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Abstract We present a novel matrix commitment scheme, MCTproofs, which allows a committer
to commit to a matrix along with its submatrices and generate proofs for an arbitrary subset of ma-
trix elements. The scheme achieves efficient proof generation and verification by employing tree-based
structures in its algorithms. MCTproofs builds upon the foundational principles of Matproofs, offering
a significant enhancement over the original scheme. Notably, MCTproofs is aggregatable, maintain-
able, and updatable, achieving an average performance improvement of 10 × in proof aggregation and
3 × in verification. Additionally, the size of aggregated proofs in MCTproofs is O(1), compared to that
of Matproofs, which has a complexity of O(min{b,

√
n}). We further demonstrate the applicability

of MCTproofs in payment-only stateless cryptocurrencies and compare its performance against Mat-
proofs and Hyperproofs. Experimental results show that MCTproofs outperforms both in aggregation
and verification while maintaining comparable efficiency in other operations.
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1 Introduction
A matrix commitment scheme is a specialized type of vector commitment scheme designed to
compute a commitment C for a matrix M = {Mij}m×n. These schemes enable the generation
of proofs Ωij for individual elements Mij at specified positions (i, j) within the matrix M .
Using the commitment C and the corresponding proof Ωij , a third party can efficiently verify
the authenticity of Mij without needing access to the entire matrix M . The primary advantage
of matrix commitment schemes lies in their computational efficiency, as they require storing
only the commitment C and the proofs Ωij for the relevant positions (i, j), rather than the
full matrix M . The competitiveness of a matrix commitment scheme is determined by three
key properties: homomorphism, maintainability, and aggregability.

1. Maintainability: This property ensures that when certain elements of a matrix are
updated, the proofs associated with the unchanged elements can also be updated efficiently
with minimal computational overhead. Schemes such as Matproofs [1] and Hyperproofs [2]
exhibit this capability.

2. Aggregability: Aggregability allows for the generation of a single proof for a subset
of elements within a matrix M . This is achieved by aggregating the individual proofs of
each element in the subset, reducing the overhead of managing multiple proofs. Schemes like
Pointproofs [3] and Xproofs [4] demonstrate this property.

3. Homomorphism: Homomorphism enables the efficient computation of a commitment
for the sum of two matrices M and M ′. Instead of computing the commitment for M +M ′

from scratch, it can be directly derived as the product of the commitments of M and M ′.
Examples of homomorphic schemes include those described in [5], [2], [6], and [7].
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From a computational perspective, the primary objective is to minimize both the proof
size and the time complexity. Consequently, developing schemes with constant-size outputs
for their constituent algorithms is a central focus of research in this field. The computations
involved in commitment schemes are performed on both the committer’s and verifier’s sides.
However, no existing scheme can simultaneously minimize both the size and computational
cost of the elements in a vector commitment scheme. Each side, based on its specific re-
quirements, selects certain algorithms with constant-size outputs or algorithms for which the
size depend on their input values. This paper’s approach aims to increase the number of
commitments on the committer’s side and reduce the computational complexity on verifier’s
side, which will be explored further in subsequent discussions.

In this work, we propose a novel matrix commitment scheme based on a matrix tree struc-
ture. This scheme facilitates the generation of commitments and proofs for both individual
elements and submatrices of an arbitrary matrix M , providing substantial flexibility and com-
putational efficiency. We refer to our proposed scheme as MCTproofs, derived from the term
Matrix commitments tree. The structure of this paper is as follows: At the end of this section,
we review related works concerning MCTproofs. Sec. 2 introduces fundamental definitions
and key concepts. In Sec. 3, we discuss the hierarchical data structures that underpin the
proposed schemes. Sec. 4 presents the matrix commitment scheme and its core properties.
Sec 5 introduces MCTproofs, a critical component of this paper. In Sec. 6, we conduct an
analysis of MCTproofs and provide a formal proof of the claims. The practical application
of MCTproofs in a real-world scenario is discussed in Sec. 7. Finally, Sec. 8 presents the
experimental results, performance evaluation, and comparative analysis.

1.1 Contributions
Model Structure. In this paper, we propose a matrix commitment scheme for a square
matrix M of dimension n = 2l, integrating the concepts of Merkle trees and bilinear forms.
To construct this scheme, we introduce key concepts such as matrix partitioning and indexing.
These concepts are used to build the matrix tree TA. Following the construction of TA, we
develop the matrix polynomial tree TfA and the parameter trees Tpp1 and Tpp2 . With the
resulting group (TA, TfA , Tpp1 , Tpp2), the committer can efficiently generate proofs for both
individual elements and subsets of M , while the verifier can quickly validate or reject the
proofs through a simple lookup. Our model presents two key advantages over MatProofs. The
first advantage is that it enables the committer to commit to specific submatrices of matrix
M , subsequently generating proofs for the elements of M based on these submatrices. This
approach reduces the matrix dimensions, thereby saving computational time and decreasing
complexity. The second advantage is that, through pre-computation in the initial stages of the
commitment scheme, it allows the generation of individual proofs for each subset of elements
in M , without the need to incorporate all rows and columns of M in the computations, as
required by Matproofs. However, a limitation of this model is that it is applicable only to
matrices with a dimension of n = 2l, and it cannot be used with matrices of other dimensions.

Application. The adoption of blockchain technology and cryptocurrencies in financial
transactions is expanding. As a result, significant research efforts have been dedicated to de-
veloping security infrastructures and cryptographic protocols to ensure user privacy and data
security. Commitment schemes, which are two-party cryptographic protocols, play a crucial
role in facilitating the secure transmission of transactions between senders and recipients.
Among the studies conducted in this field, references [8, 1, 2, 9] are noteworthy. Commit-
ment schemes, such as Hyperproofs and Matproofs, are commonly applied in the UTXO
model within cryptocurrencies like Bitcoin and Ethereum. MCTproofs can also be utilized
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in blockchain technology like these schemes. In blockchain terminology, a UTXO (Unspent
Transaction Output) refers to a set of immutable coins, with a transaction being considered
valid only when the coins associated with the UTXO are spent. In Sec. 7, we demonstrate
the application of MCTproofs in the construction of payment-only stateless cryptocurrencies.
In Sec. 8, we evaluate the performance of our proposed scheme in comparison to the two
previously mentioned schemes. The results demonstrate significant improvements in proof
aggregation and verification.

Security and Evaluation. Since the foundational elements of our scheme are derived
from Matproofs, the security of our scheme inherits the security properties of Matproofs.
The proposed scheme, MCTproofs, is designed to be maintainable, aggregatable, and readily
updatable. The majority of the computational load in MCTproofs is concentrated in the
algorithm Commit, which has a complexity of O(n), in contrast to Matproofs’s Commit, which
operates at O(1). However, this modification significantly reduces the computational cost and
proof size in other algorithms. Furthermore, most of the computational burden is placed on the
committer’s side, thereby reducing the overhead for the verifier. We benchmark MCTproofs
and compared it with Matproofs. Simulation results show that MCTproofs is 10 times faster in
AggProof algorithm and 3 times faster in the Verify algorithm compared to the corresponding
algorithms in Matproofs.

1.2 Related works
A vector commitment (VC) scheme employs advanced cryptographic techniques and algebraic
tools to securely commit to vectors or matrices. Algebraic tools, such as bilinear forms, and
cryptographic constructs, such as Merkle trees, form the foundation of many recently proposed
commitment schemes. In this paper, we review the foundational works based on Merkle trees
and bilinear forms that have influenced our approach and compare our proposed scheme,
MCTproofs, with existing schemes, as summarized in Tab. 1.

Merkle pioneered the use of hash trees for authentication schemes [10]. Building on this
concept, public key cryptosystems and digital signatures expanded the application of hash
trees [11, 5]. Micali et al. [12] advanced this idea by introducing the Merkle tree as a means
to commit to the elements of a finite set. In their model, the elements of a set S serve as
the leaves of a binary tree, which is converted into a Merkle tree by applying a cryptographic
hash function to its nodes. The authentication path for an element x provides proof of x ∈ S.

The polynomial commitment (PC) scheme, introduced by Kate et al. [13], enables the
generation of a commitment C for a polynomial ϕ(x). This commitment C can be interpreted
as a commitment to the vector of coefficients of ϕ(x), a feature that provides significant
advantages. Many schemes, including our proposed scheme, uses this property, as will be
discussed in detail.

Papamanthou et al. [14] proposed a scheme for verifying dynamic computations in cloud
settings using multivariate polynomials. Expanding on this, Srinivasan et al. introduced
the multilinear tree (MLE), constructed with the multilinear extension polynomial for each
vector, where each node stores a sub-vector. Their Hyperproofs scheme, based on the MLE,
leverages homomorphic properties for efficient, maintainable, and aggregatable proofs. Merkle
grids [15] extend the functionality of Merkle trees to square matrices. In this approach, two
separate Merkle trees are constructed for the rows and columns of a matrix, with the resulting
hash values combined to generate a single signed hash for the target matrix. The primary
structural distinction between this method and our proposed scheme lies in the generalization
of the Merkle tree concept. While Merkle grids focus on hashing rows and columns, our
scheme expands this functionality to include submatrices within the target matrix. Gurbanov
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Table 1: Comparison with similar schemes

Scheme Commitment Public
parameters Individual Aggregated Aggregate Verify

aggregated
size size proof size proof size proof time proof time

Merkle O(1) O(1) O(logn) O(1) × ×
Merkle SNARK O(1) O(1) O(1) O(1) O(k log n log(k logn)) O(n

k − array Verkle O(1) O(1) O(logk n) × × ×
[17] O(1) O(1) O(1) O(1) O(b log n) O(1)

[18] O(1) O(n) O(1) O(1) O(b log2 b) O(b log2 b)

Pointproofs O(1) O(n) O(1) O(1) O(b) O(b)

Hyperproofs O(1) O(n) O(log n) O(log(b logn)) O(b log n) O(b log n)

Matproofs O(1) O(n) O(1) O(min{b,
√
n}) O(b+min{

√
n, b}) O(b+min{

√
n, b})

BalanceProofs[19] O(1) O(n) O(1) O(b log2 b) O(b log2 b) O(b logn)

2D-Xproofs O(1) O(
√
n) O(1) O(1) O(b+min{

√
n, b}) O(b log

√
n)

MCTproofs O(n) O(n) O(1) O(1) O(b) O(|∆S|)

et al. [3] developed the Pointproofs scheme, enabling the aggregation of proofs about vector
positions in a cross-commitment setting. This scheme, secure within the generic group model,
updates all proofs with a complexity of O(n).

A significant focus in reducing the complexity of VC schemes is minimizing the exchange
of elements between the committing party and the verifier. For instance, Bulletproofs [16]
reduced the elements exchanged to 2 logn for commitments to the inner product of two vectors.
The proposed scheme, MCTproofs, adopts a similar principle by minimizing the elements
required on the verifier’s side, albeit at the expense of increasing the computational load on
the committer’s side.

Matproofs [1] is an idealized scheme achieving conciseness, maintainability, and updatabil-
ity under the (n1, n2)-bBDHE and l-wBDHE assumptions. Our scheme extensively leverages
Matproofs as a security foundation. However, the algorithms Aggproof and Verify in MCT-
proofs are, on average, 10 times and 3 times faster than those in Matproofs, respectively.

The recently introduced Xproofs scheme [4] addresses weaknesses in Matproofs, such as
reliance on pairing-sensitive networks (PSNs). Xproofs employs a row-column commitment
structure, C = (Crow, Ccol), with proofs consisting of paired elements in G1. Similar to
Xproofs, our scheme maintains a constant size for AggProof while enhancing storage effi-
ciency and reducing computational costs in the AggProof and Verify algorithms. In summary,
MCTproofs scheme offers significant computational improvements while addressing key chal-
lenges in existing schemes, though some trade-offs in conciseness persist. A comparative
analysis of various commitment schemes is presented in Tab. 1. To ensure consistency and
facilitate alignment with other schemes, we define n as the number of matrix elements, and b
as the number of S elements. The parameter ∆S is defined in Sec. 2. As demonstrated, the
MCTproofs within the Aggproof exhibit conciseness compared to Matproofs. Additionally, the
computational cost is lower, scaling as O(b), in contrast to O(b+min{

√
n, b}) for Matproofs.

2 Preliminaries
Notation. Let n = 2l and [n] = {1, . . . , n}. For any n × n matrix M , denote the (i, j)-
th entry of M by Mij . Define {(i, j) | i, j ∈ [n]} as the set of all positions of M , and for
any subset S ⊆ [n] × [n], let M [S] = {Mij | (i, j) ∈ S}. For α, β ∈ Zp, define the vectors
α = [α, . . . , αn] and β = [β, . . . , βn]. Additionally, for k ∈ [l], define αk = [α, . . . , α2l−k

] and
βk = [β, . . . , β2l−k

].

2.1 Pairing
Let λ be a security parameter, and let BilGen(1λ) be a probabilistic polynomial-time (PPT)
algorithm that takes λ as input and outputs a context (p,G1,G2, e, g1, g2). Here, G1 = ⟨g1⟩
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and G2 = ⟨g2⟩ are cyclic groups, and e : G1 × G2 → GT is a bilinear pairing satisfying the
following properties:

1. e(ua, wb) = e(u,w)ab for all u ∈ G1, w ∈ G2, and a, b ∈ Zp.
2. e(u, h)e(v, h) = e(uv, h) for all u, v ∈ G1 and h ∈ G2.

In this work, the pair (G1,G2) is assumed to be a bilinear group of Type − 3, meaning that
there is no efficiently computable homomorphism between G1 and G2.

2.2 Indices and Partitions
To construct our commitment scheme, we introduce the concept of a matrix tree for a square
matrix M of dimension n = 2l. While hierarchical data structures such as (k, d)-trees [20] and
quadtrees [21] are commonly used for similar purposes, they are not suitable for our scheme.
Specifically, quadtrees are designed primarily for sparse matrices, whereas our approach im-
poses no restrictions on the elements of the matrix. Nevertheless, the idea of the matrix tree
is inspired by the quadtree structure. The matrix tree for M is constructed using partitions
and indices, which will be formally defined later. For clarity, we represent matrices in a hi-
erarchical, grid forms. Initially, we introduce the foundational definitions, including various
matrix partitions, and then describe how these partitions are formulated using indices. Let
M be a square matrix of dimension n = 2l. M can be divided into four disjoint submatrices,
each of dimension 2l−1. This set of submatrices forms a partition of the elements of M . Each
resulting submatrix can then be further subdivided into four smaller submatrices, equivalent
to dividing M into 16 submatrices of dimension 2l−2. For an example with n = 8, see Fig. 1 in
Example 1. Each collection of submatrices obtained through this hierarchical subdivision is
referred to as a window partition of M . A formal definition of window partitions is provided
below.

Definition 1. A window partition of degree k, denoted by Pk
M , is a set of non-overlapping

submatrices of a matrix M , where each submatrix has order 2l−k, and each element of M
belongs to exactly one submatrix. Formally, it is defined as Pk

M ={Mk
uv |u, v∈{0, . . . , 2k−1}},

where Mk
uv are the submatrices of M with dimension 2l−k.

Definition 2. A perfect nested window partition for a matrix M , denoted by PM , is defined
as follows PM = {Pk

M | k ∈ [l]}.

In this section, we introduce the concepts of direct index and null index for the elements
and submatrices of matrix M , which serve as the foundation for defining the matrix tree of M .
The position of an element Mij in matrix M is specified by its coordinates (i, j). However, we
are interested in determining the position of Mij within the submatrices of M . The concept
of an index indicates which member of PM contains the element Mij , without specifying its
exact position within that submatrix. We now proceed directly to the formal definitions of
these concepts.

Definition 3. Let M be an n-dimensional matrix. Then we define:

• Ak
M : Direct index of M under the Pk

M : Ak
M =

{
(ik, jk)

∣∣∣ ik = Sk2
ℓ−k

jk = S′
k2

ℓ−k , 0 ≤ ik, jk < n

}
• AM : Direct index of M under the PM : AM =

⋃
k∈[l]

Ak
M

• AM (i, j): Direct index of position (i, j) ∈ [n]× [n] under the PM :

AM (i, j) =

{
(ik, jk)

∣∣∣ i− 1 = Sk2
ℓ−k + rk, ik = Sk2

ℓ−k, 0 ≤ ik, jk < n
j − 1 = S′

k2
ℓ−k + r′k, jk = S′

k2
ℓ−k, k ∈ [l]

}
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Figure 1: Partitions of matrix M

• Ac
M Null index of position (i, j) ∈ S under PM :

Ac
M (i, j) =

{
(i

′
k, j

′
k)
∣∣∣i′k, j′

k ∈ {ik, jk} where (ik, jk) ∈ Ak
M (i, j) ∧ i

′
k ̸= ik, j

′
k ̸= jk

}
• Let S is defined as specified. We define ∆S as follows: ∆S=

⋃
(i,j)∈S

Ac
M (i, j)\

⋃
(i,j)∈S

AM (i, j).

The purpose of defining Ak
M is to represent the matrix M as a block matrix, where the

position of each submatrix B ∈ Pk
M is determined by these indices. Specifically, for each

B ∈ Pk
M , there exists a pair of indices (ik, jk) ∈ Ak

M such that ∀B ∈ Pk
M , ∃(ik, jk) ∈ Ak

M such
that B = Mk

ikjk
. Therefore, Pk

M can be rewritten as follows, based on the previous explanation

Pk
M =

{
Mk

ikjk
| (ik, jk) ∈ Ak

M

}
. The set PM is defined in a similar manner. Using AM (i, j),

we can identify all the submatrices that contain the element (i, j). By applying the partition
method described above, the matrix M is transformed into a block matrix, where the arrays
are the submatrices of M . Additionally, Ac

M (i, j) represents a special subset of AM that
satisfies the following two conditions:

1 For every (i′k, j
′
k) ∈ AM , the submatrix Mk

i′kj
′
k

does not contain the element (i, j).

2 If Mk
i′kj

′
k

and M r
i′rj

′
r

do not contain the element (i, j), and M r
i′rj

′
r

is a submatrix of Mk
i′kj

′
k
,

then we consider Mk
i′kj

′
k
.

Condition 2 establishes that priority is given to larger matrices. A “larger matrix” refers to
a matrix with a higher dimension, and this term can similarly be applied to matrices with
smaller dimensions, depending on the context. The definition of ∆S will be used in the
construction of AggProof in the MCTproofs scheme.

Example 1. For an arbitrary matrix M of dimension 8, the partitions P1
M , P2

M , and P3
M

are presented in Fig. 1, where according to Def. 3, each of these partitions can be written as
a set. Specially, for P1

M we have P1
M = {M1

00,M
1
04,M

1
40,M

1
44}

3 Tree structure
In this section, we aim to establish a correspondence between a tree and a matrix M of
dimension 4, subsequently generalizing this relationship to matrices of arbitrary dimensions.
The construction of matrix tree is inspired by the approach presented in [12]. The matrix
tree associated with M is denoted by TM . The tree is constructed from top to bottom based
on partitions and indices introduced in Sec.

2
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Step 1 (Root Initialization): We set e = M00 = M , considering M as the root of the tree.
Step 2 (First Level): The elements of the partition P1

M = {M1
00,M

1
04,M

1
40,M

1
44} are arranged

from left to right below the root matrix M .
Steps i (Rest Level): For each i ≥ 2, the members of P i

M , representing submatrices of the
matrices in P i−1

M , are arranged in a similar manner. This hierarchical process continues
until the final step, where the elements of matrix M are reached.

The other components of the tree TA are as follows:

• Nodes : Each submatrix M i
uv ∈ P i

M represents a node at level i, and the total number
of nodes at this level is 4i.
• Children: Every node at level i has four children, which are members of P i+1

M .
• Parent : Every node, except the root, has a parent defined as parent (M i

uv) = M i−1
uv ∈

P i−1
M .

• Leaves: The leaves of TM correspond to the elements of matrix M .

The path from the root M to a leaf M l
uv = Mij is a sequence of matrices {Muv}li=1 ⊆ PM ,

all of which contain Mij .
Let S = {(i, j) | i, j ∈ [n]× [n]} and M [S] be a set of elements M . We define:

• TREE(S): The subtree of TM consisting of the union of all paths from the root to the
leaves in S. If S is empty, TREE(S) = e.
• FRONTIER(S): = {M i

uv |M i
uv /∈ TREE(S), parent(M i

uv) ∈ TREE(S)}.

Example 2. Suppose the matrix M is as follows:

M =


1 2 3 4
3 2 1 2
5 1 2 3
4 1 5 1


Also, for a set S = {(1, 1), (1, 3), (2, 4)}, the subtree containing S is as follows:

Tree(S) = {M,M1
00,M

2
00,M

1
02,M

2
02,M

2
13} (1)

Given the steps mentioned above, we have (see Fig. 2) which, after labeling the nodes, we
have (see Fig. 3).

1 2 3 4

3 2 1 2

5 1 2 3

4 1 5 1

M
1 2

3 42

3 4

1 2

5 1

4 1

2 3

5 1
M1

11 M1
12 M1

21 M1
22

1 2 3 2 3 4 1 2 5 1 4 1 2 3 5 1M1
11 M1

12 M1
21 M1

22 M2
11 M2

12 M2
21 M2

22 M3
11 M3

12 M3
21 M3

22 M4
11 M4

12 M4
21 M4

22

Figure 2: Nested window partition PM



60 Devisti H., Hadian M.

3.1 Bilinear forms
Throughout this paper we focus on the use of bilinear forms. These are a specific class of
functions defined on vector spaces, characterized by their bilinearity, which can be advan-
tageous in various contexts. For instance, bilinearity is a crucial property in the design of
homomorphic commitment schemes.

Definition 4. Let V be a vector space on the field Fp. A bilinear form on V is a function
like f that assigns a scalar f(α, β) to every pair (α, β) ∈ V × V and satisfy in the following
conditions: i) f(cα1+α2, β) = cf(α1, β)+ f(α2, β), ii) f(α, cβ1+β2) = cf(α, β1)+ f(α, β2).

Now,two important theorems concerning bilinear forms over Zp are presented, which fre-
quently used in subsequent discussions.

Theorem 3.1. Let Zn
p be a vector space over Zp, and let M be an n×n matrix with elements

in Zp. Define f as a bilinear form given by fM (X,Y ) = Y TMX, where X = [X, . . . ,Xn]T

and Y = [Y, . . . , Y n], with X,Y ∈ Zp.

Proof. To show that fM satisfies conditions (i) and (ii) of Def. 4, suppose c ∈ Zp and
X1,X2,Y ∈ Zn

p . By condition (i) of Def. 4, we obtain

fM (cX1 +X2,Y ) = Y TM(cX1+X2)=cY TMX1+Y TMX2=cfM (X1,Y )+fM (X2,Y ),

which establishes condition (i).
For condition (ii), let c ∈ Zp and X,Y 1,Y 2 ∈ Zn

p . Then

fM (X, cY 1+Y 2) = (cY 1+Y 2)
TMX=cY T

1 MX+Y T
2 MX=cfM (X,Y 1)+fM (X,Y 2).

Hence, fM satisfies condition (ii) as well and is therefore a bilinear form.

Theorem 3.2. Let n = 2l and M be a squared matrix of dimension n, let
P1
M = {M1

00,M
1
o2l−1 ,M

1
2l−10

,M1
2l−12l−1} be a partition of degree 1 for M . Then the above

function f satisfy in the following equation:

fM (X,Y )=fM1
00
(X,Y )+X2l−1fM1

o2l−1
(X,Y )+Y 2l−1

fM1
2l−10

(X,Y )+(XY )2
l−1
fM1

2l−12l−1
(X,Y )

Proof. Let M be a square matrix of dimension n = 2l. By Def. 1, the function f(X,Y ) can
be written as

f(X,Y ) =

[
Y 1

Y 2

]T [
M1

00 M1
04

M1
40 M1

44

] [
X1

X2

]
, (2)

where X1 = [X, . . . ,Xn/2]T , X2 = [Xn/2+1, . . . , Xn]T and Y 1 = [Y, . . . , Y n/2],
Y 2 = [Y n/2+1, . . . , Y n], with X,Y ∈ Zp. The remainder of the proof proceeds via straight-
forward matrix multiplication arguments. In conjunction with expression 2 and Theorem 3.1,
these computations complete the proof.

M
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20 M1
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Figure 3: Matrix tree TM
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An important application of Theorems 3.1 and 3.2 lies in the construction of a polynomial
tree, which will be discussed in detail below. To illustrate this, we first provide an example
of Theorem 3.2 applied to an 4-dimensional matrix, followed by a detailed discussion.

Example 3. Let the matrix M be as given in Example 1, and let α, β ∈ Zp. Then, according
to Def. 3 and Theorem 3.2, we obtain:

f(α, β) = βTMα =

[
β1

β2

]T [
M1

00 M1
04

M1
40 M1

44

] [
α1

α2

]
= f1

00(α, β)︸ ︷︷ ︸
αβ+2αβ2+
3α2β+2α2β2

+α2f1
02(α, β)︸ ︷︷ ︸

3αβ3+4αβ4+
α2β3+2α2β4

+β2f1
20(α, β)︸ ︷︷ ︸

5α3β+α3β2+
4α2β+α4β

+α2β2f1
22(α, β)︸ ︷︷ ︸

2α3β3+3α3β4+
5α4β3+α4β4

3.2 Martrix polynomial tree
After constructing the tree TM of the matrix M , the polynomial tree of M , denoted as TfM , is
subsequently derived. To construct TfM , it suffices to compute the corresponding two-variable
polynomials(bilinear form) for each node in TM . TfM is defined as follows TfM = {fk

ikjk
(X,Y ) |

(ik, jk) ∈ Ak
M} where k ∈ [l] indicates the level of the nodes. The polynomial at each node is

given by fk
ikjk

(X,Y ) = Y kTMk
ikjk

Xk where Mk
ikjk
∈ PM . Therefore, for M l

iljl
= Mij , i.e., for

the leaves of TfM , the corresponding polynomial is f l
iljl

(X,Y ) = Xj−1Y i−1 for (i, j) ∈ [n]×[n].

3.3 Public parameters tree
We define the public parameters tree Tpp = (Tpp1 , Tpp2) for the matrix M , which will be
utilized in the subsequent section. It suffices to construct only Tpp1 , as the construction of
Tpp2 follows a process analogous to that of Tpp1 . The tree Tpp1 is constructed from the set AM ,
with the arrangement of its nodes and leaves resembling that of TA and TfA . In summary, the
construction of this tree is straightforward and proceeds in the following three steps:

• Set g1 as the root of the tree.

• Select α, β ∈ Zp randomly.

• For k ∈ {1, 2, · · · , l} the nodes of level i are gα
jkβik

1 , (ik, jk) ∈ Ak
M

• The arrangement of nodes in the Tpp1 tree follows a left-to-right order, similar to that
of TM .

Example 4. For the matrix M presented in Example 3, the structure of Tpp1 is as follows:

g1

g1 gα
2

1 gβ
2

1 gα
2β2

1

g1 gα1 gβ1 gαβ1 gα
2

1 gα
3

1 gα
2β

1 gα
3β

1 gβ
2

1 gβ
3

1 gαβ
2

1 gαβ
3

1 gα
2β2

1 gα
3β2

1 gα
2β3

1 gα
3β3

1

Figure 4: Public parameters tree Tpp1
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3.4 Commitment polynomial trees
We have constructed four trees, denoted as TM , TfM , Tpp1 , and Tpp1 corresponding to the
desired matrix M of dimension n = 2l. In the final step, the commitment tree, which is
derived from TfM , is constructed. Appendix 8.2 provides a step-by-step explanation of the
process for constructing the commitments tree. This process is straightforward, as it involves
computing elements in G1. Specifically, we compute commitments associated with the matrix
Mk

ikjk
∈ PM based on the Matproofs framework. The resulting matrix polynomial tree is

denoted by TC , and it is defined as follows: TC = {Ck
ikjk
| (ik, jk)∈Ak

M , k ∈ [l]}, where Ck
ikjk

represents the commitment associated with Mk
ikjk

. These commitments are computed as:

Ck
ikjk

= g
fk
ikjk

(α,β)

1 (α, β ∈ Zp).

4 Matrix commitment scheme
To ensure consistency with prior research, the proposed matrix commitment scheme adheres
to the standard conventions employed in vector commitment schemes. A matrix commitment
scheme is defined by seven PPT algorithms, as described below.

1. Setup(1λ, 1n): This algorithm, given the security parameter λ and an integer n, produces
a set of public parameters pp. These parameters are organized hierarchically and can
be represented as a public parameter tree.

2. Commit(M,AM ,PM ): This algorithm takes as input a matrix M of dimensions n × n
and corresponding AM and PM . It produces as output a commitment C, along with
commitments to the individual elements of PM , organized in the form of a hierarchical
commitment tree.

3. UpdateCommit((i, j), δ, C, {Ck
uv}(u,v)∈Ac

M (i,j)): This algorithm is designed to update all
submatrices containing the arbitrary position (i, j). It takes as input the position (i, j),
the update parameter δ, and the set of commitments {Ck

uv} associated with the elements
of Ac

M (i, j).

4. Prove ((i, j),Ac
M (i, j),M): For any (i, j) ∈ [n] × [n], this algorithm generates a proof

Ωij corresponding to the matrix entry Mij .

5. UpdProof((i, j), (i′, j′), δ,Ωi′j′): This algorithm updates the proofs Ωi′j′ for all entries
(i′, j′) ∈ [n]× [n] in response to an update at the matrix entry (i, j).

6. Aggproof(C, S, {Ck
ikjk
}(ik,jk)∈∆S , {Ωij}(i,j)∈S}): This algorithm takes as input a set of

positions S ⊆ [n] × [n], their corresponding entries M [S], a set of commitments
{Ck

ikjk
}(ik,jk)∈∆S , and proofs {Ωij}(i,j)∈S . It outputs a triple (ω̂, CS , Ω̂).

7. Verify(C, S,∆S, {Ck
ikjk
}(ik,jk)∈∆S): This algorithm takes as input a set of positions S ⊆

[n] × [n], their corresponding entries M [S] a set of commitments {Ck
ikjk
}(ik,jk)∈∆S ,

and proof triple (ω̂, CS , Ω̂). It verifies the correctness of the entries M [S] against the
commitment C.

A matrix commitment scheme must satisfy to the principles of correctness and positional
binding. The fundamental definitions of these properties in the context of our scheme include:
opening correctness, aggregation correctness, commitment update correctness, proof update
correctness, and position binding. These properties are defined as follows:

Definition 5 (Opening Correctness). For all λ, n = 2l, k ∈ [l], matrix Mk
ikjk

of dimension
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nk = 2l−k, and any (i, j) ∈ [n]× [n] and (ik, jk) ∈ AM (i, j), the following holds:

Pr


pp← Setup(1λ, 1nk),
Ck
ikjk
← Commit(Mk

ikjk
),

Ωikjk ← Prove((ik, jk),M
k
ikjk

) :

Verify(Ck
ikjk

, {(ik, jk)},Mk
ikjk

,Ωikjk) = 1

 = 1.

This relation guarantees the correctness of the commitment and proof verification process for
our scheme.

Definition 6 (Commitment update correctness). For all λ, k ∈ [l], all integers n, nk > 0, any
(i, j) ∈ [n]× [n] with its corresponding direct index Ac

M (i, j), any matrix Mk
ikjk

of dimension
nk = 2l−k, and any δ, when the value of Mikjk is updated to M ′

ikjk
= Mikjk + δ, the following

property holds:

Pr


pp← Setup(1λ, 1nk),
Ck
ikjk
← Commit(Mk

ikjk
),

Ck
ikjk

′ ← UpdateCommit((ik, jk), δ, C
k
ikjk

),

Ck
ikjk

′′ ← Commit(Mk
ikjk

′
) :

Ck
ikjk

′
= Ck

ikjk

′′

 = 1.

This relation ensures that the outputs of the algorithms Commit and UpdateCommit are
consistent for the matrix Mk

ikjk
and its updated version Mk

ikjk

′.

Definition 7. (Proof Update Correctness) For all λ, k ∈ [l], integers n, nk > 0, a position
(i, j) ∈ [n]× [n] with its corresponding direct index AM (i, j), a matrix Mk

ikjk
of dimension nk,

and any δ, when the value of Mikjk is updated to M ′
ikjk

= Mikjk + δ, then:

Pr



pp← Setup(1λ, 1nk),

Ω
i
′
kj

′
k
← Prove((i

′
kj

′
k),M

k
ikjk

),

Ω′
i
′
kj

′
k

← UpdateProof((ik, jk), (i
′
k, j

′
k), δ,Ωi

′
kj

′
k
),

Ω
′′

i
′
kj

′
k

← Prove((i
′
kj

′
k),M

k
ikjk

′
) :

Ω′
i
′
kj

′
k

= Ω
′′

i
′
kj

′
k


= 1.

This relationship establishes that for all (i, j) ∈ [n]× [n] and (ik, jk) ∈ AM (i, j), when Mij

is updated to Mij + δ, the outputs of the algorithms Prove((i′k, j
′
k),M

k
ikjk

′
) and

UpdateProof((ik, jk), (i
′
k, j

′
k), δ,Ωi′kj

′
k
) remain identical.

Definition 8 (Aggregation Correctness). For all λ, k ∈ [l], integers n, nk > 0, a matrix M ,
and any set of positions Sk

ikjk
⊆ [nk]× [nk], the following holds:

Pr


pp← Setup(1λ, 1nk),
Ck
ikjk
← Commit(Mk

ikjk
),

Ωikjk ← Prove((ik, jk),M
k
ikjk

),

Ω̂← AggregateProof(Ck
ikjk

, Sk
ikjk

,Mk
ikjk

[Sk
ikjk

], {Ωikjk}(ik,jk)∈Sk
ikjk

) :

Verify(Ck
ikjk

, {(ik, jk)}(ik,jk)∈Sk
ikjk

,Mk
ikjk

[Sk
ikjk

], Ω̂) = 1

 = 1.

This relation demonstrates that for any arbitrary subset Sk
ikjk

, a single aggregated proof
can be constructed to verify the correctness of the associated positions.
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Definition 9 (Position Binding). For all λ, k ∈ [l], n, nk > 0, and any PPT adversary A,
the following holds:

Pr


pp← Setup(1λ, 1nk),

(Ck
ikjk

, (Ωk
ikjk

b
, Sk

ikjk

b
,Mk

ikjk

b
[Sk

ikjk

b
])b=0,1)← A(pp) :

(Verify(Ck
ikjk

, Sk
ikjk

b
,Mk

ikjk

b
[Sk

ikjk

b
],Ωk

ikjk

b
) = 1)b=0,1

∧Mk
ikjk

0
[Sk

ikjk

0 ∩ Sk
ikjk

1
] ̸= Mk

ikjk

1
[Sk

ikjk

0 ∩ Sk
ikjk

1
]

 ̸= negl(λ).

This property, known as position binding, ensures that for all Mk
ikjk
∈ PM , no PPT

adversary can open the same matrix commitment Ck
ikjk

to produce different values at the
same positions.

4.1 Security requirements
The proposed matrix commitment scheme achieves security by leveraging the ℓ-wBDHE∗

assumption [6] and the (n1, n2)-bBDHE assumption [1] within the Generic Group Model
(GGM). The ℓ-wBDHE∗ assumption is rooted in the infeasibility of solving the weak bilinear
Diffie-Hellman exponent problem by any probabilistic polynomial-time (PPT) adversary. Its
formal definition is as follows:

Definition 10. Let (G1,G2) be generic bilinear groups of Type-3, and let (p,G1,G2,GT , e,
g1, g2) define a bilinear context generated by BG(1λ). The ℓ-wBDHE∗ assumption states
that no PPT adversary can solve the following variant of the weak bilinear Diffie-Hellman
exponent problem except with negligible probability: Given (g

P (α)
1 , g

Q(α)
2 ), where P (X) =

(X,X2, . . . , Xℓ, Xℓ+2, . . . , X3ℓ) and Q(X) = (X,X2, . . . , Xℓ), and α ← Zp, compute gα
ℓ+1

1 .
This assumption underpins the security guarantees of the scheme by ensuring that solving this
computational problem is infeasible for any PPT adversary.

The second assumption presented by Liu and Zhang [1] is based on a extention of ℓ-
wBDHE∗ to two-variable polynomials and is as follows:

Definition 11 ((n1, n2)-bBDHE). Let (G1,G2) be generic bilinear groups of Type-3, and
let (p,G1,G2,GT , e, g1, g2) define a bilinear context generated by BG(1λ). For n1, n2 > 0,
the (n1, n2)-bivariate Bilinear Diffie Hellman Exponent (bBDHE) assumption assumes that,
except with a negligible probability, no PPT adversary can solve the following problem: given
(g

P (α,β)
1 , g

Q(α,β)
2 ) for the (P,Q,R) in the ring of polynomials Fp,c and α, β ← Zp, output

(e, ge
⊤αβn1+1

1 ) fore ∈ Zn2
p \{0}, where α = (α, α2, . . . , αn2).

The algebraic group model(AGM) The AGM + ROM model plays a critical role
in establishing the security of our scheme. This model combines the Algebraic Group Model
(AGM) and the Random Oracle Model (ROM), effectively limiting adversaries from exploiting
computational complexity to compromise the scheme. In the AGM, adversaries are restricted
to algebraic operations and are granted access to the bit-level representations of group ele-
ments. However, they can only generate new group elements by applying group operations to
the elements they already possess. Specifically, for a given set of group elements I1, . . . , In ∈ G,
the adversary must produce the corresponding coefficients e1, . . . , en ∈ Zp to construct a new
group element O =

∏n
j=1 I

ej
j . In the ROM, cryptographic hash functions are treated as ideal

random functions with an output space in Zp. All parties in the protocol interact with these
hash functions exclusively through oracle queries, ensuring consistent and unpredictable hash
outputs, which are essential for security.
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5 Scheme structure
A matrix commitment scheme consists of two fundamental components: the commitment
process and the verification process. Our approach integrates concepts from three existing
schemes [12, 2, 1] to develop a novel scheme based on Merkle trees. The proposed scheme,
MCTproofs, is aggregatable, concise, and optimized for efficient updates and maintenance.
Let n = 2l, and let M = (Mij)n×n represent a square matrix of dimension n, where Mij ∈ Zp.
Additionally, let X = (X, . . . ,Xn) and Y = (Y, . . . , Y n) denote two vectors, and let (α, β)
be random elements in Zp × Zp. The MCTproofs scheme provides an efficient mechanism
for committing to and verifying a single element Mij from the matrix M . As outlined in
Sec. 3, the scheme begins with the generation of the tree structure, followed by subsequent
procedures. This section introduces the MCTproofs scheme.

5.1 MCTproofs scheme
We provide an explanation of how the MCTproofs operates for an element Mij of the matrix
M . The MCTproofs scheme comprises seven PPT algorithms, which are outlined below.
These algorithms are executed on a square matrix of dimension n = 2l.

• Setup(1λ, 1n): This algorithm takes as input a security parameter λ ∈ N and generates
a bilinear group model (p,G1,G2,GT , e, g1, g2) by running the bilinear group generator
BG(1λ). Next, it selects α, β ∈ Zp uniformly at random and outputs the trees Tpp1 and
Tpp2 , defined as follows: Tpp1 = {g

αjkβik

1 | (ik, jk)∈AM}, Tpp2 = {g
αjkβik

2 | (ik, jk)∈AM},
where Ak

M denotes the direct index associated with the matrix M .
• Commit(M,AM ,PM ): This algorithm takes as input a matrix M , the direct index set
AM , and the nested perfect partition PM . It outputs the tree TC , defined as follows:
TC = {Ck

ikjk
|(ik, jk)∈AM}. Here, TC is constructed from TfM as described in Sec. 3.

• UpdCommit((i, j), δ, C, Ck
ikjk

): This algorithm updates the commitments C and Ck
ikjk

when the element Mij of the matrix M changes to Mij + δ. The updated commitments
C ′ and Ck

ikjk

′ are computed as follows: C ′ = C · gδα
jβi

1 , Ck
ikjk

′
= Ck

ikjk
· gδα

jkβik

1 for
(ik, jk) ∈ AM (i, j), where C and Ck

ikjk
are the commitments corresponding to the matrix

M and the submatrices Mk
ikjk

containing the element (i, j). As demonstrated, when
Mij is updated, the commitments of all submatrices that include Mij are also updated
accordingly.
• Prove((i, j),Ac

M (i, j),M): This algorithm generates a proof for the matrix element Mij .

The proof is computed as: Ωij =
∏

(ik,jk)∈Ac
M (i,j)

[
Ck
ikjk

]αjkβik
, where Ωk

ij can be effi-
ciently derived using the pair of (TC , Tpp1).
• UpdProof((i, j), (i′, j′),Ωi′j′): This algorithm updates the proofs of other elements in M

when the element Mij is modified. Two cases are considered:

1. Case1: When Mij is updated to Mij + δ and (i′, j′) = (i, j), the proof Ωi′j′ remains
unchanged. However, in subsequent computations, the updated commitment C ′ should
be used instead of C.

2. Case2: When Mij is updated to Mij + δ and (i′, j′) ̸= (i, j), there exists (i′r, j
′
r) ∈

AM (i′, j′) such that M r
i′rj

′
r

includes Mij . Consequently, one term Ck
i′rj

′
r

in the proof Ω′
i′j′

corresponds to the commitment for Mk
i′rj

′
r
. Thus, the updated proof Ω′

i′j′ is given by:

Ω′
i′j′ =

∏
(i′k,j

′
k)∈AM (i′,j′)

[Ck
i′k,j

′
k
]α

j′kβi′k × [Cr
i′r,j

′
r
]α

j′rβi′r gα
jr

′+sβir
′+t

= Ωi′j′g
δαjβi

,
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where (s, t) is the position (i, j) in matrix Mk
i′rj

′
r
.

• Aggproof(C, S, {Ck
ikjk
}(ik,jk)∈∆S , {Ωk

ij}(i,j)∈S): This algorithm enables the aggregation
of proofs for elements of M where (i, j) ∈ S. The output of the algorithm consists of
the following components:

1. Aggregated Proof: ω̂ =
∏

(ik,jk)∈∆S

[
Ck
ikjk

]αjkβik
.

2. Aggregated Commitment: CS = g

∑
(i,j)∈S Mijα

jβi

1 .
3. Product of Individual Proofs: Ω =

∏
(i,j)∈S

Ω
hij

ij , where the weight hij is computed as

hij = H((i, j), C, S,M [S]), and H denotes a hash function used to ensure unique-
ness and integrity in the aggregation process.

• Verify(C, S, {Ck
ikjk
}(ik,jk)∈∆S , {Ωij}(i,j)∈S): The verification process differs depending on

the size of the set S:

1. Case 1: |S| = 1 In this case, verification is required for a single element (i, j). The ver-
ifier must confirm the following equation: e

(
C/gMijα

jβi
, g2

)
=

∏
Ac

M (i,j)

e
(
Ck
ikjk

, gα
jkβik

2

)
,

where e(·, ·) denotes the bilinear pairing, and Ac
M (i, j) is direct index associated of (i, j).

2. Case 2: |S| > 1 When verifying multiple elements, the verifier must check the
following two equations:

- Eq. 1: e (C/CS , g2) =
∏

(ik,jk)∈∆S

e
(
Ck
ikjk

, gα
jkβik

2

)
, where CS represents the aggregated

commitment.

- Eq. 2: e

(
C, g

∑
(i,j)∈S hij

2

)
= e(Ω̂, g2) · g

∑
(i,j)∈S Mijhij

T , where Ω̂ is the product of in-

dividual proofs, hij represents the weight for each element, and gT is a generator in
the bilinear group GT . These conditions ensure the correctness and consistency of the
commitments and aggregated proofs for the specified elements.

6 Analysis

In this section, we analyze the properties defined for our matrix commitment scheme. As
demonstrated below, the MCTproofs satisfies the properties outlined in Sec. 4 and fully meets
the security requirements of the scheme. This verification is performed specifically for the
matrix M , but it is equally valid for other submatrices of M under the same framework.

Theorem 6.1. The MCTproofs scheme is binding in the AGM+ROM model under the as-
sumptions of n-wBDHE∗ and (n, n)-bBDHE.

Proof. The proof is carried out in two steps:

step 1. Analysis of H-lucky queries:

Consider any query (O, C, S,M [S]) issued by an algebraic adversary attempting to break
the binding property of the MCTproofs scheme. To succeed, the adversary must extract
matrices A ∈ Zn×n

p and B ∈ Z(n−1)×(n−1)
p such that the following condition is satisfied:

g
βTAα+βnβT [−1]Bα[−1]αn

1 . The query is defined as H-lucky if the following relation holds:
M [S] ≡p A[S] and (M [S]−A[S])T t ≡p 0, where h =

(
H((i, j), C, S,M [S])) : (i, j) ∈ S

)
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is a set derived from the cryptographic hash function H, applied to combinations of C,
S, and M [S]. In the best-case scenario, the query O is H-lucky with a probability of
1/p. For qH queries to the function H, the probability that the adversary makes an
H-lucky query is qH/p.

Step 2. Infeasibility of extracting g
(αβ)n+1

1 : In this step, we demonstrate that the adver-
sary A cannot extract g

(αβ)n+1

1 without violating the (n, n)-bBDHE assumption. Sup-
pose A outputs: C, {{Sb,M b[Sb], Ω̂b}}b=0,1. Additionally, assume that A outputs matri-

ces A and B such that C is computed as: C = g
βTAα+βnβT [−1]Bα[−1]αn

1 . Under the given
assumptions, we have: M0[S0∩S1] ̸=M1[S0∩S1] =⇒ M0[S0] ̸=A[S0]∨M1[S1] ̸=A[S1].
Let (S∗,M∗, π̂∗) be such that: M∗[S∗] ̸= A[S∗] and Verify(C, S∗,M∗[S∗], π̂∗) = 1. Since
π̂∗ is an accepting proof, the following relation holds:

e(C, g

∑
(i,j)∈S∗ αn+1−jβn+1−ihij

2 ) = e(π̂∗, g2) · g(αβ)
n+1M∗[S∗]Th

T .

By eliminating g2 from both sides using the properties of the pairing e, we obtain:

C
∑

(i,j)∈S∗ αn+1−jβn+1−ihij = π̂∗ · g(αβ)
n+1M∗[S∗]Th

1 .

Decomposing the left-hand side into terms involving g
(αβ)n+1

1 , we isolate dependencies:

C
∑

(i,j)∈S∗ αn+1−jβn+1−ihij = (g

∑
(i,j)∈S∗ αn+1−jβn+1−i

1 βT [−i]A[−i][−j]α[−j]hij)︸ ︷︷ ︸
depeneds on g

(αβ)2

1 ,...,g
(αβ)n

1 ,g
(αβ)n+2

1 ,...,g
(αβ)2n

1

× (g
(αβ)nA[S∗]h
1 ). (g

(αβ)n

1 βT [−i]Bα[−j]
∑

(i,j)∈S∗

αn+1−jβn+1−ihij)︸ ︷︷ ︸
depeneds on g

(αβ)n+3

1 ,...,g
(αβ)3n

1

The matrix A[−i][−j] is obtained by removing the i-th row and j-th column from the
matrix A. Next, multiply both sides of the equation by π̂∗−1 on the LHS and g

(αβ)n+1

1

on the RHS.

g

∑
(i,j)∈S∗ αn+1−jβn+1−iβT [−i]A[−i][−j]α[−j]hij

1 g
(αβ)nβT [−i]Bα[−j]

∑
(i,j)∈S∗ αn+1−jβn+1−ihij

1 π̂∗−1

= g
(αβ)n+1(M∗[S∗]−A[S∗])Th
1

Finally, given that M∗[S∗] ̸= A∗[S∗] and there are no H-lucky queries, we conclude that
(M [S]− A[S])T t ≡p 0. By computing the modular inverse r of t modulo p and raising
both sides of the above equation to the power of r, we obtain gα

n+1

1 on the RHS. Since
the LHS can be computed using the adversary’s output and the known terms gαβT

1 ,
g
αnβnα[−j]β[−i]T

1 , and g
(αβ)2nαβT

1 , it follows that we can compute g
(αβ)n+1

1 .

Theorem 6.2. The MCTproofs satisfies the correctness of the opening property for any (i, j) ∈
[n]× [n] with respect to Mij.

Proof. To establish this property, the following equation must hold for any (i, j) ∈ S ⊆ [n]×[n]
and Mij ∈M [S]:

e
(
C/g

Mijα
jβi

1 , g2

)
=

∏
Ac

M (i,j)

e
(
Ck
ikjk

, gα
jkβik

2

)
. (3)



68 Devisti H., Hadian M.

First, the bilinear form of the matrix M is defined as follows: f(α, β)=βTMα=

n∑
i=1

n∑
j=1

Mijα
jβi.

Using Th. 3.2 and rearranging the function f based on the AM , we obtain f(α, β) =∑
(ik,jk)∈Ac

M (i,j)

αjkβikfk
ikjk

(α, β). Subtracting Mijα
jβi from f(α, β) gives

f(α, β)−Mijα
jβi =

∑
(ik,jk)∈Ac

M (i,j)

αjkβikfk
ikjk

(α, β).

Finally, by leveraging the properties of the bilinear pairing function e, we derive Eq. (3).

Theorem 6.3. The MCTproofs satisfies the commitment update correctness property when
the matrix entry Mij is updated to Mij + δ.

Proof. According to Def. 7, when Mij is updated to Mij + δ, the algorithms Commit(M ′) and
UpdCommit(M) produce equivalent outcomes. Consequently, we have

C ′′ = gβ
TM ′α

1 = g

∑
(k,l)̸=(i,j)

Mklα
lβk+(Mij+δ)αjβi

1 = g
∑

Mklα
lβk+δαjβi

1 = Cgδα
jβi

1 = C ′.

Theorem 6.4. MCTproofs satisfy in proof update correctness for any (i′, j′) ∈ S ⊂ [n]× [n],
when Mij updated to Mij + δ

Proof. Consider the case where (i, j) ̸= (i′, j′), and let Prove(i′, j′,Mi′j′) denote the proof
algorithm for the entry Mi′j′ , which outputs Ωi′j′ . Additionally, let UpdProof(i, j, i′, j′, δ,Ω′

i′j′)
represent the update algorithm introduced in 5.1.

Suppose M ′ is the updated matrix obtained after modifying Mij to Mij + δ, and Ω′
i′j′ and

Ω′′
i′j′ are the proofs defined in Def. 7. Based on the structure of the proof Ω′

i′j′ and the matrix
M ′ under the index Ac

M ′(i′, j′), there exists a submatrix M r
i′rj

′
r

that includes Mij , along with
the corresponding commitment Cr

i′rj
′
r
, where Cr

i′rj
′
r
= Commit(M r

i′rj
′
r
). Consequently, Ω′

i′j′ can
be reorganized as follows:

Ω
′
i′j′ =

 ∏
AM (i′,j′)\{(i′r,j

′
r)}

[Ck
i
′
kj

′
k

]α
i
′
kβj

′
k

[Cr
i′rj

′
r
]α

j
′
rβi

′
r=

 ∏
AM (i′,j′)\{(i′r,j

′
r)}

[Ck
i
′
kj

′
k

]α
i
′
kβj

′
k

gαj
′
rβi

′
rfr

i
′
rj

′
r
(α,β)

1

=

 ∏
AM (i′,j′)\{(i′r,j

′
r)}

[Ck
i
′
kj

′
k

]α
i
′
kβj

′
k

 g
αj

′
rβi

′
r

[∑2l−r

i=1

∑2l−r

j=1 M
′
ijα

jβi

]
1 (4)

where
2l−k∑
i=1

2l−k∑
j=1

M ′
ijα

jβi represents a bilinear form of the submatrix Mk
i′rj

′
r
. By separating the

above summation based on the updated value M ′
ij=Mij+δ, we obtain

2l−k∑
i=1

2l−k∑
j=1

Mijα
jβi+δαsβt.

Thus, the commitment Cr
i′rj

′
r

can be rearranged as follows:

Cr
i′rj

′
r
= g

∑2l−k

i=1

∑2l−k

j=1 Mijα
jβi+δαsβt

1 = Cr
i′rj

′
r
· gδα

sβt

1 .

By combining equations (4) and (5), we obtain:

Ω′
i′j′ =

∏
Ac(i′,j′)

[
Ck
i′kj

′
k

]αj′kβi′k · gδα
j′r+sβi′r+t

1 = Ωi′j′ · gδα
jβi

1 = Ω
′′
i′j′ .

Here, the right-hand side of (4) corresponds to the output of the UpdProof algorithm
((i, j), (i′, j′),Ωi′j′), and the equality holds true.
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7 Application
We propose the use of MCTproofs in constructing a payment-only stateless cryptocurrency,
aimed at reducing storage costs in blockchain systems like Ethereum. In traditional systems,
validators must maintain the full state of the system, including account balances, which leads
to high storage requirements. By contrast, a stateless cryptocurrency, as proposed by Edrax,
eliminates the need for validators to store balances [8]. In this model, account balances are
represented as a vector, with a commitment generated through a verifiable commitment (VC)
scheme. Each transfer transaction includes the payer’s balance and a proof, which validators
use for validation without needing to store account balances. This approach requires updat-
ing the vector commitment and the balance proofs after each transaction. While previous
works have introduced aggregatable and maintainable VC schemes, they suffer from ineffi-
ciencies, particularly an information transmission problem. MCTproofs offer a solution by
enabling a stateless cryptocurrency that is both aggregatable and maintainable, eliminates
the information transmission problem, and allows more efficient aggregation than existing
systems. This solution introduces a matrix-based structure for organizing account balances
in a stateless cryptocurrency system. The system is initialized with a matrix M set to zero,
and two algorithms, Commit and Prove, are executed to generate the initial commitment and
individual proofs for each account. The matrix commitment is included in every block, while
each account owner maintains their individual proof. When proposing a transaction (TX), the
payer includes their balance and the individual proof in the TX. A block proposer validates
transactions, aggregates the individual proofs, and updates the matrix commitment using the
Verify, AggProof, and UpdCommit algorithms, respectively. The proposed block includes the
valid TXs, the aggregated proof (instead of individual proofs), and the new commitment. Val-
idators then verify the aggregated proof with the Verify algorithm and the new commitment
by running UpdCommit. Once the block is confirmed by most validators, individual proofs
are updated with the UpdProof algorithm. This method reduces storage requirements while
ensuring secure and efficient transaction validation in the stateless system.

8 Complexity and Efficiency
The schemes presented in this paper primarily focus on square matrices of dimension n = 2l. In
this section, we evaluate the computational complexity and efficiency of the proposed scheme
and compare it with Matproofs and Hyperproofs. In Matproofs, commitments are generated
for a matrix Mm×n, with proofs provided for an arbitrary position (i, j). In Hyperproofs, the
commitment is generated for a vector of size n, with proofs available for an arbitrary position
i. Our scheme specifically considers the case where m = n and employs a novel approach. As
a result, the number of positions in M is equal to n2. As previously noted, PM represents a
perfect nested window partition for M , where the number of its elements, according to Def. 2,
is computed as follows:

| PM |=| P0
M | + · · ·+ | P l

M |= 1 + · · ·+ 4l =
4l − 1

3
.

Therefore, the number of elements in AM is also (4l − 1)/3. The time complexity and com-
putational cost of the MCTproofs scheme are analyzed in the following discussion.

• Pubic Parameters: MCTproofs uses trees Tpp1 and Tpp2 to commit to matrix M and
its elements and submatrices. Additionally, the generation of proofs, proving keys, and
verification keys is based on these trees. To construct Tpp1 as shown in Example 4, and
to generalize it for an arbitrary n = 2l, the number of elements that must be computed
in G1 is
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| Tpp1 |= n2(1 +
1

4
+ · · ·+ 1

4l
) ≈ 4

3
n2.

Thus, constructing Tpp2 requires 4
3n

2 elements in G2. Consequently, both Tpp1 and Tpp2
are O(n2)-time trees. If the matrix M is represented as a vector of size n2, Hyperproofs
necessitates the generation of 4n2 − 1 public parameters in G1. The total number of
elements in the public parameter sets pp1 and pp2 is 2n2 + n and 2n + 2 in G1 and
G2, respectively. From this perspective, our scheme demonstrates greater efficiency and
competitiveness compared to Hyperproofs.
• Proof Size: For each position (i, j) ∈ [n] × [n], the Prove algorithm generates Ωij ,

consisting of a single element in G1. The Commit algorithm produces 4
3n

2 elements in
G1, which act as commitments to the elements of PM . Compared to MatProofs, the
Prove algorithm in our scheme reduces the number of generated elements to 1. However,
the number of elements produced by the Commit algorithm scales with n, which affects
its conciseness. In MCTproofs, the Aggproof algorithm generates a fixed number of 3
elements in G1, whereas in Matproofs, the number of elements generated by Aggproof
in G1 is |S̄|+ 2, depending on |S|. As a result, the Aggproof algorithm in our scheme
has a constant size.

• Time Complexity: The MCTproofs scheme inherits certain features from the Mat-
proofs scheme to compute the time complexity of its algorithms. In both schemes, the
Commit algorithm performs n2 exponentiations to commit a matrix M in G1. In the
MCTproofs scheme, the Commit algorithm generates 4k commitments, denoted as Ck

ikjk
,

for each pair (ik, jk) ∈ AM . Each commitment involves 4l−k exponentiations, implying
that the total computational cost of the Commit algorithm in MCTproofs amounts to
(l + 1)n2 exponentiations in G1. The UpdCommit algorithm in MCTproofs updates all
submatrices containing the element Mij , represented by {Mk

ikjk
| (ik, jk) ∈ AM (i, j)},

when Mij is updated to Mij + δ. This update requires l exponentiations in G1. The
Prove algorithm generates proofs associated with a specific position (i, j) in the ma-
trix M . The computation of Ωi,j is based on the set {Ak

ikjk
| (ik, jk) ∈ Ac

M}, and the
computational cost for generating Ωi,j involves 3l exponentiations in G1. The cost of
generating an individual proof for position (i, j) is 4l + 2l − 1 exponentiations. Overall,
the MCTproofs scheme requires fewer computations compared to Matproofs. In the
UpdProof algorithm of MCTproofs, when Mij is updated to Mij + δ, only one element
of Ωij is affected, requiring a single exponentiation in G1. In contrast, the Matproofs
scheme may require updates to at most two elements in G1. Overall, both schemes sup-
port efficient updates. For any S ⊆ [n]× [n], Aggproof requires |S|+ 2 exponentiations
in G1 to aggregate {Ωij}(i,j)∈S . Specifically, |S| exponentiations are needed for Ω̂, one
exponentiation for CS , and one for ω̂.

8.1 Performance and comparison
We evaluated the computational costs of the Aggproof and Verify algorithms, comparing their
performance under identical parameter settings (|S| and n) as those used in the Matproofs.
This comparison was conducted based on the average performance of these algorithms over
five independent experimental trials. The implementation of MCTproofs was carried out
using Python version 3.1.1, leveraging libraries such as pandas, pypbc, and matplotlib for
computation and visualization. The code was executed in a single-threaded configuration on
an Intel(R) Xeon(R) E-2287G CPU operating at 4.0 GHz, featuring six cores and supported
by 64 GB of memory.
Aggregation Proofs In Matproofs, Aggproof algorithm aggregates individual proofs for
each subset S ⊆ [n] × [n] to generate the proof for M [S]. This process requires |S̄|, |S|,
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Figure 5: Aggregation time of |S| proofs (n = 211)

Figure 6: Verification time of |S| proofs (n = 211)

and |S̄| exponentiations in G1 for ω̄, Ωi, and Ω̂, respectively. In contrast, the Aggproof
algorithm within the MCTproofs requires a total of |S| + 1 exponentiations in G1, with |S|
exponentiations for Ω̂ and one for ω̂. Our computational analysis indicates that, with assumed
|S| and n as used in Matproofs, the Aggproof algorithm achieves an average performance
improvement of approximately 10 times over Matproofs in the best-case scenario (see Fig. 5).

Verification To validate an Aggproof for a subset S with |S| elements in M , Matproofs
requires |S̄|+ 1 exponentiations in G1, |S|+ |S̄| exponentiations in G2, and 2|S̄|+ 3 pairing
computations. In contrast, our proposed scheme requires only 1 exponentiation in G1, 1
exponentiation in G2, and |∆S| + 1 pairings. To evaluate performance, we measured the
computational cost of our scheme for n = 211 and |S| ∈ {22, 23, . . . , 211}, comparing it with
the Verify algorithm in Matproofs. Simulation results demonstrate that, on average, our
scheme is 3 times faster than the Verify algorithm in Matproofs (see Fig. 6).

8.2 Performance in cryptocurrencies
We compare the performance of MCTproofs with Hyperproofs and Matproofs in the context of
payment-only stateless cryptocurrencies. All three schemes including Hyperproofs, Matproofs,
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and MCTproofs are synchronously aggregatable and maintainable. In addition to these prop-
erties, MCTproofs, like Matproofs, is also easily updatable. Unlike Hyperproofs, MCTproofs
offers concise individual proofs, whose sizes remain independent of the committed matrices or
vectors. We consider a matrix of dimension n = 2l in our computations and comparisons. We
conducted a similar comparison with Hyperproofs and Matproofs for values of |S| = 1024 and
l ∈ {11, 12, 13, 14, 15, 16}. The MCTproofs implementation in the UpdCommit algorithm ex-
hibits slower performance compared to standard MCTproofs; however, the difference in speed
is negligible and does not significantly impact overall functionality. The experimental results
demonstrate the improved performance of MCTproofs in the Aggproofs and Verify algorithms,
compared to Matproofs. Furthermore, in all other algorithms, MCTproofs outperforms Hy-
perproofs. Details of the comparison of the performance and the implementation results are
given in Tab. 2.

Table 2: Comparison of the performance between MCTproofs, Matproofs and Hyperproofs.
The blue row indicates the performance improvement of MCTproofs, while the red row high-
lights the decrease in performance relative to the other two schemes.

l = log2 n 11 12 13 14 15 16

Individual
proof size (KiB)

MCTproofs 0.11 0.13 0.14 0.15 0.18 0.19
Matproofs 0.12 0.13 0.14 0.16 0.17 0.2
Hyperproofs 1.03 1.13 1.22 1.31 1.41 1.62

Aggregated
proof size (KiB)

MCTproofs 45.14 46.72 46.86 49.01 49.03 50.01
Matproofs 46.12 47.51 48.09 49.06 49.09 50.03
Hyperproofs 50.63 50.63 50.63 50.63 50.63 50.63

Verify an
individual proof(ml)

MCTproofs 1.85 1.89 2.04 2.14 2.26 2.38
Matproofs 1.82 1.91 2.07 2.13 2.27 2.35
Hyperproofs 4.15 4.31 4.62 4.87 5.12 5.24

Aggregate proofs (s)
MCTproofs < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Matproofs 0.06 0.06 0.07 0.07 0.07 0.08
Hyperproofs 53.51 53.88 56.95 58.26 59.59 60.23

Verify an
aggregate proofs(s)

MCTproofs 0.17 0.18 0.19 0.22 0.23 0.24
Matproofs 0.52 0.55 0.57 0.64 0.68 0.73
Hyperproofs 6.30 6.60 7.29 7.74 8.22 8.86

Update
all proofs(ms)

MCTproofs 249.23 513.31 1023.73 2161.36 4412.59 8448.08
Matproofs 236.85 491.70 966.94 1950.87 3838.04 7709.81
Hyperproofs 1.32 1.37 1.61 2.07 2.24 2.47

Conclusion

We introduced MCTproofs, a novel matrix commitment scheme based on the bilinear form de-
composition of square matrices. This approach offers substantial improvements over existing
schemes, notably achieving at least ten times faster proof aggregation and three times faster
verification compared to Matproofs. By utilizing multiple tree structures, MCTproofs opti-
mizes both proof generation and verification processes, highlighting its efficiency and innova-
tive design. Experimental results demonstrate that MCTproofs not only competes effectively
with Matproofs and Hyperproofs in payment-only stateless cryptocurrencies but also delivers
superior performance, making it a promising advancement in the blockchain technology.
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Appendix: The process of building trees in MCTproofs
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