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MODELLING CURRICULA WITH GNN AND LSTM
FOR LINK AND SEQUENCE PREDICTION
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Abstract A mathematical model of a university curriculum is proposed. A prerequisite structure
is represented as a directed graph, while course order is represented as a sequence. Courses are
represented by embeddings that are obtained from syllabus texts and metadata. These vectors are
refined by a two layer graph convolutional network (GCN), which is used for link prediction of missing
or potentially incorrect prerequisite relations. Course order is represented by a Long Short Term
Memory (LSTM) network, which predicts the next course from a fixed window of previously completed
courses. An experiment on two bachelor programmes, which are Information Systems and Electric
Power Engineering, is reported for 92 courses and 90 explicit prerequisite links. Acceptable quality
is obtained for link prediction and sequence reconstruction. Compact tables of recommended new
prerequisites are produced for both programmes, which are suitable for curriculum revision decisions.
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1 Introduction

In university practice, a curriculum is used for education planning. Course sets, course or-
der, and prerequisite relations are specified. Curriculum coherence is linked with competence
formation and graduate outcomes, which are assessed by employers and accreditation bodies
[1]. Curricula are revised due to technological change and labour market shifts [2]. Inter-
disciplinary programmes are expanded, e.g., information technology and electric power engi-
neering. For this reason, a coherent progression is required from basic courses to advanced
courses, while balance is maintained between fundamental training and applied competences.
Traditionally, curriculum design is completed by expert committees. However, data volume is
increased, which includes syllabi, learning outcomes, enrolment statistics, and performance in-
dicators. As a result, manual analysis is limited. Therefore, educational data mining methods
are used more often in curriculum analysis [3]. Also, digital platforms are used for univer-
sity development tasks, in which competence databases are formed and expert evaluation is
supported. Deep learning research in education is described in three strands. First, high
accuracy is reported for student outcome prediction, which is obtained by models such as
convolutional neural networks, recurrent networks, and deep feedforward networks [4]. This
strand includes sequence tasks, in which learning behaviour patterns are inferred and next
events are predicted. Also, link prediction in networks is reported as an analogous task, which
informs relation inference problems in structured educational data [5, 6]. Second, early risk
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detection is supported, which enables intervention and personalised learning, because indi-
vidual learning needs are analysed. Third, constraints are reported, in which data volume,
representativeness, interpretability, and scalability are described as limitations. Furthermore,
hybrid modelling is proposed, in which deep learning is combined with traditional methods,
while heterogeneous data integration is targeted.

A research gap is identified because many studies focus on student performance prediction.
Explicit modelling of curricular structures is addressed less often, in which prerequisite links
and learning sequences are inferred from structured representations. As a result, automated
inference of missing prerequisite relations is limited for curriculum planning. For this reason,
a joint approach is required, in which structural relations and temporal order are modelled
together. Several related directions are reported for prerequisite inference. Prerequisite struc-
tures are inferred from learner trajectories and clickstream data [7]. In addition, prerequisite
information is incorporated into knowledge tracing, which supports structured modelling of
learning sequences [8]. These works indicate that implicit dependencies are inferred and are
used to refine formal prerequisite graphs. In this paper, a combined mathematical model is in-
troduced. A curriculum is represented as a directed graph, in which vertices represent courses
and edges represent prerequisite relations. Course embeddings are obtained from syllabus
texts, while sentence models are used for textual representations [9]. These representations
are refined by a graph convolutional network [10], which enables link prediction of candidate
prerequisites. Also, course order is represented as a sequence, which is modelled by a Long
Short Term Memory network [11]. A next course prediction task is used, in which a fixed
window of previous courses is processed.

2 Mathematical model of the curriculum

In this section, a mathematical model is defined. A graph structure and a set of course
sequences are used. Evaluation metrics are defined for the prediction tasks.

Graph representation of the curriculum

A curriculum is represented by a directed graph [12]

G = (C,E),

where
C = {c1, c2, . . . , cn}

is the set of courses and
E ⊆ C × C

is the set of edges. An edge (ci, cj) ∈ E is interpreted as a prerequisite relation.
The graph is encoded by an adjacency matrix [12]

A ∈ {0, 1}n×n,

where

Aij =

{
1, if (ci, cj) ∈ E,

0, otherwise.

Self loops are included as
Ã = A+ In,
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where In is the identity matrix. A degree matrix is defined by

D̃ii =
n∑

j=1

Ãij .

Vector representations of courses

Each course ci is described by syllabus text and metadata. A feature vector is defined as

xi ∈ Rd.

Text representations are obtained by transformer language models [13]. Sentence level repre-
sentations are obtained by a sentence embedding variant. Let

X ∈ Rn×d

denote the feature matrix, with row Xi: equal to xi. Normalisation is applied to improve
training stability, which supports dot product based scoring [14].

Graph neural network

A graph convolutional network is used [10]. A GCN layer is defined by

H(l+1) = σ
(
D̃−1/2ÃD̃−1/2H(l)W (l)

)
,

where H(0) = X, H(l) ∈ Rn×dl , W (l) ∈ Rdl×dl+1 , and σ(·) is an activation function [15]. After
L layers, an embedding matrix is obtained

Z = H(L) ∈ Rn×dz ,

in which row zi represents course ci.

Link prediction model

A link prediction task is defined for course pairs. A scoring function is defined as

s(i, j) = φ(zi, zj),

where φ is scalar. A logistic dot product score is used [14]

s(i, j) = σ
(
z⊤i zj

)
,

in which σ is the logistic function.
Training is completed by positive and negative examples. Positive examples are edges

(i, j) ∈ E. Negative examples are obtained by sampling from C × C \ E. Negative sampling
is used to control class balance [17]. A binary cross entropy loss is used [15]

Llink = −
∑

(i,j)∈P

log s(i, j)−
∑

(i,j)∈N

log
(
1− s(i, j)

)
,

where P is a set of positive pairs and N is a set of negative pairs.



162 Kozhanov M., Varkonyi-Koczy A.

Sequence model of courses

Course order is represented as a sequence

S = (ct1 , ct2 , . . . , ctT ),

in which indices reflect semesters. A Long Short Term Memory model is used [11]. At step
k, an embedding ztk is processed as

hk = LSTM(ztk , hk−1).

A next course distribution is defined by

P
(
ctk+1

∣∣ ct1 , . . . , ctk) = softmax(Wohk),

while the softmax formulation is used for multi class prediction [14]. A cross entropy loss is
used [15]

Lseq = −
T−1∑
k=1

logP
(
ctk+1

∣∣ ct1 , . . . , ctk).
A combined loss is defined

L = Llink + λLseq,

in which λ > 0 is a balancing coefficient.

Evaluation metrics

Ranking metrics are used for link prediction. For each query, a ranked list of candidate
neighbours is formed. Mean reciprocal rank is defined as

MRR =
1

|Q|
∑
q∈Q

1

rankq
.

Hits at k is defined as

Hits@k =
1

|Q|
∑
q∈Q

I
(
rankq ≤ k

)
.

Next course accuracy is used for sequence prediction. Ranking evaluation is described in
information retrieval literature, in which top k measures are standard [16]

Acc =
1

T − 1

T−1∑
k=1

I
(
ĉtk+1

= ctk+1

)
.

3 Methodology of the computational experiment

Data structure, feature construction, model configuration, and a recommendation procedure
are described.
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Data description and graph structure

Curricula of two bachelor programmes are used:

• Information Systems (programme IS);
• Electric Power Engineering (programme EE).

Each record in the course table includes identifier, code, title, programme, cycle, compo-
nent, and order. The course matrix is reported as

courses_df ∈ R92×7.

The prerequisite graph is reported by an edge table. Each edge defines a source course, a
target course, and a relation type prerequisite_chain. The edge count is

|E| = 90,

which corresponds to two linear prerequisite chains, i.e., 45 edges per programme.
Course syllabi are stored in a table that includes identifier and syllabus text. The syllabus

table is reported as
syllabus_df ∈ R92×6.

After a join by course identifier, a merged table is obtained

data ∈ R92×8.

A binary adjacency matrix is constructed [12]

A ∈ {0, 1}92×92,

and a normalised matrix is defined [10]

Â = D̃−1/2ÃD̃−1/2,

in which Ã = A+ I.

Course embeddings

A feature vector is constructed for each course from syllabus text and metadata. Sentence
embeddings are computed. Categorical features are encoded and are concatenated, when they
are available. Therefore, a feature matrix is obtained

X ∈ R92×d,

with d = 249. Normalisation is applied before graph processing, which reduces scale effects
in gradient based optimisation [15].

Configuration and training of the graph model

A two layer GCN is used [10]. The structure is defined as

H(1) = σ
(
ÂXW (0)

)
, Z = ÂH(1)W (1).

Dimensions are selected as
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• input size din = 249;

• hidden size dhid = 128;

• output size dz = 64.

For link prediction, positive pairs are defined as observed edges. Negative pairs are sampled
with equal count, which reduces label imbalance effects [17]. A logistic dot product score
is used [5, 6]. Training is completed for 50 epochs on a CPU. Parameter optimisation is
completed by Adam [18]. Regularisation is supported by dropout [19].

On the complete link set, the metrics are reported as

MRR ≈ 0.2545, Hits@10 ≈ 0.7222.

Configuration and training of the sequence model

For each programme, a sequence of length T = 46 is defined by curriculum order. A window
length L = 5 is selected. For each window, the next course is predicted. Therefore, M = 82
training examples are obtained.

Inputs are defined as sequences of five embeddings in R64, while targets are course indices.
An LSTM layer is used with hidden size 128, followed by a fully connected layer with output
size 92 [11]. Training is completed for 50 epochs. Cross entropy training is used for the
classification objective [15]. Next course accuracy is reported as

Acc ≈ 0.7561.

Construction of recommended prerequisite tables

A similarity matrix is computed from normalised embeddings

S = ZnormZ⊤
norm,

which corresponds to cosine similarity, while vector normalisation supports angular compar-
ison [16]. For each course, top k neighbours are selected. Candidate pairs are filtered as
follows:

1. existing prerequisite edges are removed;

2. only within programme pairs are kept;

3. target order is constrained to be larger than source order;

4. similarity is constrained by similarity_score ≥ τ ;

5. service courses are removed, e.g., internships and final assessment.

At the initial stage, 460 candidate links are obtained. Then, strict filtering yields 116
recommendations, which include 60 links for IS and 53 links for EE. Summary tables are saved
as recommended_prereq_IS_summary.csv and recommended_prereq_EE_summary.csv.

4 Results of the computational experiment

Experimental setup and prediction results are summarised for programmes IS and EE.
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Experimental setup

Three data sets are used:

• course table with identifiers, titles, programme, cycle, component, and order;

• edge table with source and target pairs and relation type prerequisite_chain;

• syllabus table with syllabus texts.

The merged data set includes 92 courses and 90 prerequisite links. Embeddings of dimen-
sion d = 249 are computed for all syllabi [9]. All computations are completed on a CPU.

Link prediction quality

A two layer GCN is used, which maps 249 → 128 → 64 [10]. Binary cross entropy training is
used with 90 positive and 90 negative pairs [15]. The metrics are reported as

MRR ≈ 0.25, Hits@10 ≈ 0.72.

Therefore, true neighbours are ranked near the top for many queries.

Sequence prediction quality

An LSTM model is trained for next course prediction [11]. The accuracy is reported as

Acc ≈ 0.76.

Hence, curriculum order is reconstructed with reasonable precision.

Recommended prerequisite links

After filtering, 116 recommended links are obtained. For IS, recommendations connect math-
ematics and discrete mathematics with foundational and advanced information technology
courses. For EE, recommendations connect mathematics and physics with electrical engi-
neering and power engineering courses. These tables are used as data based proposals for
prerequisite revision.

Discussion

Three observations are reported. First, prerequisite links are recovered with acceptable rank-
ing quality, because graph topology and content representations are combined [6, 10]. Second,
curriculum order is reproduced with reasonable accuracy, because sequence dependence is
captured by LSTM [11]. Third, recommendation tables remain interpretable for curriculum
experts, because pairs are filtered by programme, order, and similarity threshold.

Further model variants are relevant. Graph attention can be used to support adaptive
neighbourhood aggregation [20]. Inductive aggregation can be used for curriculum updates,
in which new courses are added after training [21]. Relational graph modelling can be used
when multiple edge types are defined, e.g., prerequisite and corequisite relations [22]. Baseline
representations can be obtained by random walk embeddings [23, 24]. These options can be
used for comparative analysis, which supports robustness checks [25].
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4 Conclusions

In this study a curriculum model is proposed, in which prerequisite relations are represented
as a directed graph, while course order is represented as a sequence. Course embeddings are
obtained from syllabus texts. A graph convolutional network is used for prerequisite link pre-
diction. A Long Short Term Memory model is used for next course prediction. An experiment
is reported for two bachelor programmes with 92 courses and 90 explicit prerequisite links.
Acceptable quality is reported for link prediction and for sequence reconstruction. Tables of
recommended prerequisites are produced for both programmes. In this study two programmes
were analysed, while broader coverage is required for generalisation. Embeddings are obtained
from a general sentence model without domain specific adaptation. Additional variables are
not incorporated, e.g., grades and workload constraints. Future work is directed to larger and
multilingual syllabus sets, stronger graph architectures, and richer educational signals, which
include student performance traces and competence descriptors.
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