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Abstract The paper considers the inverse problem of determining the refractive index of optical
media using four-angle Hilbert visualization of phase disturbances. The phase functions for each
projection (Radon data) are reconstructed using the Gauss-Newton iterative algorithm. The refractive
index is determined using the Gerchberg—Papoulis algorithm based on a discrete analog of the central
slice theorem for the four-angle case. The results of numerical modeling are presented.
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1 Introduction

The paper considers the problem of reconstructing the function u(z,y,z) in a cylindrical
domain {22+ 22 < 1, y1 <y < y2} from known values

2 9 )
1o (€,y) .
R R 2
= (Hos[or)(x,9))* + (Hinlor] (2,y))*. (1)

Functions ¢ (zk,y) in each layer y € [y1,y2] are related to the unknown function u(z,y, z)
via Radon integrals
Spk(xkay) = / u(ac,y, Z)dlv (2)
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here r = (z,x), ex = (cos,sinfy), in four directions 0, = Tk, k= 0,...,3.

This problem arises when using the methods of Hilbert optics to reconstruct the parameters
of complex media.

If the phase filter H(w;,wy) is placed in the Fourier plane of the shadow device, then the
function recorded in the experiment (the object image) is set using the direct and inverse
Fourier transform by the following expression

I(a,y) = |F7 [H(we, wy) - 3(weswy))(@, )| = |[FH] * sz, )], (3)

where s(z,y) = a(z, y)e’?®¥) is a signal containing information about the object under study.

Using linear filtering allows visualizing phase distortions, since only the signal intensity
I, = |s|? is recorded in the optical radiation range, and phase information is lost. Hilbert optics
allows solving the phase problem using the visualization method and is a contactless (non-
destructive) method for studying and monitoring the parameters of optical inhomogeneities.
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Optical visualization methods are usually divided into two large classes: the interferomet-
ric and the shadow ones. Interferometric methods are quantitative, since they are based on
measuring the phase difference.

The shadow methods are characterized by the following:

— the inhomogeneity is visualized by introducing a diaphragm, which leads to a change in the
phase or amplitude of a part of the light beam, causing redistribution of brightness in the
image plane;

— the change in brightness is considered in the plane conjugate with the plane of inhomogeneity.

For a long time, the shadow methods, being effective in diagnosing optical inhomogeneities,
allowed obtaining only qualitative information about the object under study. The work [I] of
1966, is one of the first publications, which noted the usefulness of the Hilbert transform in
optical Fourier spectroscopy. Later, in 2003 and 2007, monographs [2], [3] were published, in
which the methods of Hilbert optics are presented in the context of visualizing and measuring
the fields of phase optical density. As a result, the theory of shadow methods was presented
in the form of a compact mathematical apparatus.

Objects that change only the phase of the passing light wave are called optical inho-
mogeneities or phase objects. In the case of scanning with a plane-parallel wave, the field
immediately behind the optical inhomogeneity can be described by function s(z,y) = el P@y)
with the phase function ¢(x,y) carrying information about the properties of the object.

The use of a linear light source in a shadow device in combination with a quadrant phase
Hilbert filter H(wg,wy) = sgn(wy)sgn(wy), in each section y of the phase object provides
one-dimensional Hilbert transform of the optical field s(x,y) with respect to the variable x:

() =+ [ 250 e

At that, the initial data for further processing is the intensity of the recorded signal (the
brightness of the image recorded by a photo or video camera) I[¢](x,y) = |3(z,y)|?, ie.
expression (|1f).

Thus, the inverse problem of Hilbert optics consists in reconstructing the phase function
©(z,y) from the brightness values I[p](z,y) of the hilbertogram, which is recorded in the
experiment. In [4], to calculate the phase function from Hilbert diagnostics data, it was
proposed to use optimization methods, and this allows determining the numerical values of
the phase optical density fields.

If the phase object is illuminated by a plane wave with a wavelength A propagating along
the z axis, then the phase function ¢(x,y) is related to the refractive index n(x,y, z) of the
medium under study by the Radon integral

27T Z//
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where ng is the refractive index of the surrounding medium, and 2’ and z” are the points of
the beam input and output relative to the local structure of the medium under study, i.e. by
expression ([2).

In the case of plane problems, the refractive index of the medium under study is recon-
structed in an elementary manner. For axisymmetric structures, data processing is performed
using the Abel transform [5], [6]. When solving the problem of diagnosing complex structures,
it is necessary to use tomographic methods. At that, for optical tomography, the main prob-
lems are the insufficient number of projections or the small angular range of object diagnostics

7.
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The Gerchberg-Papoulis iterative algorithm [8], [9] is one of the common methods for
solving the problem of reconstructing structures under study in low-angle tomography [10].
It is based on the use of a priori information about the object under study in the spatial
plane and known information about the object in the frequency plane, which is obtained from
Radon data using the central slice theorem.

This paper proposes a method for reconstructing the spatial distribution of the refractive
index of a phase object using data obtained as a result of four-angle Hilbert tomographic
probing, based on the sequential application of the Gauss-Newton and Gerchberg-Papoulis
algorithms. The result of numerical modeling are presented.

The proposed reconstruction method can be used to study the structure of flows and
transport processes in gaseous, liquid and reacting media. Visualization of phase optical
density fields in the study of these physical phenomena is an urgent task [11]-[I3].

2 Reconstruction of the phase function using hilbertograms

In [4], it is proposed to use the Gauss-Newton optimization method to determine the phase
function from hilbertograms and subsequently restore the parameters of the medium. This
method allows one to determine the vector P = (P, ..., Px—1), which minimizes the objective
function N1
FP)=|[F(P)IPP = [an(P) = ba)*.
n=0
The method consists of performing successive approximations P/+!:
Pt =PI — o [JT(P7)J(P)] LT (P?) F(P7),

_ [0anp)|N-LE-L. . . .. .
where J(P) = [W} onep B the Jacobian matrix of the first-order derivatives of function
F(P), JT is the transposed matrix, j is the iteration number, « is the coefficient used to
regulate the optimization step. In [4], numerical examples of this method application are
given for the cases when the phase functions are set by Bernstein polynomials.

The experimental hilbertogram does not have a polynomial dependence. At that, in each
y cross-section, it is defined in the range [—xq, zo]y, beyond which the phase function is equal
to zero, and, most importantly, its values are known on a discrete set of points z,, = —x¢+nd,
where d = 2x¢/N: I[p](xn,y) = I, (n=0,...,N —1).

Therefore, for each cross-section y, the o]l\[[)ielctive function is defined by the expression

2
FP) = IEPIE =3 (I — Tlpp)@ny)?. (1)
n=0
where pp = pp(z,y) is the function depending on parameters P, which models the sought-for
function.
When selecting parameters P for the initial approximation, it is necessary to use the
following properties of the Hilbert filtering operator [3]:

— pseudo-differentiability: the hilbertogram is zero at points z, where %go(x, y) = 0, and has
a maximum brightness at the discontinuity points ¢(z,y) with respect to the variable x;

— quasi-periodicity: if p(z) has an extremum at point z, then when the phase changes by
21 p(z 4+ d) = ¢(x) + 27, an additional extremum appears on the hilbertogram in some
neighborhood of point « + d (but not in it itself!). Also, to determine the boundaries of the
region and the nature of the behavior of the phase function at extremum or inflection points,
it is necessary to use a priori information about the object of study, based on the conditions
of the experiment.

In the case of a discontinuous piecewise smooth phase function, the initial approximation
is chosen to consist of several sections, modeled by a third-order Bernstein polynom (Bezier
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curve). If Pg = (Pgo,...,Péq’g), Pl = (Pgo,...,Pg’?)) (g =1,...,Q) are the components of

the datum vertex vectors of the Bezier curve with number ¢, then the phase function on this
section is set in parametric form

E(t, Pl = (1—t)*Ply+3(1 — )2 P!, +3(1 — t) 1* P, + 3P,
n(t, PY) = (1= )>Pl, +3(1 — t)*tPl, + 3(1 — t) £’ P, + 2Pl
for ¢ € [0,1]. Then

()
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where mg,:z:; are the coordinates along the = axis of the starting and ending points of the

Bezier curve with number g. At that, ac = :U0+1 (q =1,...,Q —1).

By virtue of expression (), in each interval (0 Ty, q) the variable £ = £(t, Pq) therefore
dé = &(t, P)dt. Additionally denoting wp(t, P, y) = ¢5(E(t, PY),y) = n(t, Pf), the integral
operator I[cpp] can be written as

CcoS CoS Q 2
mop]@:,y):l( / (soP(t,p;,y»&(t? Pl + / x@P(tPn’y))g;(t, pgmt)

™ v —&(t Fe) —&(t, P9)
1 [ [sin(ep(t, Pyy) ., oy sin(op(t, PEy) o o\
+7T</0 L ey S LSL

= Heoslopl(@.y) + A5, lopl(@.y).

Thus, in the case of processing hilbertograms, the components of the objective function
in each cross-section y can be written in the form
Iy — Ho(P)
F(P) = : , H,(P) = I[¢p)(zn,y), m=0,..,N—1.

In-1— Hn-1(P)
By calculating the corresponding derivatives of functions I[pp](x,y), the following state-
ment is proved.

Proposition 2.1. The Jacobian matriz for the objective function F(P) is written as

O0Hy L. 0Hy OHy L O0Hgy
oPf, oFrg, oPL, OP%,
J = : : : : )
OHn_3 OHy_1 OHn_, OHn_
8P1 B ol el T
where forn =0,..., l—O .3
0H,, Lgin (ep(t, Pl y))
= 2, Y t, P9, y)), Wi(t) dt
o torlor)(n,0) /0 €l iy (er Py Wi
1
cos (t, P,
2 lprllany) [ PO o pryyiwac at,
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Figure 1: Schematic diagram of a four-angle Hilbert tomograph: radiation source 1, objective 2, slit
diaphragm 3 placed in the front Fourier plane of objective 4, mirrors 5 and 5, 6 and 6’, 7 and 7’,
forming probing beams oriented relative to the optical axis of the shadow device at angles 6, = 7k/4,
objective 8 with a quadrant phase Hilbert filter 9 in the frequency plane, video camera objective 10,
video camera CCD matrix 11.
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Figure 2: Obtaining values of phase functions ¢ (Radon data) in a Hilbert tomograph.

and (WoWy, Wa, W3)(t) = (1 — )3, 3(1 — t)2t, 3(1 — t)t2, t3).

3 Hilbert tomography

The developed optical complex (Fig.1) allows synchronous recording of visualized phase struc-
tures — hilbertograms I[py| — from four angles 0, = Tk, k = 0, ..., 3, for several layers of the
object, with one photo-video camera [14]. After reconstruction from hilbertograms for each
projection of phase functions ¢k (xk,y), to determine the refractive index u(z,y, z) in layer y
from the obtained values, it is proposed to use the Gerchberg-Papoulis method, which is one
of the most effective methods for reconstructing functions from their Radon data, especially
in cases when the number of scanning directions is small or their angular range is limited [7].
The essence of the method is that a priori information about the sought-for function v and its
known projections Zu* is used to create an initial approximation and subsequent correction
in the coordinate and frequency spaces.

Many formulas for inverting the Radon problem are based on the central slice theorem,
which states that the Fourier transform (one-dimensional) of projection Zu” is equal to the
cross-section of the two-dimensional Fourier transform of function w. In the developed Hilbert
tomograph, the mirrors and pixel structure of the photomatrices provide data acquisition in
such a way that the projection values for all selected observation angles are determined at
points that correspond to Radon integrals along the straight lines passing through the nodes
of the sampling grid corresponding to the resolution of photomatrices (Fig. 2).

Therefore, the discrete analogue of the central slice theorem allows obtaining initial data
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in the Fourier plane without preliminary interpolation. In a conventional tomograph, it would
be necessary to perform interpolation or use different photomatrices for different directions.
If U, m,n =0,...,N — 1 are discrete values with a sampling step d = 2/N of function
u(zx,y, z) in cross-section y
N—1N-1

U, = u(, 2) Z Z 0(x — nd, z — md),

m=0 n=0

and the scanning directions are determined by angles 6, = 7k/4 (k =0, ..., 3), then the Radon
data are calculated using the formulas

N—-1 N—-1
:(Zum,())"'azum,]\ffl)a '@ul:( Z um,nw'-) Z um,n7 0)7
m=0 m=0

m—+n=0 m+n=2N—2
N—-1 N-1
3
= ( g U -+ g UN—1n), Zu’ = (0, E Umm - - g Umnn)-
n=0 n=0 m—n=1—N m—n=N-—1

The following statement is true (a discrete analogue of the central slice theorem for the four-
angle tomography).

Proposition 3.1. For the discrete Fourier transform of the values um, n
N—-1 N-—1

27 / /
~ o —i<X (mm/+nn')
Um! n! = E § Unn€ "N )

m=0 n=0

and the discrete Fourier transform of the vector of projection %uF (with dimension Ny)

Nj—1
%’ukn/ = Z %uﬁe YN ,
n=0
the following equalities are satisfied
o = Huly (0 =0,...,N—1), Upn! = B gy (m'=0,...,N—1),

N
0 = B2y (M =0,... . N=1), i Ny = B0y (m/ =1,... N —1).

Proof. Values i, ,» for m’ = 0 are equal

—-1N-1 N—-1 /N-1 N—-1
oy = Z Z U, n€ —ifgnn Z <Z um,n> et R = Z %u%e*i%ﬁ”"l = @n/.
m=0 n=0 n=0 \m=0 n=0
Similarly, for n’ =0
N—-1N-1 N-1
Gt 0 = Z Z um’ne—i%mm’ _ Z %u%e—i%mm’ _ @m
m=0 n=0 m=0
Then, for m' =n’
—1N-1 2N—-2 2N -2
- = Z Zumne 2% (m4n)m’ Z Z umne—z%\?km _ Z %ule_ﬁ"km'.
m=0 n=0 k=0 m+4n=k

Since Zuj, = 0 for k = 2N — 1, then
2N—1 2N-1

_s27 ’ _s2m , —
Upn/ oy = E Ruie iNhm — g Ruie kMt — gpulon.

In the case, where ”’ = N —m/ and m' =1,... N -1
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N—-1N-1 N—-1N-1
ﬂm’,N—m’ — Z Z U € z%v mm/+n(N-m')) _ Z Z ummefi%(mfn)m’
m=0 n=0 m=0 n=0
2N—1
_ Z Z U, ne” sz,rkm Z Z um,ne_i%rk/m/
—N+1m—n=k k'=1 m—n=k'—N

2N—-1 2N—-1 o

= Z %’u Je iR Z %’ui,e_i%kl 21" — o,
k'=1

because Zuj = 0. O

Remark 1. A zero element is added to the Radon data Zu', Bu> to make the dimension of
the vector 2N.

Remark 2. The number of elements in the Radon data is different: the dimension of pro-
jections Bu’, Bu? is N. The projections Zu', B#u> contain 2N elements, whose values are
taken at points x, = @dn. Therefore, to apply the formulas of Proposition 3.1, the data
must be consistent. In the Hilbert tomograph, the recorded data are already comsistent due to
the choice of the geometry of the scanning directions, the use of mirrors and the pizel structure
of the photo matrices!

In this work, when applying the Gerchberg-Papoulis method, the non-negativity and finite-
ness of the sought-for function are used as a priori information:

u(z,y,z) >0; u(z,y,z)=0, 2*+2>>1

These properties define the A, operator acting in the spatial plane.

In the Fourier plane, the values of function @(w) on set M are known from the Radon data:
in the directions along the vectors ef{-, ex = (cosO,sinfy). Thus, if x5, is the characteristic
function of set M, then the following values are known

Uy (w) = xm(w)i(w).
To reconstruct the refractive index function u, the following operations are performed:

1. Using the known Radon data ZuF, the one-dimensional Fourier transforms are calcu-
lated. According to Proposition 3.1, function Ujs is determined, equal to the values of the
two-dimensional Fourier transform of the sought values of function w in the directions corre-
sponding to the projection angles, and equal to zero at the remaining points of the Fourier
plane.

2. The initial approximation ug is determined. The inverse two-dimensional Fourier transform
of Uy is calculated and operator A, is applied: a priori information about the non-negativity
of function u and the finitness of the domain of its definition is entered.

3. The two-dimensional Fourier transform of the initial approximation is performed. Its
values in the directions corresponding to the projection angles are replaced by the Ujs values
calculated in step 1.

4. The inverse two-dimensional Fourier transform of the values obtained in the previous step
is performed, and operator A, is applied to the result.

5. The criterion for the end of the iterative process is checked: the smallness of the value

NoIN-1
9 0 ZO(Ugn n‘“gn n)2
_ m=0n
Aj+1 N—-1N-1
> (Uinn)?

m=0 n=0

As a result, the reconstruction algorithm can be represented as
W = A F Uy, w0/ = A F Unr + (1= xar)ud].
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The Gerchberg-Papoulis algorithm can be represented as iterative transitions from object
evaluation in the spectral plane to its evaluation in the spatial plain, with the introduction
of a priori information about the values of the function and its spectrum in each of domains
during their execution. These transitions are carried out using the discrete Fourier transform
algorithm. In this case, the quality of restoration will depend on the properties of function
u itself and its Fourier transform @. Examples of restoration of various functions by four
projections are given in [14].

4 Numerical modeling

In this section, a numerical example is given to illustrate the operation of the proposed
reconstruction algorithm. The refractive index is modeled by the function

3
u(@,2) = a; e D G
j=1

To calculate hilbertograms from phase functions defined on a discrete set of points, the
Hilbert transform is represented through the imaginary part of the analytical signal. When
approximating the analytic signal, the Fourier transform of the input sequence is calculated,
the Fourier coefficients that correspond to negative frequencies are replaced by zeros, and the
inverse Fourier transform is calculated.

The phase function distributions obtained in each projection and the corresponding hilber-
tograms are shown in Fig. 3. Initial approximations by Bezier curves were constructed taking
into account data on the boundaries of the region, the position and number of extremum
points that determine the sections of function monotonicity and limit the range of its change
in each section.

As a result of applying the Gauss—Newton optimization, the values of phase function with
the following parameters were obtained for each tomographic projection:

— number of iterations jo = 103, j; = 93, jo = 84, j3 = 87;

N-1 1/2
—rms error A = (% > (I — Hn(P))Q)/ 5

“Ag=0,03, A; =0.02, Ay = 0,02, Ag = 0,01:
— maximum deviation ¢g = 0,3, ¢ = 0,26, cg = 0,29, c3 =0, 22.

Using the obtained values, the Gerchberg—Papoulis method was used to reconstruct func-
tion u(x,z). The result of reconstructing the test function is shown in Fig. 4. The recon-
struction of this object was performed using j = 250 iterations and rms reconstruction error
Aj = 13.35%. The result of applying the back projection method with filtering to the values
of Zu” is shown for comparison.

5 Summary and discussion

A method for reconstructing the spatial distribution of the refractive index of the object under
study using data obtained during four-angle Hilbert tomographic probing was developed in
the current research. The structure of the phase components, which is a function of the
refractive index, for each projection (Radon data) is reconstructed using the iterative Gauss—
Newton algorithm by minimizing the root mean square error between the experimental and
model hilbertograms. Further, the initial value of the refractive index is determined using the
Gerchberg—Papoulis algorithm, based on a discrete analogue of the central slice theorem in
the four-angle case. The proposed method will be used to process data obtained during the
experimental studies.
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Figure 3: Distributions of the phase function obtained in each projection and the correspond-
ing hilbertograms.
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Figure 4: Initial function u(z, z) and the result of reconstruction by the Gerchberg-Papoulis method
(mGPu) and the method of back projection with filtering (FBP u).
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