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MULTI-MODAL BREAST CANCER CLASSIFICATION
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Abstract Breast cancer remains a leading cause of cancer mortality among women worldwide. For
this reason, accurate and automated diagnostic tools are required. Mammography is regarded as
the clinical gold standard for screening. However, diagnostic performance is limited by interpretive
variability and time intensive analysis. Therefore, improved computational support is required. In
this study, a novel multi modal deep learning approach is proposed, which jointly uses imaging data
and patient metadata for breast cancer classification. Image features are extracted through a Dual
Attention Vision Transformer named DaViT Tiny. Furthermore, structured clinical metadata, which
include breast density, implant status, biopsy history, and tumor invasiveness, are processed through
a multilayer perceptron. Then, a cross attention fusion module is applied, in which inter modal
representations are aligned and weighted. As a result, complementary relationships between imaging
features and clinical attributes are learned. The network is initialized through transfer learning on
the CheXpert dataset. After that, fine tuning is performed on the RSNA mammography dataset,
which contains more than 8000 labeled cases. The proposed model achieves an accuracy of 95.47, a
sensitivity of 0.9655, and a specificity of 0.9439 on the test set. Consequently, performance exceeds
that of single modality baselines. These results demonstrate that attention based fusion of imaging
data and clinical information improves diagnostic precision and robustness. Hence, a scalable direction
for early breast cancer detection is supported. Moreover, broader application to other medical imaging
tasks is indicated for future research.
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1 Introduction

Breast cancer is diagnosed most frequently among women worldwide. An estimated 2.3 mil-
lion new cases were reported in 2020, which surpassed lung cancer in incidence [1]. Moreover,
it ranks as one of the leading causes of cancer-related deaths. Approximately 685,500 deaths
occurred worldwide in the same year [2]. Incidence of the disease increases in many regions,
including China. Notable upward trends are observed in both urban and rural populations
according to recent cohort studies [3]. Major advances are made in diagnostic and therapeutic
methods. However, early detection is still regarded as the most critical factor for survival out-
comes. Remarkable success is achieved by population-based screening programs. For example,
up to 90% of breast cancer cases are detected at an early stage in some regions [3]. Substantial
survival benefits are associated with early diagnosis. In Malaysia, for instance, the five-year
survival rate reaches approximately 87.5% for Stage I disease, while it drops to 23.3% for
Stage IV disease [4]. These results emphasize the need for ongoing research. Novel diagnostic
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approaches are developed, screening accuracy is improved, and disparities in access to care are
addressed across populations. Mammography is established as the gold standard for breast
cancer screening. However, several challenges are encountered. Interpretation requires much
time and varies among radiologists, which decreases consistency and reliability [5]. Sensitivity
is reduced by 30-48% in dense breast tissue, which is common in younger women. Lesions
are obscured by overlapping structures in these cases [5,6]. Diagnosis is complicated further
by subtle findings such as architectural distortions and microcalcifications. False negatives
contribute to missed cases, while high false-positive rates lead to unnecessary biopsies and
patient distress [7]. Clinically insignificant tumors are overdiagnosed. Effectiveness is limited
additionally by dependence on radiologist expertise [6-8]. The need for automated intelli-
gent systems is thus highlighted. Sensitivity is increased, false positives are decreased, and
consistency in screening is improved by these systems. Medical image analysis is advanced
by recent developments in deep learning, especially in breast cancer detection. Diagnostic
accuracy is enhanced, interpretation time is shortened, and clinical decisions are supported
in mammography through the use of deep learning. Traditional mammographic screening is
limited by lower sensitivity in dense breasts, variability between observers, and frequent false
positives or negatives. Unnecessary biopsies and follow-up procedures that cause anxiety can
result [9,10]. Up to 30% of breast cancers are missed in some studies. This happens because
manual interpretation is difficult and visual evaluation is subjective [9]. These limitations are
addressed by deep learning. Complex representations are learned directly from image data,
which removes the requirement for manual feature selection. Traditional machine learning
methods are surpassed [11,12]. Assistance that is consistent, reproducible, and independent
of fatigue is offered to radiologists when deep learning models are added to computer-aided
detection systems. Diagnostic reliability is improved considerably [10,13]. Adaptability is
shown by deep learning in various imaging modalities, including mammography, ultrasound,
and magnetic resonance imaging. Subtle features such as microcalcifications, architectural
distortions, and mass morphology are identified. Precision and interpretability in diagnosis
are both increased [13]. Stable and reproducible results are produced by validated models.
Biomarkers from images that humans may overlook are extracted, which supports personal-
ized assessments. High-quality diagnostic tools become more accessible and less dependent on
operators through deep learning systems. Consequently, breast cancer detection is expected to
improve, especially in settings with limited resources [9-14]. This study builds on such poten-
tial and presents a multi-modal deep learning model for breast cancer classification. Features
from mammographic images, which are extracted with a Dual Attention Vision Transformer
[15], are combined with structured metadata that include implant presence, breast density,
biopsy history, and tumor invasiveness. A two-stage transfer learning strategy is used in the
model. Pre-training is first performed on the large CheXpert dataset [16]. Fine-tuning is then
conducted on the RSNA Breast Cancer dataset [17], which contains 54,713 mammographic
images along with clinical metadata. Generalization and performance are strengthened by
this approach. Attention mechanisms and metadata fusion are included. Therefore, classifi-
cation accuracy, interpretability, and clinical usefulness are raised. Contributions are made
toward reliable automated tools that will support early breast cancer detection in the future.

2 Methodology

2.1 Overview of the Proposed Framework
A hybrid multi-modal diagnostic model is proposed in this framework. Mammographic im-
age features are integrated with structured patient metadata, which improves breast cancer
detection. A Dual Attention Vision Transformer (DaViT) is employed for image encoding.
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High-resolution spatial and contextual representations are captured from mammograms by
this component. Structured metadata are processed by a multi-layer perceptron (MLP). Items
such as breast density, implant status, biopsy history, and tumor invasiveness are transformed
into latent embeddings. Feature fusion is achieved through a cross-attention module. Visual
and clinical modalities are aligned and combined by this mechanism. Patient-aware and
context-sensitive classification is thus enabled. Therefore, diagnostic performance is expected
to rise in future applications.

2.2 Model Architecture
1) Dual Attention Vision Transformer (DaViT)
Vision Transformers (ViTs) [38] achieve state-of-the-art performance in visual recognition
tasks. Global dependencies are captured through self-attention mechanisms. However, fine-
grained local patterns are modeled with limitations in standard ViTs. Such patterns are
essential in medical imaging, where subtle morphological cues hold diagnostic importance.
This limitation is addressed by DaViT [15]. A dual-attention mechanism is introduced, which
combines spatial and channel-wise attention in each block. Spatial relationships across patches
are captured jointly with semantic dependencies across feature channels by this approach. An
overview of the architecture of DaViT is presented in Figure 1. Therefore, detailed visual
features that support accurate diagnosis are expected to be extracted more effectively in
future medical applications.

In this study, the DaViT-Tiny variant is employed. Accuracy and computational effi-
ciency are balanced by this choice. The standard transformer architecture is followed by the
model. Patch embeddings, convolutional positional encoding, and four hierarchical stages
are included. The input image is divided into non-overlapping patches. These patches are
flattened and linearly projected into a fixed-dimensional embedding space through a 2D con-
volution layer. Spatial locality is preserved in this process. Spatial self-attention, channel
attention, and feed-forward layers are contained in each DaViT block. Dependencies among
image patches are modeled by spatial attention. Therefore, both local and global visual
information is expected to be captured effectively in future diagnostic tasks.

SA(X) = Softmax(
QsK

T
s√

d
)Vs (1)

where Qs, Ks, and Vs are learned projections of the token embeddings, and (d=256) is the
scaling factor. Channel attention captures semantic relationships across feature channels:

CA(X) = Softmax(
QcK

T
c√

N
)Vc (2)

where (N) denotes the number of patches. Together, these mechanisms enable the network
to encode both local and global dependencies, thereby enhancing the discrimination of subtle
breast tissue patterns.

Convolutional positional encoding is applied within each attention block, eliminating the
need for explicit positional embeddings. The network output undergoes average pooling and
linear projection, producing a 256-dimensional visual feature vector per image.
2) Metadata Encoding with MLP Non-imaging features, such as breast density, implant pres-
ence, biopsy history, and tumor invasiveness, are encoded and normalized before processing
through a two-layer MLP. Each layer consists of a linear transformation, batch normalization,
ReLU activation, and dropout regularization. The MLP outputs a 256-dimensional latent rep-
resentation aligned with the DaViT embedding dimension to facilitate effective multi-modal
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Figure 1: Architecture of DaViT-Tiny: a hierarchical vision transformer combining convolu-
tional positional encoding, spatial attention, and channel-wise attention across four sequential
processing blocks. Each block representation is aggregated via average pooling and passed to
a linear head for classification.
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Figure 2: Multi-modal model combining metadata and imaging for breast cancer analysis.
Metadata features are processed via an MLP head, while mammogram images are encoded
using a DaViT model. A cross-attention mechanism fuses both modalities, followed by a
linear layer for final prediction.

fusion. Categorical features are one-hot encoded into five binary columns, explicitly including
a missing-value indicator. Binary variables are encoded as 0 or 1, yielding an eight-variable
input vector. This encoding strategy preserves interpretability and robustness while ensuring
compatibility with deep learning operations. 3) Metadata-Image Fusion via Cross-Attention
To integrate image and metadata features, a cross-attention mechanism is applied. Here, the
metadata vector acts as the query ((Q)) and the DaViT visual features serve as keys ((K))
and values ((V)). This enables the model to selectively attend to image regions most relevant
to each patient’s clinical profile. The fused representation is then passed through a linear head
for binary classification (benign vs. malignant). Compared with static concatenation meth-
ods, cross-attention provides dynamic and learnable fusion, allowing inter-modal interactions
to guide feature weighting adaptively. This results in a richer and context-aware representa-
tion, improving both interpretability and predictive performance. The overall framework is
illustrated in Figure 2.

2.3 Pre-Training and Transfer Learning
To mitigate overfitting and enhance generalization, DaViT was pre-trained on the CheX-
pert dataset [16], which contains over 200,000 labeled chest X-ray images. Despite domain
differences, this dataset provides robust low-level visual priors beneficial for medical image
analysis. The pre-trained model was subsequently fine-tuned on the RSNA Breast Cancer
dataset [17], comprising 54,713 annotated mammography images with associated metadata.
This two-stage transfer learning strategy enables the network to retain generalized represen-
tations from CheXpert while adapting to the specific spatial and textural characteristics of
mammograms. During fine-tuning, all layers were unfrozen, allowing end-to-end optimization
and improved task-specific performance. The proposed pipeline combines transformer-based
spatial-semantic encoding, metadata-aware contextual learning, and cross-modal fusion to
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create a unified diagnostic framework. By leveraging pre-training and transfer learning, the
model achieves improved sensitivity and robustness in breast cancer classification while main-
taining computational efficiency suitable for clinical deployment.

3 Datasets

3.1 CheXpert
The CheXpert dataset, developed by Stanford University, is a large-scale collection of chest
radiographs designed for the development and evaluation of medical imaging algorithms. It
comprises 224,316 radiographic images from 65,240 patients, annotated across 14 thoracic
disease categories, including atelectasis, cardiomegaly, and pleural effusion. The labels were
derived automatically from associated radiology reports using a rule-based natural language
processing system, with uncertain findings explicitly marked to capture interpretive ambiguity.

In this study, CheXpert is utilized for pre-training. Generalized radiographic representa-
tions are learned through this process, which include anatomical structures and pathological
patterns. Extensive scale, heterogeneity, and clinical diversity are offered by CheXpert. For
this reason, an ideal source is provided for initializing transformer-based models. Feature
generalization is enhanced by pre-training on this dataset. Transferability to downstream
tasks is also improved, especially in breast cancer detection and classification with mammo-
graphic images. Attention mechanisms are relied upon heavily by transformer architectures.
Substantial benefits are gained from large-scale pre-training. Both local and global dependen-
cies in medical imaging data are captured more effectively. Therefore, performance in future
diagnostic applications is expected to increase.

3.2 RSNA Mammography
The RSNA Screening Mammography Breast Cancer Detection dataset is released for the
RSNA 2023 Breast Cancer Challenge. More than 100,000 mammographic images are in-
cluded, which are obtained from approximately 39,000 patients. Four standard clinical views
are provided in each mammography exam. These views consist of right cranio-caudal (R-
CC), left cranio-caudal (L-CC), right mediolateral oblique (R-MLO), and left mediolateral
oblique (L-MLO). Labels are assigned to each image. Cancer confirmation within 120 days
of the screening examination is indicated, along with breast-level cancer annotations and
machine-generated regions of interest that highlight suspicious areas. This dataset is used
in the fine-tuning phase of model training. Task-specific and domain-relevant characteristics
are presented for breast cancer detection from screening mammograms. Precise diagnostic
labels are incorporated. Therefore, both classification and localization tasks are supported
by the model, which are essential for clinically reliable AI diagnostic systems. Four repre-
sentative mammographic images from a single patient in the RSNA dataset are illustrated in
Figure 3. These images correspond to the standard clinical views (MLO and CC) for both
breasts. Complementary perspectives are offered by these views. Detailed visualization of
tissue density, breast architecture, and potential abnormalities is thus provided. Each image
is processed independently by the DaViT model during training. Various data augmentation
techniques are applied. Generalization and robustness of the model are enhanced through
these methods. Consequently, performance in future clinical settings is expected to improve.

4 Data Preprocessing
Consistency between imaging and non-imaging modalities is ensured through preprocessing.
Model performance is also maximized by these steps. A series of procedures is applied to
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Figure 3: Mammography views from a single patient in the RSNA Breast Cancer dataset,
shown by view type and breast laterality: Right MLO, Left MLO, Left CC, and Right CC.

the RSNA mammography dataset. Image dimensions are standardized. Intensity values are
normalized. Clinical metadata are processed. Class imbalance is addressed before training.
Therefore, reliable and effective learning is expected in subsequent model development.

4.1 Image Preprocessing
All mammographic images are resized to 224× 224 pixels. This adjustment conforms to the
input requirements of the Dual Attention Vision Transformer (DaViT). Image intensity val-
ues are normalized to the range [0, 1]. Consistent distribution is achieved in this way, and
gradient updates are stabilized during training. Several data augmentation techniques are
applied to the training set. Model generalization is enhanced and overfitting is reduced by
these methods. Random contrast adjustment, random vertical flipping, and random bright-
ness variation are included. Variability observed in real-world imaging conditions is simulated
through these augmentations. Robustness of the model is improved as a result. The ability
to generalize across different mammography systems and patient populations is also strength-
ened. Therefore, reliable performance is expected in diverse clinical settings.

4.2 Metadata Processing
Patient-level metadata are processed in this step. Implant presence, biopsy history, and in-
vasiveness indicators are included. These features are encoded as binary variables (0 or 1).
Breast density is originally recorded as categorical values (A-D) or missing (NaN). One-hot
encoding is applied to this attribute. Five binary columns are created: densityA, densityB,
densityC , densityD, and densityNaN . Categorical distinctions are preserved through this
method. Missing entries are also accounted for explicitly. Model interpretability is improved
as a result. Input consistency is enhanced as well. All metadata are aligned with correspond-
ing image entries. Unique patient identifiers are used for this alignment. Numeric features
are converted to the float32 data type. Compatibility with PyTorch tensors is ensured in this
way. Structural coherence between image and metadata inputs is guaranteed by this prepro-
cessing strategy. Efficient integration is enabled within the multi-modal learning framework.
Therefore, robust multi-modal performance is expected in future diagnostic applications.

4.3 Class Balancing
The original dataset exhibited a pronounced class imbalance, containing only 1,158 cancer-
positive cases among more than 54,000 total samples. To mitigate this issue, an equal number
of non-cancer (negative) samples were randomly selected, yielding a balanced dataset for
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binary classification. This approach minimizes bias during model training and enhances the
system’s sensitivity to cancer detection.

5 Experimental Setup

5.1 Training Details
Model training is performed in a GPU-accelerated Kaggle environment. An NVIDIA Tesla
P100 processor is utilized for this purpose. A total of 100 epochs is used for training. The
batch size is set to 32. The AdamW optimizer is employed. An initial learning rate of 1×10−5

is applied, along with a weight decay of 1×10−2. Overfitting is reduced through these settings.
A hybrid learning rate scheduling strategy is adopted. Stable convergence is facilitated by
this approach. Linear warm-up is combined with cosine annealing in this strategy. The
learning rate is increased linearly from zero to the base rate during the first 20 epochs. The
LambdaLR scheduler is used for this warm-up phase. A cosine annealing schedule is then
applied for the remaining epochs. CosineAnnealingLR is implemented, with a minimum
learning rate of 1 × 10−6 and Tmax set to 10. Effective optimization is achieved as a result.
Therefore, strong generalization and high performance are expected in future deployments.
This combination of warm-up and cosine decay allows for stable early training dynamics and
accelerated convergence in later stages, improving generalization and optimization stability.

5.2 Train-Test Split Strategy
Class imbalance in the RSNA dataset is addressed through a specific strategy. A balanced
subset is created, which comprises 1,158 cancer-positive cases and 1,158 randomly selected
cancer-negative cases. Equal representation of both classes is ensured during training by
this approach. The balanced dataset is then partitioned. Training subset receives 80%,
while testing subset receives 20%. Stratfied sampling is applied in this process. Fair class
distribution is maintained across both sets as a result. Unbiased model evaluation is promoted
consequently. Therefore, reliable assessments are expected in future studies.

5.3 Evaluation Metrics
Model performance is assessed with standard classification metrics. Accuracy, ROC-AUC,
precision, recall, and F1-score are included. Accuracy is calculated as the proportion of cor-
rectly classified instances among all samples. This metric is commonly reported. However,
less information is provided by it for imbalanced datasets. ROC-AUC is defined as the area
under the receiver operating characteristic curve. Discrimination between positive and nega-
tive classes is quantified by this measure. True positive and false positive rates are integrated
across thresholds, which makes it robust for imbalanced classification. Precision is determined
as the proportion of true positives among all predicted positives. Reliability of positive pre-
dictions is indicated through this value. Recall, also known as sensitivity, is computed as
the ratio of correctly identified positive samples to all actual positives. Sensitivity to cancer
detection is reflected by the model in this metric. F1-score is obtained as the harmonic mean
of precision and recall. A balanced measure of performance is provided, which is especially
valuable under skewed class distributions. A comprehensive evaluation of diagnostic reliabil-
ity is offered together by these metrics. Cancer-positive cases are detected effectively, while
false positives are minimized. This capability is regarded as essential for clinical deployment.
Therefore, trustworthy applications in healthcare are anticipated in the future.
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6 Results

The proposed multi-modal deep learning framework demonstrated excellent performance
across all evaluation metrics, confirming its effectiveness in breast cancer detection from
mammographic data. The model achieved a classification accuracy of 95.47% at epoch 87,
indicating that the majority of mammographic images in the balanced test set were correctly
classified. In terms of diagnostic reliability, the model yielded a sensitivity (recall) of 0.9655,
underscoring its strong ability to correctly identify true positive breast cancer case, an essential
requirement for clinical decision support, where false negatives can have serious consequences.
The specificity of 0.9440 further demonstrates the model’s proficiency in correctly distinguish-
ing non-cancerous cases, thereby minimizing false positive outcomes. The model also achieved
a precision of 0.9451, indicating that most positive predictions corresponded to actual cancer
cases. The true positive rate and true negative rate were 0.4828 and 0.4720, respectively,
closely mirroring the balanced class distribution used during training. Furthermore, the false
positive rate (0.0280) and false negative rate (0.0172) remained remarkably low, collectively
highlighting the model’s robustness, reliability, and potential clinical applicability. These find-
ings validate the efficacy of the dual-attention vision transformer and multi-modal metadata
fusion in improving classification performance and diagnostic consistency.

6.1 Comparison with Baseline Methods
As summarized in Table 1, the proposed model consistently outperformed several baseline
and state-of-the-art architectures across all key evaluation metrics. It achieved the highest
overall accuracy (98.49%), sensitivity (100%), specificity (97%), precision (97.08%), and F1-
score (98.51%).

Table 1. Performance comparison of the proposed method with existing deep learning models
on the RSNA Dataset. The metrics include Accuracy, Sensitivity/Recall, Specificity, Preci-
sion, AUC, and F1-Score. Our method outperforms previous approaches across most metrics,
indicating improved classification capability and generalization. The results for all methods
except for our method are reported by Jafari and Karami [18].

Model Accuracy Sensitivity Specificity Precision F-Score AUC
AlexNet 81.00 84.00 88.70 87.00 86.00 82.00
Resnet50 84.00 90.00 90.90 86.00 88.00 89.00
MobileNetSmall 77.00 85.00 NA 81.00 83.00 81.00
ConvNexSmall 79.00 87.00 NA 83.00 85.00 83.00
EfficientNet 86.00 92.00 NA 88.00 90.00 92.00
Concatenation 92.00 96.00 NA 92.00 94.00 96.00
Huynh Method 97.3 85.00 89.00 NA 92.00 83.00
Our method 98.49 100 97.00 97.08 98.51 100

In comparison, traditional convolutional neural networks such as AlexNet and ResNet50,
as well as advanced architectures like EfficientNet, DenseNet, and various ensemble-based
approaches, exhibited lower overall balance between sensitivity and specificity. While some
of these models achieved competitive results in individual metrics, none demonstrated the
comprehensive robustness and consistency achieved by our proposed framework. The supe-
rior performance can be attributed to two key design aspects: (1) Multi-modal integration
of imaging data with structured patient metadata via a dedicated MLP head, which enriches
contextual understanding and enhances discriminative capacity, and (2) Transfer learning
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from the large-scale CheXpert dataset, which provides strong prior feature representations
and improves generalization across medical imaging domains. Collectively, these results sub-
stantiate the advantage of combining transformer-based architectures with multi-modal fusion
strategies, yielding a diagnostic model that is both accurate and clinically reliable for breast
cancer screening applications.

6.2 Ablation Study
To rigorously assess the individual and combined contributions of metadata fusion and transfer
learning, an ablation study was conducted across four model configurations: 1. A complete
multi-modal model incorporating metadata fusion pre-trained on CheXpert. 2. The same
multi-modal model trained without pre-training. 3. A single-modal image-only model trained
without pre-training. 4. The same image-only model trained with pre-training.
The results clearly demonstrate the synergistic benefits of integrating both metadata and
transfer learning. The fully multi-modal pre-trained model achieved the best overall per-
formance, with accuracy of 98.49%, sensitivity of 100%, precision of 97.081%, specificity of
97%, and F1-score of 98.51%. In contrast, removing pre-training led to a notable decline in
performance, accuracy decreased to 91.81%, sensitivity to 90.52%, and F1-score to 91.74%,
highlighting the critical importance of pre-training on the large-scale CheXpert dataset. The
radiographic features learned from CheXpert appear to provide a strong representational foun-
dation, improving generalization to mammographic image patterns. The impact of metadata
fusion was even more pronounced when comparing the multi-modal configurations to their
single-modal counterparts. The image-only model without pre-training exhibited the weakest
performance, achieving 84.91% accuracy, 89.66% sensitivity, 85.62% specificity, and an F1-
score of 80.17%, along with an elevated false-positive rate. Incorporating pre-training into
this single-modal model improved its performance (accuracy: 92.46%, F1-score: 92.58%), yet
it still lagged behind the metadata-augmented variants. These results indicate that, while
transfer learning enhances the model’s capacity for visual feature extraction, metadata fusion
provides complementary clinical context, capturing patient-level factors such as breast den-
sity, implant status, and biopsy history that strengthen diagnostic reliability.

Table 2. Performance comparison of the proposed method and experimental model variants
on the RSNA Dataset.

Model variant Accuracy Sensitivity Specificity Precision F-Score
Single modal without
pretraining

84.91 89.66 80.17 81.91 85.62

Single modal with pre-
training

92.46 93.10 91.81 91.91 92.58

Multi-modal without
pretraining

91.81 90.52 93.10 92.92 91.74

Multi-modal with pre-
training

98.49 100 97.00 97.08 98.51

In summary, the ablation study underscores the dual contribution of both techniques:
transfer learning enhances visual representation learning and generalization across imaging
domains, while multi-modal metadata fusion augments contextual understanding and clinical
interpretability. Together, these mechanisms produce a more robust, accurate, and clinically
relevant diagnostic model for breast cancer detection.
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7 Discussion

This study introduces a multi modal deep learning approach for breast cancer detection from
mammographic images. A Dual Attention Vision Transformer is integrated with a metadata
augmented Multi Layer Perceptron. Visual features and patient level clinical information are
jointly used. The clinical information consists of breast density, implant status, and biopsy
history. As a result, complementary diagnostic patterns are captured, which improve clas-
sification accuracy. Transfer learning from the CheXpert dataset is applied. Pre learned
radiographic representations are therefore exploited. Consequently, generalization capability
is improved and robust feature extraction is achieved. Experimental evaluation on the RSNA
mammography dataset confirms that the proposed approach achieves superior performance.
Accuracy, sensitivity, specificity, and F1 score are improved when compared with existing
deep learning and ensemble based methods. The ablation study results further show that
metadata fusion and transfer learning are essential components. Metadata fusion adds clini-
cally relevant contextual information, which leads to more informed predictions. In addition,
pre training improves the extraction of radiologically meaningful features. Together, these
components improve prediction reliability and model interpretability. Beyond numerical re-
sults, the findings highlight the increasing relevance of multi modal learning and transformer
based architectures in medical imaging. By the use of contextual data, closer alignment with
clinical decision making processes is achieved. Therefore, a foundation for interpretable and
clinically applicable AI assisted breast cancer screening is established.

Conclusion

In summary, a multi modal deep learning system for breast cancer detection is presented. The
system combines the representational capacity of vision transformers with contextual infor-
mation from patient metadata. As a result, visual encoding based on DaViT, cross attention
fusion, and transfer learning from the CheXpert dataset are integrated. High diagnostic ac-
curacy and robust generalization are therefore achieved. The results of this study validate
the effectiveness of combining imaging and non imaging modalities, which leads to more re-
liable cancer classification. Moreover, the strong performance indicates practical potential
for integration into computer aided diagnostic systems. Consequently, more consistent and
efficient decision support is provided for radiologists. In future work, extension to multi view
mammography is considered. In addition, other modalities, e.g., ultrasound and MRI, are
included. Domain adaptation and expanded metadata features, i.e., genetic and familial fac-
tors, are also examined to enhance clinical applicability. Furthermore, explainable artificial
intelligence methods and real time deployment strategies are addressed. For this reason, the
gap between deep learning research and routine clinical practice is reduced.
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