
the number of the parameters being investigated. On the other hand the sensitivity
equations give the sensitivities with respect to all the parameters at once as a vector,
which can provide a big savings in computational times (see Table 1 for comparison
of computation times). The complex-step approximation is still more robust when the
dimension of the underlying dynamics is large compared to the number of parameters,
this could be a big advantage. Even with this additional computational cost for prob-
lems with many parameters, its ease of implementation makes it a very good alternative
to methods using the sensitivity equations. In light of the amount of e�ort involved in
deriving sensitivity equations for complicated dynamical problems, the complex-step
method could be a reasonable choice. Some of the pros and cons of the complex-step
method are summarized below:
Pros

• Easy to implement, no derivation of sensitivity equations required.

• The complexity of the algorithm is the same as the complexity of the algorithm
evaluating the function f (In our case, the algorithm solving the di�erential
equations).

• Less computation time is needed if the number of parameters is not large com-
pared to the dimension of the problem.

Cons

• A step size parameter is required.

• Need to iterate the complex-step program for as many times as the number of
parameters, which would mean increased computation times when the number of
parameters is large.
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For a problem of dimension n and m parameters, comparison of the complex-step
approximation with the use of sensitivity equations is summarized below.

Complex-Step Sensitivity Equations

Add a perturbation on existing algorithm New program to solve new set of equations.
Equations of size n to solve n+ nm equations to solve
Has step size No step size
Need to run the program m times
for each parameter

Program runs only once

Table 2: Comparison of the complex-step method and method of sensitivity equations.
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