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Abstract The paper compares the results of numerical modeling with experimental data obtained
as a result of a series of experiments to study. The pumping of a finite volume of solution through
an elongated rectangular domain of a porous medium is modeled. The MIM approach is used to
describe the transport of the impurity. The sorption process is described by a nonlinear MIM model
with saturation. Density heterogeneity due to concentration differences is taken into account in the
Darcy-Boussinesq approximation. Clogging of the medium due to the deposition of dissolved matter
on the pore wall leading to a decrease in porosity, which in turn leads to a decrease in permeability.
The dependence of permeability on porosity is given by the Kozeny-Carman equation. The model pa-
rameters were found for which the modeling results are in good agreement with the experimental data.
The influence of model parameters on breakthrough curves was analyzed. The fields of concentration
distribution and current function at different time moments has been received, they demonstrate the

occurrence and development of concentration convection in the system.
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1 Introduction

In the course of production and industrial activities, people have to face difficulties in the
exploitation of natural geological systems. Geological systems are represented by various
rocks and soils which can be described as porous media. During the filtering process of
any mixture through such media the particles of the solid matrix and impurities distributed
into the media can interact with pore wall. Such interaction significantly complicates the
description of fluid transport through porous media. The transport of solutes into porous
media is typically characterized by the immobilization of impurities through deposition onto
the solid matrix of the medium. The immobilisation may be caused by various reasons. It
can be mechanical blockage of pore [I], chemical reaction [2], physical sorption [3] [4] etc. But
most common example of immobilisation is the electrical interaction of impurity with the pore
wall caused by van der Waals forces.

The popular continuous media approach to model the transport through porous media
with immobilization is mobile/immobile medium (MIM) [5]. The main idea of MIM approach
is the separating an impurity into two phases: mobile (free) and immobile (adsorbed on pore
walls). The mobile impurity can move with the fluid flow or by diffusive mechanism. The
immobile impurity interact with pore wall and this impurity cannot move. In this case, the
transport of the impurity is provided by the immobile phase. It is described using the standard
advection diffusion model [6] for a mobile impurity with an additional term that models the
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Figure 1: Schematic diagram of the laboratory column apparatus.

influx of the impurity into the immobile phase. The exchange of impurity between phases is
usually described by additional kinetic equation. The mathematical form of such equation
depends on the nature of the interaction of impurity with solid matrix of porous media.

The most popular model with description of such interaction as the physical sorption
caused by van der Waals forces is known as standard or linear MIM model [7]. This model
based on linear dependence between the influx of impurity and admixture volumic concentra-
tions in both phases. It means that the influx of impurity to immobile phase linearly increases
with mobile concentration increasing and linearly decreases with immobile concentration in-
creasing. This model contains two empiric parameters: adsorption and desorption rates. The
linear model is well verified by experimental data [8] [9] for small impurity concentrations. In
the case of significant concentrations the adsorption process should be limited because the
capacity of immobile phase is finite. This feature is taken into account in nonlinear model
with limited immobile concentration [10] when the concentration of adsorbed impurity can-
non exceed some value. Such limit concentration becomes the additional empiric parameter
of transport model.

The estimation of transport model parameters is very important problem which should be
solved for application of such transport model to real industrial problems and the prediction of
such geological phenomena. Usually the data for parameter estimation are obtained from the
experiments of mixture portion transport through porous column [12} 13 [I4]. Such data are
breakthrough curves (BTC), it is the dependence of impurity concentration on time in some
section of the column, most often at outlet. The longitudinal scale of the column usually
much greater then transverse because of the filtration flow is assumed as one dimensional.
Such assumption allows measuring only the full concentration into cross section of column
and compare the obtained BTC with the solution of one dimensional problem within MIM
approach (see [I1]). However, it is known that the convection in porous media is recognized
in the presence of any (even extremely small) horizontal heterogeneity of density [15, [16].
The convective motion made the flow two or three dimensional everywhere. The intensity of
convection is proportional to impurity concentration into the mixture. In the case of small
concentrations it is believed that taking into account convection is not necessary |12} [13].

The present study is devoted to analysis of convection properties and it impact to transport
process in porous media for significant impurity concentration. The interest of authors is
application the MIM approach to transport problems for wide range of concentrations also
with parameter estimation (see [I1]). Here we solve numerically the two dimensional problem
within the nonlinear MIM approach for modeling the standard transport experiment.
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2 Experiment

The experiments were made with a horizontally oriented acrylic cylinder of 500 mm length
L and 16 mm internal diameter d. Quartz sand with fraction size of 0.8-1.2 mm was used as
a porous medium. The column was packed under a wet condition as uniformly as possible.
Porous brass plates at a both ends of the column kept the sand out. Aqueous solutions of
NaCl at different initial mass concentration were used as contaminant. The inflow apparatus
consisted of two chambers with a constant head of distilled and salt water. These cham-
bers were connected to the inlet of the column by a three-way valve, which enabled manual
switching between the distilled and salt water circuit. The brine was injected in the column
while maintaining a constant mass flow rate. The duration of step brine injection depends
on the initial flow rate and corresponds to the introduction of about 10% of the column pore
volume. The mass of outflowing fluid was measured with electronic precision balance. The
concentration of NaCl in outflowing fluid was measured by on-line electric conductivity cell.
A diagram of the column apparatus is given in Fig. To realize the control of constant
filtration flow rate , the column outlet was connected to a motorized translation system that
allows changing the pressure level at the outlet. The translation system software allows re-
mote control of vertical coordinate, maximum speed and acceleration of outlet valve travel.

3 Problem statement. Seepage with constant flow rate

Let us describe the transport of mixture through porous column. The problem is solved in a
two-dimensional formulation. A portion of the mixture with a volume about 10% of the pore
space volume is pumped through a rectangular domain of the porous medium in the gravity
field. The aspect ratio of the domain H/L = 0.1. Horizontal filtration rate remains constant.
Horizontal boundaries of the area are impermeable for the carrier liquid and impurity. At the
inlet of column (left side) the condition of given impurity flux is posed, at the outlet (right
side) the free flow condition is used. The sketch of the problem is presented in ﬁg

The problem is solved within framework of the MIM (mobile/immobile media) approach
[5]. The main idea of this approach is separating the impurity into mobile and immobile
components. The mobile component can move with the carrier fluid, while the immobile
component interacts (settle) on the pore walls. This approach implies the existence of a
kinetic equation describing the impurity transition between the components, i.e. sorption
process. Concentration variation in an elementary volume of porous medium is determined
by the law of mass conservation. The detailed derivation of the all governing equations can
be found [I7]. Mathematically, it can be written as

9ot + Q) = —divJ
ot ’
Gy 1<t -
f(f)={0 o | g
1 )
L=Us0),  Ul|,=0 ol =0 Jl, =U.C

Figure 2: Sketch of the problem.
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where C - volumic concentration of mobile component, () - volumic concentration of immobile
component, ¢ - current porosity of porous medium, J - the flux of impurity. The flux contains
two parts diffusive and advective:

J = —¢DVC + ¢W C = —¢DVC + UC, (1)

where W is pore velocity and U = ¢W = (U,, U,) is filtration velocity vector, D is effective
diffusivity.

In the present work, the nonlinear kinetic equation [I0] is used due to significant con-
centration Cy of impurity in transported portion. This equation takes into account the fact
that there is some limiting value of impurity concentration into the immobile component.
Mathematically it can be presented as

oQ

T a((Qo — Q)C — Kq4Q), (2)
where « is the mass transport coefficient, Ky is the solute distribution coefficient, Qg is
the limit concentration of the immobile phase. Filtration flow through a porous column is
described by the Darcy law [18], in form of

U= - pg) 3)

where k is the permeability of the porous medium, 7 is the dynamic viscosity of fluid, p is
the fluid density, P’ is the pressure, g = —gk is the gravity acceleration vector (k is the unit
vector of y-axis). The impurity accumulation into immobile phase reduces the actual pore
volume. Using the standard definition of immobile impurity concentration (@) like the ratio
(Q =V;/V ) between the volume occupied the immobile impurity (V;) and the full volume of
media (V'), one can write the dependence of porosity (¢ ) on @ in form of
¢ =do—Q, (4)
where ¢q is the porosity of clean media without any impurity. The reduction of pore volume
and decreasing of porosity leads to increasing of hydraulic resistance of medium. This process
is called the clogging of porous media and can be described by the dependence of media per-
meability on porosity. Here the most popular expression in form of Kozeny-Karman equation
[19] is used e
K(0) = 1o )
with v is the Kozeny-Carman constant. The Kozeny-Carman constant is empirical parameter
which can be measured for a clean medium.

For the description of convective flow the heterogeneity of fluid density due to variation of
impurity concentration in mobile phase should be taken into account. The experiments [20]
shown that the significant values of concentration in sense of porous media clogging are not
so big. It is allow us to the Bousinesq approximation [I8] of the density dependence on the
concentration of impurity in linear form:

p(C) = po(1 + BcC), (6)

where pg is the density of carrier liquid, B¢ is the coefficient of concentration expansion. It is
assumed that the fluid is incompressible

divU =0 (7)
The equations and @ can be combined

U= —ﬁ(f)(VP' — pogBcCk), P =P —pogy (8)



Effect of Convection on Impurity Transport Through Porous Medium 145

with P is the deviation of pressure from the hydrostatic one. Thus, we have the following
system of equations:

ACHD) _ _gi—ppve +U0), 22— a((Qo - Q)C - KaQ),
3

ot ot
divU =0, U:_”gf)wp—pogﬁwkx w($)=7 o=do—Q,

(1-¢)*’
with boundary conditions

Co, t<t*

Jz ‘x:(]: Uz |m=0 f(t)> f(t) = { 0 -

0 t t*
7 (10)

Jz|m:L = Ua:c|x:L7 Ua:‘:r:O,L = Qrate/p057 Uy|y:0,H = 07 Jy’y:O,H =0.

where J, is horizontal component of impurity flux, f(¢) is step function of time, Qrqte is
constant filtration rate which is controlled in experiment, S is the area of column cross section.
The boundary conditions correspond to standard conditions which is applied in experiment
(see Section 2). At inlet (x = 0) the impurity flux is given by step function of time. This
condition is modelled the pumping of mixture portion. The outlet condition (x = L) the
free flow condition is applied. The horizontal boundaries is assumed impermeable for carrier
liquid and impurity.

It is convenient to rewrite the equations @ with the boundary conditions in di-
mensionless form using the next scales for measuring distance, time, velocity, permeability,
pressure, saturated concentration immobile phase and concentration as L, L?/D, ¢oD/L, v,

QrateT/L/pS’% QO, CO
de ¢ 9q  9(ge)

1 501 0O _ (1 ae—¢(VaVe)—uVe, 2 —a(1-q)e—b,

ot Cy ot ot 5
divu=0, u=—#(¢)(PeVp+Rpck), n<¢>=(1f¢)g, =go(1—Cq),

where ¢, ¢ and p are dimensionless values of mobile and immobile impurity concentrations
and pressure. The u = (ug,uy) is vector of dimensionless filtration velocity. Equations
contains five dimensionless parameters: the diffusive analogue of Peclet number Pe =
(QrateL)/(poS¢oD), the Rayleigh-Darcy number Rp = (vpogBcCoL)/(¢onD), the clogging
parameter ¢ =Qq/¢o, the adsorption a=aCyL?/D and desorption b=aKy4L?/D rates.

Let us introduce the current function in terms u, =0v /0y, uy=—0¢/0z. In the approach
of a weak clogging ((< 1) the equations ([11]) can be rewritten in the terms of current function
as

dc C(‘?q_éﬂc 0%c O oc Oy Oc oq

9 Coot 02 o dyor ooy on (T9eh (12)
Py 0 1 Ok (000 0PI\ de -
5 s 00) 95 00 50 o Gy) ~RORR G K= 9=an(1-Ga)

The weak clogging approach (see [2I]) can be applied if the clogging parameter is small
¢ < 0.1 where q is characteristic value of dimensionless immobile concentration. In this case
we can exclude all terms with ¢ except two terms. First (I) is (/Cp ~ 1 they usually have
the same order, second (II) in the Kozeny-Carman expression because the small variations of
porosity leads to significant variations of permeability (the minimal possible ratio is about 10,
see [21]) .

Let us rewrite the boundary conditions in terms of the current function:
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oy 1ot
Jx|x:1 = ajc , % = Pe, 871/} =0, Jy|y=0,h =0,
Y |1 OYlp—oa 9z |,—o p

initial conditions are set by absence of impurity inside the region and constant filtration rate

c(a:, y,t = O) =0, q([IZ, y,t = O) =0, ¢(9573/7t = 0) = %(Z/) = Pey, (14)
the last expression for stream function correspond to solution of one dimensional problem of
fluid filtration without any impurity The equations with boundary conditions and
initial conditions is solved numerically. The details of numerical method is presented into
appendix. The next section is devoted to discussion about obtained solutions, to comparison
with experimental data and analysis of parameter variation to observed convective motion.

4 Results and discussion

In present section we present the results of numerical solution of problem —. First of
all we verify our model by the comparison with experimental data.

4.1 Comparison with experiment

The BTC plotted in dimension form for better and convenient comparison the results of
numerical calculation with experimental data. The experimental data contain only BTC at
outlet of porous column which obtained for porous column in form of cylindrical pipe. The
calculation is provided for two dimensional rectangular domain because of that the numerical
and experimental are not the same. For recalculation of two dimensional data to integral
BTC concentration at the outlet of the porous column is defined as follows

LH
V;mp(t) = //[¢(a:,y,t)Coc(x,y,t)—i—Qoq(x,y,t)]d:ccly, (15)
00

_ Pimp Vimp(t+A8) = Vipp(t)
Coult) = oUS At ’

where Vi, is volume into the column occupied by impurity, U = Pe¢oD/L is filtration rate,
¢(w,y,t) is the current porosity, At = 7L%/D is the dimension time interval, 7 is the time
grid step of used numerical method (see Appendix), pim, is density of impurity.

Different types of concentrations can be found in the literature: volumetric (Cyep), mass
(Cmass) or expressed in mass per unit volume (C,, /7). These concentrations are related to
each other Cp, /v = psolCmass = PimpCuol, Where pso is the solution density. The concen-
trations C, Q and Cj are volumetric because the governing equations @ is derived for such
type of concentrations. The volumetric concentrations C' and @) are calculated and converted
to a outlet concentration in grams per liter (Cy,:) for comparison with experimental data
(see Eq. (15)). Also the value mass concentration Cj, at inlet (from experimental data) is
converted to volumetric Cy when the parameters of model is estimated (see Tab. [3)).

The selection of transport parameters values is based on parameter identification method
which is presented in [II]. This method contain the solution of one dimensional problem
any convection. Instead of that the experimental data about the dependence of pressure
drop between column ends on time during the transportation process is used for parameters
estimation. The method allow us to estimate four parameters: diffusivity (D), mass transport
coefficient (), solute distribution coefficient(Ky) and limit concentration of immobile phase

(Qo)-
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The used porous material is quartz sand with porosity ¢g =~ 0.48 and permeability of
clean media r(¢g) ~ 3.1 -107m? which give as the Kozeny-Carman constant value v =
0.79-107?m?. The porous column is a cylindrical tube with length L = 0.5 m and cross section
area S ~ 2cm?. The carrier liquid is water with dynamic viscosity 7 ~ 1072 Pa s and density
po = 103 kg/m3. The impurity is sodium chloride (NaCl) with density pim, = 2.16-103 kg/m3
and the density of NaCl solute in water (up to near 15% of mass concentration) can be
presented by linear approximation [20] with coefficient of concentration expansion S = 1.55
(see Eq. (6)).

The two realisations of experiment with close values of flow rate (dimensionless Peclet
diffusion number) and different initial concentrations of impurity (Cp) are described. The dif-
ference in concentration leads to the same significant difference in Raleigh-Darcy number. The
last parameter is define the intensity of convective motion. It means that two described cases
corresponds to (I) moderate and (II) high intensities of convective motion. The parameters
for both realizations are presented in Tab. [3]

The comparison of numerical calculation results with BTC’s obtained by experiment is
presented in Fig. [4]

It is seen from Fig. {4 that form of curves (blue and black) are close. Some discrepancy
between curves can be explained by difference between model problem — and exper-
imental setup. The form of BTC corresponds to the standard form within MIM model the
peak of concentration provides by mobile phase transportation and very slow decline (tail
of BTC) is provided by slow transport of impurity that initially transits to immobile phase.
The convective motion can be illustrated by fields of concentration and stream function much
better than by BTC. The evolution of concentration field during the transport process for the
same with realisation (II) parameter values (see Tab. [3) is shown in Figs. [f| and [6]

Figs. [f] and [6] demonstrated that transport regime for mobile concentration very close to
one dimensional solution, weak of isolines can be observed only at back front of concentration
impulse (see the field at t=480 seconds). The isolines of immobile concentration is more
inclined because its moving is slower and realized only by the impurity transition to mobile
phase. The convective motion is most clearly visible in analysis of stream function field (see
fig. [7).

In Fig. [7] shown the evolution of two dimensional vortex. This vortex is being formed at
initial stage of transportation process and growth in time. At the final stage the convective
cell with inverse vortex (near inlet) can be observed.

The next subsection is devoted to analysis the impact of transport parameter variation to
observed convective motion and the effect of last motion effect to transportation process.

4.2 Analysis of parameter variation

In this section presented and discussed the results of numerical calculation for different values
of transport parameters. Some values chosen close to experimental (see Tab. [3) another far
from its for better demonstration of possible effects. All effects shown by two ways first is
the appropriate BTC and second the variation the stream function field as visual identifier of
convective motion.

The breakthrough curves for various values of adsorption and desorption rates are pre-
sented in fig.

It is seen from Fig. [§] (a) that increasing in adsorption rate (a) value leads to decreasing of
primary peak (or first peak) of BTC. The first peak is observed due to advective transport of
mobile impurity which has not transit into immobile phase. The higher values of adsorption
rate intensify the transition of impurity to immobile phase and amount of mobile impurity
reduced. However, this effect is accompanied by a growth of secondary peak. Such peak and
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Figure 3: The transport parameters for two experimental realisations (Section Measured con-
tain the parameters which are measured directly, next section Fstimated contain the values
of estimated by method [II] parameters and the last section Dimensionless contain the ap-
propriate values of dimensionless parameters which are used for numerical calculations).

Parameter name ‘ Realisation (I) ‘ Realisation (II)
Measured
Qrate, 8/ 0.051 0.054
t*, s 94 89
Cin, % of mass 5 10
Estimated
D107, m?/s 4.24 4.31
a-10%, 1/s 5.81 6.12
Ky 0.32 0.36
Qo 0.16 0.17
Dimensionless
Pe 627 653
Rp 723 1450
a 83 174
b 1096 1233
¢ 0.34 0.36
20- ( a ) | 20- ( b )
<I15- <,15-
(o)) O
o o
104 104
54 5
0 1 2 3 4 0 1 2 3 4
t'-103sec. t'-103sec.

Figure 4: Breakthrough curves at the outlet of the column for mass concentration. The
concentration is calculated by expressions , the time is presented in dimensional form
as t' = tL?/D. Plot (a) realisation (I) and (b) realisation (II), the blue curve is result of
numerical calculation with dimensionless parameters and black curve is experimental data.

moreover the presence of “heavy tail” (very slow decline of concentration in time) at BTC is
caused by removal of immobile impurity from porous column. The last removal is very slow
because the impurity multiple transits between two phases and it moves only in mobile one.
The increasing in desorption rate value (b) demonstrates the inverse effect: the primary peak
growth and decline of concentration at the “tail” of BTC speeds up (see Fig. 8] (b)).

Figs. [9] and [10] demonstrate the effect of sorption rates variation to structure of convective

motion. It is seen (Fig. @ that the enlargement of adsorption rate leads to slow down of
convective motion and simplification of field structure. This effect can be explained by the
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Figure 5: The calculated field of mobile concentration for parameter values of realisation (II)

(see Tab.
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Figure 6: The field of immobile concentration for parameter values of realisation (II) (see

Tab. .
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Figure 7: The field of current function perturbation (¢ — 1)g), where ¢y = Pey for parameter
values of realisation (II) (see Tab. [3)).

(a) (b)

b=1400
b=1600
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Figure 8: Dependence of the concentration at outlet on time (BTC) for various values of
sorption parameters, the time is presented in dimensional form as ¢ = tL?/D, where D =
4.2 -107"m?/s and L = 0.5m. The curves on panel (a) is calculated for desorption rate
b=1200 and for different values of adsorption rate a (indicated in legend), the plots (b) is
calculated for adsorption rate a =100 and various values of desorption rate b (indicated in
legend). Another parameter values are Cy = 5% of mass, Pe = 700, Rp = 6000, ¢o = 0.48,
(=0.3, t*=86 s.

depletion of mobile phase. The density heterogeneity of filtering mixture is the main reason
of convection, but when some part of impurity transits to immobile phase then the impurity
concentration in filtering mixture decreases and density becomes more homogeneous. The
increasing into the values of desorption rate (b) leads to inverse effects (see Fig. .

The BTC variation with changing of Peclet and Rayleigh-Darcy values is shown in Fig.

It is demonstrated in Fig. [11|that decreasing of Peclet number leads to reduce the primary
peak and enlarge the time of its observation, the secondary peak also growth. Additionally for
smaller Peclet number value the appropriate injection time becomes greater (see Fig. (a).
The enlargement of injection and peak observation times are caused by the slow down of
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Figure 9: The fields of current function perturbation (i) — 1), where 9y = Pey. The
calculation is performed for different values of adsorption rate (a), another parameter values
are: Pe = 700, Rp = 6000, b = 1200, ¢g = 0.48, ¢ = 0.3, t* = 86 s at the dimensional time
moment ¢’ = 480 s.
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Figure 10: The fields of current function perturbation (¢ — 1), where ¢y = Pey. The
calculation is performed for different values of desorption rate (b), another parameter values
are: Pe = 700, Rp = 6000, a = 100, ¢¢9 = 0.48, ( = 0.3, t* = 86 s at the dimensional time
moment ¢’ = 480 s.

filtration process. The Peclet number is dimensionless filtration flow rate and its decreasing
leads to growth of all filtration times. The greater time of transport process gives more time
for immobilization process. One can observe the enlargement in immobile concentration and
secondary BTC peak as consequence. The increasing in Rayleigh-Darcy value (see Fig.
panel B) reduces only the maximal concentration in primary peak at BT'C due to intensifica-
tion of convection and small slow down the filtration troughflow at constant flow rate (Peclet
number). Such a small effect of Rp variation can be explained by the form of porous col-
umn, the longitudinal size is much greater than vertical (I = H/L < 1). The third equation
in show that filtration velocity u consist of two terms: first is advective term which is
proportional to Peclet number and caused by horizontal pressure drop. This term provides
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(a) (b)

Pe=700, t*=86's. —— Rp=1000
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Figure 11: Dependence of the concentration at outlet on time (BTC) for various values of
Peclet and Rayleigh-Darcy numbers, the time is presented in dimensional form as ¢ = tL?/D,
where D = 4.2-107"m?/s and L = 0.5 m. The curves on panel (a) is calculated for Rayleigh-
Darcy number Rp = 6000, for different values of Peclet number Pe and times of injection tx
(indicated in legend), the plots (b) is calculated for Peclet number Pe = 700, t* = 86 s and
various values of Rayleigh-Darcy number Rp (indicated in legend). Another parameter values
are: Cy = 5% of mass, a = 100, b = 1200, ¢g = 0.48, ¢ = 0.3.

mainly the horizontal component of filtration velocity. The second term is convection part. It
is vertical component of velocity which is proportional to Rayleigh-Darcy number and density
field heterogeneity due to mobile concentration. The ratio between horizontal and vertical
components of velocity is proportional to the aspect ratio of column [ = 0.1. It means that
the convective motion intensity is in ten times weaker than advective motion at the same
values of Pe and Rp. The most visible effect of Rp variation can be demonstrated by the field
of current function (see Fig. [L3)).

Figs. [12] and [13] present the current function dependence on variation of Pe and Rp re-
spectively. It is seen that increasing in Peclet number value leads to spreading of vortex into
column due to spreading the front of impurity impulse (see Fig. . Into the right part of
column there is no impurity and also no heterogeneity of density field. As result the convec-
tive motion in form of vortex does not observed. Fig.[12] also demonstrates that the structure
of of flow is not changed greatly with variation of Peclet number but intensity of convection
increases with decreasing of Pe.

The complication of the convective flow structure with enlargement in Rayleigh-Darcy
number value. Convection intensifies, more small vortexes arise and the isolines incline, but
the spreading of convection into the column is not observed due to constant Peclet number.

The dependence of BTC on variation of clean media porosity and clogging parameter is
shown in Fig. [T4

The increasing in clogging parameter value means the enlargement of solid matrix adsorp-
tion capacity, more impurity can be adsorbed. This fact intensify the adsorption process and
the primary peak concentration value at BTC becomes lower (see fig. A). Generally the
variation of adsorption rate and clogging parameter lead to similar effects. The decreasing of
clean media porosity leads to essential decreasing of permeability, e.g. k(¢po = 0.48)/k(po =
0.44) ~ 1.5. Due to that fact the hydraulic resistance of media increases and effective flow
rate becomes lower. The injection time is growing (for the same volume of injected mixture)
and time moment for primary peak position also increases. Generally this effect the same
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Figure 12: The fields of current function perturbation (i) — vg), where ¢y = Pey. The
calculation is performed for different values of Peclet number (Pe) and injection time (tx),
another parameter values are: Rp = 6000, a = 100 b = 1200, ¢9 = 0.48, ¢ = 0.3 at the

dimensional time moment ¢ = 480 s
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Figure 13: The fields of current function perturbation (¢ — ), where 19 = Pey. The cal-
culation is performed for different values of Rayleigh-Darcy number (Rp), another parameter
values are: Pe = 700, a = 100 b = 1200, ¢g = 0.48, ( = 0.3 at the dimensional time moment
t' = 480 s.

with decreasing the Peclet number. The same effects is demonstrated in Figs[T5| and [I6] for
structure of current function field.

5 Conclusions

The problem of pumping a finite volume of mixture through a rectangular domain of a porous
medium is solved. The experimental data for horizontal cylindrical column are compared
with the data of the numerical solution. The parameters of the problem that provide the
best compliance are estimated. The influence of the parameter variation of the problem
on the breakthrough curve and the resulting convective flow is analyzed. It is shown that
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Figure 14: Dependence of the concentration at outlet on time (BTC) for various values
of clogging parameters, the time is presented in dimensional form as ¢ = tL?/D, where
D =42-10""m?/s and L = 0.5m. The curves on panel (a) is calculated for clean media
porosity ¢9 = 0.48 and t* = 86 s, for different values of clogging parameter ¢ (indicated
in legend), the plots (b) is calculated for clogging parameter ( = 0.3 and various values of
Rayleigh-Darcy number ¢ and times of injection ¢« (indicated in legend). Another parameter

values are: Pe = 700, Rp = 6000, Cy = 5% of mass, a = 100, b = 1200.

increasing of adsorption rate, clogging parameter and decreasing of desorption rate intensify
the adsorption process. It leads to slow down the transport process and convective flow. The
primary concentration peak at BTC reduces but the concentration values at BTC “tail” are
growing. The increasing of Peclet number and porosity demonstrate the same effect, it is
intensification of filtration throughflow. Such intensification speed up the transport process
all specific times are decreasing, the convective vortex spreads faster into the column but the
intensity of convection is reducing. The variation of Rayleigh-Darcy number has weak effect
to BTC. However the enlargement of Rp intensify the convective motion and complicates the
flow structure.

Acknowledgement
The work is supported by Russian Science Foundation, project number 20-11-20125.



Effect of Convection on Impurity Transport Through Porous Medium 155

0,1
y 0,05 ( =
0 T T
0 0,1 0 0,7 0,8 0,9 1
wix.y) = v(y) (=0.25
0,1 |
y 0,05 ¢ =
0 - T T T T
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
¢=0.30
0,1 -
y 0,05+ n
0 T = n T T T
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
wxy) = wily) X {=0.35

Figure 15: The fields of current function perturbation (v — 1), where 109 = Pey. The
calculation is performed for different values of clogging parameter ({), another parameter
values are: Pe = 700, Rp = 6000, a = 100, b = 1200, ¢g = 0.48 at the dimensional time
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Figure 16: The fields of current function perturbation (¢ — 1), where 19 = Pey. The
calculation is performed for different values of clean media porosity (¢g), another parameter
values are: Pe = 700, Rp = 6000, a = 100, b = 1200, { = 0.3 at the dimensional time moment

t' =480 s.

Appendix 1: The description of numerical method

The scheme is second-order accurate in space and first-order accurate in time.
c(x,y,t)= cﬁj q(z,y,t)= qf,j, P(x,y,t)= wﬁj where t =k7, & =ihy, y=jhy, i=0,..,N — 1,
j=0,...,M—1,k=0,...,K, hy=1/(N-1), hy=1/(M—-1), 7=1/K. Let us write the systems
of equations in finite difference form. To calculate the mobile phase of the concentration
is used ADI - alternate directions implicit method [22].
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kt/2 k /2 g EH1/2 k:+1/2 /2 g
Cij jy S iy Ciag T2 Ty P —2cf e
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L k k+1/2 k+1/2 k L k
i~ Vi Gy TG +T/’m,j_¢z‘—1,j i1~ Cig
2hy 2h 2h, 2hy ’ (16)
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2hy 2h 2h, 2hy
Equation for the immobile component of concentration
k+1
4 — %, F1 kL k+1
o T = a’( + qZ;r ’Lj) bq'hj ° (17)
Equation for the current function
nH k k
Vg~V Vg 2Vig Y Zﬂl_wﬁj*wﬁﬂ_H(qh)Rpciﬂj—CzA,j
1) h% hZ J 2h,
k k k k
LF(gh ) [T~ Vi~V Gign — i Vign —Yia (18)
J 2h, 2h, 2h, 2h, ’

3(1—Cqk.)3 - — CqF.

(1= o(1 —Cqf;))? 1—¢qk; \1—o(1—¢dF))
Systems of equations are reduced to a form convenient for solution. For the mobile component

of concentration, the obtained equation is solved by the tridiagonal matrix algorithm [23]. For
a half time step k + 1/2 in the X-axis direction:

k+1 2 k+1 2 k+1/2
A?] i— lé +Bl] ©,] / +C7] z+1§ _F7]7 (19>
where i
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and for a half time step k + 1 in the Y-axis direction:

k k: k
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and equation will be of the form

htl W) T 21
% 1+ T(acﬁj +b) (21)
Richardson’s scheme [24] is used to solve the equation for the current function. The
original elliptic equation is treated as a parabolic equation. The parabolic equation is solved
by an explicit scheme using fictitious time. The calculation is carried out to a given accuracy.

1 qkﬂ-—qkl- 1 qk+1'_qk1'
+1 EyLitlg — Y1 kyditlg — Y1,
1/@" =9 hj% + F(QZ])T ¢?+1,j + h?n - F(QM)T wznfl,j
k k k k
1 Qi1 — dij—1 1 ki1~ dij-1
+ 9 h? + F(Qi,j)T Vijp1+ h? - F(Qi,j)4—h§ (U
+1-96 3+2 wﬂ_(sﬁ(qk.)RpM (22)
h2 " hZ)| T g 2hy
here ¢ is fictitious time step. Pt n
7Z’an+l b < e, (23)
i,
here € is a target accuracy.
The boundary conditions in finite-difference form are
ko (V6 511 — V6 ;) e/ Iy [(K) + ¢ (k) — 1 ifk <k
0,5 — 3 — .
’ (V841 — Y6.5) ha/hy +1 0 ifk>k,

k _ ok k _ k k _ Kk
CN-1,j = CN-24> Cio=6C1> CMm—1= CiM—2>

Uk =Pehyj, i 1, =Pehyj, vy =Pehy(M —1), ¥k, =0.

Initial conditions are set by absence of impurity inside the region and constant filtra-
tion rate in form of

=0, ¢; =0, ¢);=Pehyj, i=0,...,N—1, j=0,..,M—1.
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