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Abstract In this paper, an analysis of turbulence models created using machine learning
methods is performed for a wide range of fluid flow parameters at low Prandtl numbers in
a channel with complex shape. Three different modern machine learning methods are used
for the analysis. A developed turbulent flow in the peripheral channel fragment with three
round longitudinal rods is considered for Reynolds number Re = 4270 at low Prandt]l numbers
Pr = 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.71 encountered in heat-released elements where liquid
metals and gas mixtures are used as coolant. The importance of input features of turbulent
scalar flux models is analyzed for the entire data set using the permutation feature importance
assessment and a method based on Shapley values. The importance of using the local Reynolds
number invariant for accurate prediction of the transverse turbulent scalar flux components
is demonstrated. It is found that the mutual correlation of some invariants within groups of
the selected 15 input features generally preserves the significance level of the most important
invariants within each of the groups for the universally interpretable machine learning model
for the turbulent scalar flux modeling. Using the permutation method, it was found that the
most important basis tensor for estimating the transverse components of the turbulent scalar
flux in the tensor basis neural network model is the tensor obtained by the inner product of
the deformation tensor with itself S?, and the least important is the tensor SR + RS.
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1 Introduction

Turbulent flows are complex phenomena characterized by irregular and chaotic fluctua-
tions in velocity, pressure, and other properties of a fluid. These fluctuations occur for a
wide range of length and time scales, making it difficult to accurately predict and model
turbulent flows. Therefore, there is an urgent need in industry to develop efficient and
reliable numerical simulation methods based on various solutions of the Navier—Stokes
equations for velocity and pressure fields, as well as those for the equation for a scalar
field (temperature or concentration).

Direct numerical simulation (DNS) is the most accurate method, but it requires very
high resolution and is computationally expensive, as is the large-eddy simulation (LES)
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method, which explicitly resolves large- and medium-scale turbulent structures. For
example, simulating the flow around a car or an airplane using DNS and LES will only
be possible in 2080 and 2045, respectively [I]. Therefore, Reynolds-averaged Navier—
Stokes (RANS) models are the most attractive approach in engineering applications
due to their computational efficiency now and in the foreseeable future [2].

However, due to the low accuracy of the RANS approach, the task to improve
existing turbulence models remains relevant, including the model development with
the help of machine learning (ML) algorithms [3]. For this purpose, available high-
fidelity data sets for canonical fluid flows obtained from measurements or numerical
simulations using the eddy-resolving DNS and LES methods are used.

Machine learning methods have been introduced into computational fluid dynamics
because they can provide additional benefits in analyzing the large number of available
numerical and experimental data sets [4]. Some such ML approaches include the mul-
tidimensional gene expression programming (MGEP) based on symbolic regression [5]
and gradient descent methods to optimize the weights of neural network architectures
to estimate adjustments to baseline models. Several neural network architectures have
been developed for calibrating turbulence models, namely: TBNN [6], UIML [7], EVNN
with apNN [8], CNN with SVM [9]. Some of the trained models [8, 9] can be compared
to a system called a black-box model due to their complex and intricate structure and
computations that are difficult to interpret. In such a model, the resulting turbulence
closure terms are calculated from a redundant number of input flow features through
a sequence of connected neurons, where the number of initial connections is greater
than the number of ultimately significant output predictions. Other models are par-
tially explainable [6], [7] due to the special design of the computational graph of the
models. This special form arises from physical restrictions on the Galilean invariance
of the closure terms [10]. On the other hand, improving the explainability of a model
will make it simpler, and the model may ultimately lose its ability to make accurate
predictions [1T].

Another approach to explainability analysis is to use model-independent methods,
which are local approaches that can explain even individual predictions, such as the
LIME method [12] based on local surrogate models and SHAP [13] based on Shapley
values. One of the difficulties in interpreting black box models is the correlation of
different features [14], which can lead to unrealistic feature importance values when
interpreting methods.

This paper focuses on the explainability and interpretation of the above-mentioned
models obtained using ML methods on the data for a peripheral fragment of a channel
with three longitudinal rods. Such configurations are encountered in rod bundles in
nuclear reactors, where liquid metals and gas mixtures are used as coolants. The
content of the paper below is structured as follows. Section 2 describes the calculated
flow geometry configuration and describes the numerical experiments performed using
the DNS method to obtain high-fidelity data that serve as a reference for improving
the RANS approximations. Section 3 describes the machine learning approaches that
are used to improve the baseline RANS turbulence models used to predict the scalar
field. Section 4 presents the methods for analyzing the importance of input features
for the machine learning models obtained. Section 5 summarizes the main results of
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the model interpretation study.

2 DNS framework

First, numerical studies were carried out using DNS for a model of a peripheral fragment
of a channel with a bundle of rods with a Reynolds number of Re = U,D;, /v = 4270,
where U, is the bulk velocity, v is the kinematic molecular viscosity and D) is the
hydraulic diameter. The preliminary results of velocity field predictions using DNS
with a comparison of flow behavior in the peripheral and internal fragments of the
channel can be found in [15]. The Nek5000 computational code is used to solve the
Navier—Stokes equations of an incompressible fluid using a third-order time integration
scheme and spatial discretization based on the spectral element method [16]. In DNS
calculations, a three-dimensional problem is considered, as shown in Fig. [I| with no-slip
conditions on the walls limiting the flow in sections (y, z). Periodic boundary conditions
are applied along the x axis, which allows subsequent averaging of data both over
time ¢t and along the longitudinal direction x, providing two-dimensional fields of mean
velocity u;, mean pressure p, Reynolds stresses M in the (y, z) plane. In the simulation
a total of N, = 17.92 x 10° grid points are used, which meets the DNS criteria for
the Reynolds number under consideration Re = U,Dy/v = 4270. The number of
points in streamwise direction was N, = 400, in crosswise directions N, ~ 500 and
N, = 90 correspondingly. The number of spectral elements with one hundred of points
in each element is shown in Fig. [1| for the cross section yz in the upper half of the DNS
computation domain. The integration period is taken to be T' = 100D}, /Uy, which is
sufficient to collect stable statistics. A posteriori, the Kolmogorov scale was estimated
from the obtained DNS data using the following expression: n = (v3/€)%?° where
v is the kinematic viscosity, € is the viscous rate of dissipation of turbulent kinetic
energy. The Kolmogorov microscale is = 3.6 x 10~° m, which in order of magnitude
corresponds to the minimum cell size A = 6.3 x 107® m for DNS calculation.

Figure 1: Scheme of DNS calculation geometry and computational grid.

DNS calculations of the passive scalar field ¢ (temperature) were performed in the
peripheral fragment of the rod bundle channel [I8] with Re = 4270 chosen and at
seven different Prandtl numbers Pr = 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.71 to provide
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training data for the modified model of the turbulent scalar flux (TSF) vector using
ML methods. At the left boundary (see Fig. , the smaller value of the scalar ¢ = 0
is set, while the right boundary, which includes fragments of three rods, has the larger
value ¢ = 1. As for the velocity field, periodic boundary conditions are applied to
the scalar ¢ along the flow direction, which produces a two-dimensional field ¢(y, z)
after averaging over t and x. Preliminary results of the simulations of the mean scalar
field ¢ and those of determining the components of the turbulent scalar flux vector
W using DNS in the peripheral fragment of the channel, as well as various RANS
approximations for wj¢ are presented in [I§].

3 Methods to develop modified RANS models for heat prob-
lems using ML

In modern turbulence models, the turbulent scalar flow approximation to close the
equation for the mean scalar ¢ can be formulated as follows [17]:
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Here, the factors D;; and Dj; or their correction with the factor D;; to the gradient
turbulent diffusion hypothesis (GDH), where Pr; = 0.85, represent a parametric term
in the form of a linear combination of basis tensors, which is optimized using DNS
data. The tensor basis Ti(f) is obtained explicitly from the dimensionless deformation
and rotation tensors s;; and r;; [6l [L7]:
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The expressions for the scalar invariants I,,, (m = 1,...,15) taken from the previous
study [I7] also contain the mean scalar gradient and other quantities:
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where Reg = VEW, /v corresponds to the local Reynolds number based on the distance
to the nearest wall Wy, and k is the turbulent kinetic energy.

Using the MGEP evolutionary algorithm as a basis, it is possible to build explicit
algebraic expressions for approximating the turbulent scalar flux based on high-fidelity
DNS data. Two of the simple expressions found with the minimal TSF estimation error
have contained the I, feature in the expression for Dj; = Dj;(114) [18]:

77 = (027 + 0400, 2= . (5)
! Pr; Ox;
—ud = (0.27 + 04014 + 0.2511114)% g;i

Another approach for estimating the TSF vector, using the UIML-s neural network
model, has been proposed by the authors in the same paper [I§|, where the results of
prediction of the mean scalar field using the classical GDH approximation, the model
obtained using the MGEP symbolic regression, two neural network models, TBNN-s
from [I7] and its modification using UIML-s have been compared. The main differences
between the UIML-s model and TBNN-s were the implicit generation of a tensor basis
from the tensors s;; and r;; during model training and the introduction of residual
connections for better passage of the gradient into the internal layers of the model
during training.

When training closure models, all input data with invariants and basis tensors
are taken from the corresponding RANS calculations [I8] in the upper half of the
domain illustrated in Fig. [I| and the high-fidelity output data that the model should
approximate are taken from the concurrent DNS calculations [15] [18].

4 Methods to interpret obtained machine learning models

In this paper, two methods are used to analyze the importance of invariants fed to
a turbulent scalar (heat or mass) flux model. Both methods are independent of the
type of machine learning models, i.e. they can be used equally with models of different
types, be it an ensemble of decision trees, a neural network structure, or, for example, a
model based on symbolic expressions. However, the first permutation method to assess
the importance of PFI (Permutation Feature Importance [19]) is global and estimates
the behavior of the model on average over the entire data set. The second method,
coming from the theory of cooperative games in economics, based on Shapley values and
called SHAP (SHapley Additive exPlanations [13]), has the ability to explain individual
predictions made by the model.

The basic idea of the permutation method is simple and consists of estimating the
increase in the prediction error of the model f on the permutation of the order of
observations of invariants in the feature matrix X, relative to the original error on
the original input X:

FI =Ly, (X)) = L7y, f(Xperm)), (6)

where L(y, f) is the error measure. The more important the input invariant, the higher
the F'I value due to the increase in the error on the feature matrix with permutation
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of observations for this invariant. It is argued that if the presence of an invariant in the
input features does not matter, then the model error will not change when its values
are permuted and the F'I value will be zero. In practice, the resulting values F'I are
normalized over the sum of the importance values for all input features for a convenient
presentation of these values in fractions FI; = FI, /> FI;. An inconvenience in the
permutation method is the need, in addition to the type of model analyzed f, to know
the exact values of the model y in the input data, so the analysis is usually carried out
on the training data set.

A more flexible method to interpret machine learning models is the SHAP method,
since it allows interpreting the work of the model on each specific example of data (%,
consisting of the current set of features M. It is based on assessing the contribution of
each i-th feature (here, of the Shapley value) ¢; into the model value, so that additivity
is satisfied:

M
F@) = g0+ ¢uai, (7)
=1

where 2’ is a simplified (binary) set of features of the original model f(z) with a
mapping that transforms the simplified vector of zeros and ones into the original feature
vector & = h,(z'), so that z(© = h,([1,1,...,1]), E[z] = h.([0,0,...,0]) and ¢, =
f(E[z]) is the base value of the model in the absence of all features. If the corresponding
x, = 0, it means that this feature is absent from the model, that is, ¢; = 0. In such
a case, it can either be physically absent with retraining of the model in the data set
without it, or replaced with a constant value of feature ¢ equal to the mathematical
expectation in the data set considered E|x;]. We can introduce the notations f,(z') =
f(hi(2") and 2’ \ i (which means setting z; = 0 in the simplified vector z’), then the
classical expression for the contribution of each feature in the SHAP method will be
as follows:

S |2'[! (M \Z’! — D = e i), (8)
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where |2/| is the number of non-zero components in the vector z’.

In practice, disabling the ¢-th feature in the original model means retraining the
model on all subsets of the feature sets without ¢. This is time-consuming, so the values
of ¢; are usually estimated using simplified expressions. It is possible to calculate the
approximate Shapley value in the expression much faster if you do not count all the
elements of the sum (§)), but only some of them, which have large weights. For this, the
weights are used as probabilities when sampling the elements of the sum (approximation
by sampling). However, even in this case, it is necessary to calculate the conditional
mathematical expectations, which, in the case of statistical independence of the features
and linearity of the model in the neighborhood of z(?), can be approximated by the
value averaged over the data sample E[f,(%'|z] = 0)] = f.(E[#'|z} = 0]). In the Kernel
SHAP estimation method used in this paper, the local estimation of the linear model
g explaining the target model f is performed by the least squares method similar to
the LIME method [12], where the original analyzed model f is locally approximated
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by an unknown linear model g near z(°) using regression:

N

> wf (@) = gz + Q(g) — min, (9)

g
=1

where the weights of examples w® from the training set of length N as a measure of
their closeness to 2(9) are chosen empirically, and Q(g) is a penalty for the complexity
of the approximating function, for example, the number of non-zero weights in a linear
model. Once the approximating linear model g is obtained, analyzing the importance
of the features is easy. When switching from LIME to the Kernel SHAP method, the
corresponding weights (kernel) in the least squares method are written as follows [13]:

(M —1) 2") — g(2)]?> = min. 10
S G ) R (10)

The Kernel SHAP method can be applied to any type of ML model, but there
are variations with simplified calculations for various specific types of models, such as
Deep SHAP neural networks, Tree SHAP ensemble-based models. The limitation of
designated SHAP methods for reliable feature importance assessment is their statistical
independence, which always requires additional verification.

5 Results

The two methods of model interpretation described in the previous section are used to
assess the importance of input invariants in the approximations of the turbulent scalar
(heat) flux components formulated in [I8]. Fig. [2]shows the diagrams of the importance
of input features in the MGEP expression for the TSF vector obtained by the SHAP
method. It is evident that the most important feature with a non-zero weight value for
this approach is I14. These results are in complete agreement with simple and human-
readable expressions obtained using the MGEP algorithm, where the invariant 14
is included as an input feature. This trivial example is given here to demonstrate the
adequacy of the results obtained by the SHAP method.

Fig. [3| shows the feature importance diagrams for neural network models for two
transverse components of the TSF vector, v/¢’ and w’c’, obtained by the SHAP method.
The most important features are seen to be Ii4, I15, I, I, for TBNN-s and 5, I5 for
UIML-s, if we restrict ourselves to the average Shapley value as half of the maximum.
Invariants that contain scalar gradient \Tfalues have a reduced significance in models,
and the least significant are [ = (%) rikrkjaa—; for TBNN-s and I; = (VE)T Ve for
UIML-s.

If we look at the feature importance assessment using the permutation PFI method,
the results of which are shown in Figs. [d and [5], we see a similar pattern with the most
important invariants I;4 and [;5 among the dominant ones. We note a distinctive
feature of the PFI method: the presence of negative values of relative importance FI,
at the bottom of Figs. |4/ and [5| for the component v'¢/; which are formed due to the
decrease in the absolute error of the model when permuting observations, for example,
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Figure 2: Feature importance in terms of mean SHAP values for the MGEP models
over all features for all TSF components.

na 15
15 5
12 1na
1a 3
in 13
3 n
n3 1o
5 18
i1 112
112 i1
18 19
16 )
17 16
19 14
1o —— 7 m—wc
| __I7e . vc
000000 0.00005 0.00010  0.00015 0.00020 0.00025  0.00030  0.00035 000000 000005 0.00010 0.00015 000020 0.00025 0.00030  0.00035
mean(]SHAP value|) (average impact on model output magnitude) mean(|SHAP value|) (average impact on model output magnitude)

Figure 3: Feature importance in terms of mean SHAP values for TBNN-s (left) and
UIML-s (right) models over all features for two cross-stream TSF components.

for invariants I1g, I11, I3, I5, and I;. This effect will be studied in future papers. Apart
from this, the results of the simple permutation analysis method are consistent with
the results of the SHAP method.

The influence of the correlation of the input invariants on the result of the analysis
of the importance of specific features in the model is then evaluated. For this purpose,
the matrix of Pearson correlation coefficients of features with each other is calculated
(see Fig. @, on the right), where invariants are grouped using the Ward connection
into clusters by mutual correlation with each other, which can be observed in the
form of square blocks of increased correlation with values close to 1 and -1 along the
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Figure 4: Feature importance in terms of relative PFI values for TBNN-s model and
TSF components, v'c’ (left) and w'c’ (right).
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Figure 5: Feature importance in terms of relative PFI values for UIML-s model and
TSF components, v/’ (left) and w'c’ (right).

diagonal of the matrix. Fig. [0, on the left, shows a dendrogram showing the hierarchy
of correlation coefficients for features for the considered matrix. Using this hierarchy;,
five clusters with features dependent on each other within a cluster at the 0.5 level for
the dendrogram are selected:

_\T _
1. (I3, Ig, I10, I11) with a typical representative I3 = (%) rikskmmrmj%;
J [3

2. (I1y, I7, I15) with a representative I, = Rey;
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3. (Is, Iy, I;) with a representative I; = tr(s;,Sk;);
N\T _
4. (I3, I;3) with a representative Iy = (a‘%) riksijaa—;;

5. (Is, I3, I1) with a representative Iy = t7(SinSmnSnk)-

Invariants representing the corresponding clusters have been selected based on the
highest importance values from the previous analysis in Fig.[3] The SHAP analysis was
repeated for the neural network models re-trained with a limited set of features with
the specified representatives from each cluster. For the first TBNN-s model (see Fig. m),
the invariant with the highest importance value changed from Iy4 to I;, so cluster 2
of correlated features after removing statistically dependent values gave preference to
cluster 3 including invariants I, I, I3 and moved down to the second position.
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Figure 6: Dendrogram for the correlation distance between different features clustered
using the Ward’s linkage (left) and the correlation heatmap (right).
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Figure 7: Feature importance in terms of mean SHAP values for TBNN-s model over
five selected features according to the clustering for TSF components, v'¢/ and w'c’.

However, if we look at the analysis of the simplified UIML-s model with a reduced
number of dependent features (see Fig. , the picture does not change much, and
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cluster 2 remains decisive for the output values of the w’¢’ component of the TSF
vector. Here we can conclude that the correlation of features for the new UIML-s
model has little effect on the result of assessing their significance in a complex model
using the SHAP method based on the Kernel SHAP algorithm. The application of the
permutation PFI method for simplified neural network models to assess the turbulent
scalar flux with a reduced number of invariants showed similar results to those of the
SHAP method, so they are not presented here.

+
e [l

0 1 2 3 4 5 6 7 8 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
mean(|SHAP value|) (average impact on model output magnitude) 1e-6 mean(|SHAP value]) (average impact on model output magnitude)

Figure 8: Feature importance in terms of mean SHAP values for UIML-s model over
five selected features according to the clustering for TSF components, v'¢’ (left) and
w'c (right).

In addition, the importance analysis of the input basis tensors in the TBNN-s model
was performed using the PFI method, which allows us to group any subset of the input
values of the analyzed model and permute the examples for the group as for a single
object, for example, to group the values of the tensor components. The result of such
an analysis is shown in Fig. 9| where the relative values of FI among the tensors are
shown for the TBNN-s model, which is based on six basis tensors. Here, as can be seen,
the tensor Ty = s;,5y; is decisive in calculating the values of the component w'd. The
zero values of the contribution of the tensor 77 = I, identically equal to the identity
matrix, can be explained by the peculiarity of the PFI method. The point is that in this
case, when permuting constants in data examples, the matrix of input features does
not change its value, and the inverse of the error in the matrix of features X, in the
formula (@ will be identically equal to the inverse of the error on the original matrix
of features X. Therefore, other methods must be used to analyze the influence of
constant features. The permutation of examples in a group associated with the values
of the tensor components Ti(j3) = r;; again leads to an improvement in the accuracy
of the model, as in the case described above with some invariants. At the moment,
the question remains why optimization of the parameters of the TBNN-s model by
the stochastic gradient descent algorithm, for example, does not automatically reduce
the contribution of the tensor TZ(]3 during training. Perhaps this is due to the balance
of the loss function of the model by the second component v'¢’. The confirmed basis
tensor on which the turbulent scalar flux depends weakly is 7}(]-6).

The advantage of the UIML-s model over TBNN-s is that it is fed only two initial
tensors s;; and r;; at the input, and the basis tensors are automatically output during
model training. Therefore, the analysis of the importance of the input tensors for the
UIML-s model does not make much sense, although, for testing purposes, it was also
carried out and the contribution of the tensor 7;; = 0.24 and s;; = 0.76, which is
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Figure 9: Importance of TBNN-s tensor basis elements for predictions of the TSF
component w’c’ in terms of relative PFI values.

somewhat at odds with the result for the TBNN-s model presented above.

Thus, the development of new RANS-ML models for heat and mass transfer prob-
lems can be organized as follows: prepare a data set for a given flow geometry with
a redundant set of invariants, train the UIML-s model on this set of features, analyze
the importance of the contribution of each feature using the PFI or SHAP methods on
a complex model. At the final stage, obtain a simplified expression of the model using
the MGEP method, convenient for modifying the RANS solver of the CFD code on
a limited set of invariants obtained from the result of interpreting the contribution of
each feature.

6 Conclusion

In this paper, we perform a feature importance analysis to improve the understanding
of turbulent scalar (heat or mass) flux approximations obtained using MGEP, TBNN-s,
and UIML-s machine learning methods for the scalar field in a turbulent channel flow
with complex geometry simulating the peripheral fragment of a rod bundle channel.
Two methods for interpreting and explaining the machine learning models obtained are
considered. The first method, PFI, estimates the model behavior on average throughout
the data set. The second method, SHAP, allows us to explain the individual predictions
made by the model. The importance of using the Re, invariant for predicting the TSF
vector in the geometry considered is shown. The results are confirmed by the SHAP
and PFI methods for all machine learning models. The effect of the correlation of
input invariants on the result of the feature importance analysis by the SHAP and PFI
methods in neural network models to estimate the TSF vector is assessed. Based on
the conducted studies, a method to organize the process of developing interpretable
turbulence models for heat and mass transfer problems using machine learning methods
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is proposed.
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