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Abstract Medical image classification often fails for two reasons. Rare but clinically important
categories create class imbalance. Similarity between classes also makes some diagnoses hard to
separate without a loss that focuses on fine patterns. We introduce Validation Adaptive Focal Loss
(VALF), a plug and play objective that augments focal loss with per class weights that are initialized
uniformly or from a user provided prior and that are adapted during training based on validation
feedback. We keep the weights fixed for the initial part of training, then update them after each epoch
using per class validation accuracy. We apply a small multiplicative change and then renormalize
the mean weight. The loss is class weight times focal factor times cross entropy. VALF needs no
architectural changes, no auxiliary network, and no multi stage training schedule. On LungHist700
at 20x and 40x across five backbones, VALF attains the top macro F1 in 8 of 10 settings and yields
consistent gains in accuracy, precision, and recall. The largest macro F1 improvement is about +4.0%
over the best baseline at 40x. Improvements are robust across models and magnifications, with only
minor shortfalls in two 20x cases. These results indicate that simple validation driven and class
aware weighting can balance sensitivity and specificity and can serve as a practical drop in for clinical
pipelines.
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1 Introduction

Class imbalance is pervasive in medical image analysis, where structures of interest can vary
greatly in size; the Generalized Dice overlap was proposed as “a deep learning loss function
[that] is particularly suited to unbalanced problems” and was shown to outperform weighted
cross entropy under severe imbalance [I1]. At the same time, “the focal loss reshapes the
cross entropy loss function with a modulating exponent to down weight errors assigned to
well classified examples,” preventing easy negatives from dominating, yet it “faces difficulty
balancing precision and recall due to small regions of interest (ROI) found in medical images”
[12]. Building on both cross entropy and Dice based criteria, the Unified Focal loss “gener-
alises Dice based and cross entropy based loss functions into a single framework” and clarifies
that these losses are special cases, aiming to be “robust to both input and output imbalances”
without significantly increasing training time [I1]. Beyond vanilla cross entropy, determining
class weights is itself challenging: “the ideal setting of class weight parameters is a challenge”;
inverse frequency heuristics “may not always reliably produce the most accurate semantic seg-
mentation results,” motivating strategies that “identify ‘hard-to-classify’ examples and assign
greater weights to them” [14]. The focal loss was introduced for imbalance in dense detection
and “aims to balance the sample wise classification loss by down weighting easy samples” via
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a reweighting factor; in its canonical form
Liocal = (1= hi)" Leg = —(1 = hy)7 log(hi), (1)

where h; is the predicted probability of the true class and v > 0 controls how much easy
examples are down weighted [2], [4]. To further encode dataset frequency, the Class Balanced
Loss proposes reweighting by the effective number of samples, E,, = (1—£")/(1—f3), yielding
per class factors (1—3)/(1— ") that improve long tailed recognition [I]. Another principled
approach is logit adjustment, which “adds 7logm, to the logits before softmax” to correct
for label frequency induced bias during training [8|. Orthogonal to loss shaping, decoupled
training argues that “imbalanced training affects representation learning and classifier learning
in different ways” and thus separates them into balanced classifier learning and representation
learning stages [2]. Mixup based remedies have also been explored; for instance, Balanced
MizUp “performs mixup with a balanced sampling strategy (instead of the standard one)”
and surveys that, despite various resampling and objective designs, “model performance on
tail classes remains to be improved” [7]. Validation driven and meta learned reweighting offer
another line of evidence. Learning to Reweight Examples uses “a small but clean validation set”
to “meta-learn a robust sample reweighting approach” that assigns higher weight to training
examples that reduce validation loss [9]. Meta Weight Net further “learns an explicit mapping
for sample weighting,” parameterizing a weight function by a meta network. [10] Finally,
calibration focused work shows that training with focal loss “leads to better calibration than
cross entropy while achieving similar level of accuracy,” and AdaFocal adaptively modifies
using validation bin statistics “switching from focal to inverse focal loss when focal loss fails to
overcome under confidence” to maintain low calibration error across probability regions [13].

2 Related Work

2.1 Overview

Class imbalance significantly impacts deep learning tasks, particularly medical image clas-
sification, where minority classes are critical yet often overshadowed by dominant classes.
Traditional methods to address imbalance typically fall into two main categories: data level
techniques, such as oversampling and undersampling, and algorithm level adjustments, in-
cluding specialized loss functions and weighting mechanisms [I} 2]. Oversampling may lead
to overfitting, while undersampling risks the loss of valuable information [I3]. Algorithmic
strategies frequently involve modifying loss functions to better accommodate minority classes
during optimization [3].

2.2 Popular Loss Functions

Categorical Cross Entropy (CCE). Categorical Cross Entropy (CCE) is widely em-
ployed as the fundamental loss function in multiclass classification. It quantifies the difference
between the predicted probability distribution and the actual distribution:

CCE(pt) = — log(pt) (2)

where p; represents the predicted probability of the true class. Although prevalent, CCE does
not inherently address class imbalance, thus motivating extensions that balance attention
across all classes [3].
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Weighted Cross Entropy (WCCE). Weighted Cross Entropy extends CCE by introduc-
ing per class weights to better handle class imbalance:

WCCE = — Z w; y; log(;) (3)

Here w; is the class weight (often inverse frequency), y; € {0,1} indicates the true class, and
7; is the predicted probability for class ¢ [5].

Focal Loss (FL). Focal Loss modifies standard cross entropy by adding a modulating
factor, (1 — p;)7, to reduce the contribution of well classified examples and emphasize harder
instances:

FL(p:) = —(1 - pt)7 log(p¢) (4)

Here p; is the predicted probability of the true class, and v > 0 controls the degree of down
weighting. Originally proposed for dense detection tasks, it effectively tackles imbalance by
shifting training focus toward challenging examples [4].

Dynamic Weighted Focal Loss (DWFL). Dynamic Weighted Focal Loss enhances FL by
adaptively modifying class specific weights throughout training. These adjustments dynami-
cally rebalance the learning process according to model performance on imbalanced datasets,
particularly beneficial in medical image scenarios [6].

2.3 Similar Works

Class Balanced and Decoupling Strategies. Class Balanced Loss employs weighting
based on the effective number of samples, a principled alternative to simple inverse frequency
weighting, particularly suited to long-tailed datasets [I]. Logit Adjustment introduces class
prior corrections directly into logits, adjusting decision boundaries in long tailed learning sce-
narios [8]. Decoupled training frameworks further address imbalance by separating feature
learning from classifier retraining phases, notably improving performance in highly imbal-
anced classification tasks [2]. At the data level, Balanced MixUp adjusts mixup based data
augmentation, effectively promoting generalization to minority classes [7].

Meta Weighting and Adaptive Techniques. Meta learning methods, such as Learning
to Reweight Examples, dynamically assign weights to training samples based on validation set
performance, optimizing generalization under noisy labels and imbalance [9]. Meta Weight
Net further refines this idea by explicitly learning a mapping from sample losses to weights,
offering an adaptive and learnable reweighting scheme [10].

Extended Focal Loss Variants. Unified Focal Loss generalizes FL. by combining Dice
and cross entropy formulations, enhancing segmentation tasks under probabilistic modeling
frameworks [I1]. Focal Tversky Loss similarly extends focal mechanisms to segmentation,
effectively capturing small or sparse regions by modifying the Tversky index [12]. Adaptive
methods, such as AdaFocal, dynamically adjust focal parameters during training to achieve
better calibration and robustness under distribution shifts [I3]. Additionally, the Adaptive
Class Weight based Dual Focal Loss introduces an adaptive class weight layer and evaluates
both positive and negative classes to comprehensively mitigate imbalance in segmentation
tasks [14].
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3 Method
3.1 Motivation

Class imbalance in a dataset may arise from several sources, such as differences in the number
of samples per class or variations in intra class diversity. To address this issue, we allow the
model to first train without any weight modification, ensuring that no class is emphasized
during the initial warmup phase. After this period, we evaluate classwise validation accuracies,
which determines which classes are easier to learn (i.e., achieving higher accuracy) and which
remain underrepresented or harder to learn. At this point, we begin adaptively increasing the
weights of the harder classes to direct more learning capacity toward them. This adjustment
is applied gradually to avoid instability and to maintain balanced optimization dynamics.

3.2 Validation-Adaptive Focal Loss

Let C denote the number of classes. For a sample with one-hot label y € {0,1}¢ and predicted
class probabilities y € [0,1]¢ (softmax outputs; from_logits=False), define

C
Pt = Zycgc (5)
c=1

Here y. € {0,1} is the one hot label and 7. is the predicted probability for class ¢; thus
p¢ is the predicted probability of the true class. Categorical cross-entropy for that sample
is CE(y,y) = —logp;. Let w € Rg be the non-trainable vector of per-class weights and
Wer = Y. YeW, the weight of the ground-truth class ¢*. With focusing parameter v > 0, the
proposed loss used in training is

N

LyaLr = %Z (wc*(n)> (1 - pﬁ")y ( - logpgn)), (6)

n=1

which corresponds exactly to the implementation

loss = class_weight x (1 —p;)? x CE(y,y).
—_— = Y

W focal_factor — log pt

When v = 0 and w, = 1, @ reduces to standard categorical cross-entropy; with w, #Z 1
it reduces to weighted cross-entropy; with v > 0 and w, # 1 it recovers the weighted focal
variant used here.

3.3 Initialization and Adaptive Update
(0)

Initialization. Class weights are initialized uniformly by default (we’ = 1 for all ¢). Op-
tionally, a user-provided prior (list or dictionary keyed by class index) can be supplied at
construction time; these values are stored in a non-trainable TensorFlow variable.

Warm-up and update cadence. Weights remain fixed for a warm-up of Fyam epochs
(default 10). After warm-up, weights are updated at the end of every epoch (the optional
periodic updater is disabled in code).
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Table 1: Training-time input/augmentation settings (albumentations); probabilities and
parameters mirror the implementation.

Transform Key parameters p
HorizontalFlip - 0.5
VerticalFlip - 0.5
GridDistortion default grid (mild elastic warp) 0.2
RandomSizedCrop min_max_height (1000, 1200); out 1200x1600 0.4
RandomGamma ~ € [80, 120] 0.5
RandomBrightnessContrast brightness/contrast +0.2 0.2
HueSaturationValue hue +5, sat 420, val +10 0.2
Resize 1200x 1600 — (1200 - r)x (1600 - r); r=0.25 -
ToFloat scale pixel range to [0, 1] -

Validation-driven rule (per-class accuracy). At epoch t > Fyam, compute per-class

(t)

validation accuracies ac’ by argmax predictions on the held-out validation set (classes with

no validation samples receive ag) = 0 in the implementation). Let a*) = % Zle ag). The
unnormalized update is multiplicative:
=) _ (@
D) 0 [ 4 & e
Wy wy ( + 100 . (7)

Thus, underperforming classes (a,(;t) < d(t)) receive a slight increase; overperforming classes a

slight decrease.

Mean normalization for stability. After applying , the weights are renormalized to
keep the mean at 1:
- (t+1)
(t+1) — _ We
1 5~C = (t+1)
T 2k=1 Wy,

These updated weights are then used by @ in the next epoch.

4 Experimental Setup

4.1 Dataset

We use the LungHist700 dataset, which contains 691 H&E histopathology images at 1200x 1600
resolution from 45 patients, captured at 20x and 40x and released as . jpg files [2I]. In the
original release, images are annotated into seven subclasses (normal tissue; and malignant
tissue subdivided by differentiation level, moderately, and poorly differentiated for both ade-
nocarcinoma and squamous cell carcinoma) [21I]. Following the dataset papers®™s experi-
mental protocol, we group these into three superclasses adenocarcinoma (ACA), squamous
cell carcinoma (SCC), and normal (NOR). For dataset split, we used the split that was used
in the paper’s code available on Github to ensure a fair comparison. The release also includes
a .csv mapping each image to a patient identifier [21].

The class distribution across our train/validation/test sets is shown in Fig. [l and the
overall distribution for ACA/NOR/SCC is shown in Fig.[2] Figure [3|provides sample tiles for
the three superclasses at both magnifications, where the top row shows 20x images and the
bottom row shows 40x images.
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Figure 1: Data distribution of the LungHist700 dataset 20x and 40x across training, validation,
and test splits.
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Figure 2: Overall class distribution (ACA, NOR, SCC) in LungHist700 dataset 20x and 40x.

4.2 Preprocessing and Data Augmentation

We standardize training inputs with a compact albumentations pipeline. The goal is to
increase invariance to orientation, elastic slide artifacts, and stain or illumination shifts
while preserving diagnostic morphology. As summarized in Table each image (origi-
nally 1200x1600) undergoes random flips and mild grid distortion for geometric diversity;
a RandomSizedCrop (to 1200x1600) to vary effective field of view; and light photomet-
ric jitter (RandomGamma, RandomBrightnessContrast, HueSaturationValue) to model ac-
quisition/stain shifts. After augmentation, images are resized to 300x400 (i.e., 25% of
the original; controlled by percent_resize) and then normalized to the [0,1] range via
ToFloat (max_value=255). Validation/test images receive only the final resize and the same
[0, 1] normalization. Following the LungHist700 paper, we reuse the authors®™ augmen-
tation recipe and keep its transformations and hyperparameters unchanged to enable fair,
like-for-like comparison with their reported results [21].

4.3 Backbone Architectures

We compare five widely used convolutional backbones under identical training protocols.
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Normal Squamous

Normal Squamous

Figure 3: Sample images of each class at two magnifications: the top row shows 20x images
and the bottom row shows 40x images.

ResNet. He et al. “present a residual learning framework to ease the training of networks
that are substantially deeper than those used previously,” reformulating layers “as learning
residual functions with reference to the layer inputs.” They report ImageNet models “with a
depth of up to 152 layers” and an ensemble achieving “3.57% error on the ImageNet test set.”

[15]

DenseNet. DenseNet “connects each layer to every other layer in a feed-forward fashion,”
so that “for each layer, the feature-maps of all preceding layers are used as inputs, and its
own feature-maps are used as inputs into all subsequent layers.” This design “alleviate[s]
the vanishing-gradient problem, strengthen|s| feature propagation, encourage[s| feature reuse,
and substantially reduce[s| the number of parameters.” [16] In line with this, a study on
skin lesion classification reports that DenseNet 121 achieves superior validation performance
compared with EfficientNet, ResNet 50, VGG16, GoogleNet, and MobileNet V3 Large. [17]
The comparison covers accuracy, macro F1, G Means, and MCC on a dataset with class
imbalance. Accordingly, we also evaluate our losses on a DenseNet 121 backbone.

Inception (v3). Szegedy et al. explore “ways to scale up networks in ways that aim at
utilizing the added computation as efficiently as possible by suitably factorized convolutions
and aggressive regularization,” reporting “substantial gains over the state of the art: 21.2%
top-1 and 5.6% top-5 error ... using less than 25 million parameters.” [I8]|

EfficientNetV2. EfficientNetV2 is introduced as “a new family of convolutional networks
that have faster training speed and better parameter efficiency than previous models,” devel-
oped via “training-aware neural architecture search and scaling,” together with an “improved
method of progressive learning, which adaptively adjusts regularization ...along with image
size.” The paper concludes that EfficientNetV2 “trains up to 11x faster while being up to 6.8x
smaller.” [19]
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ConvNeXt. Liu et al. “reexamine the design spaces and test the limits of what a pure
ConvNet can achieve,” gradually “moderniz|ing| a standard ResNet toward the design of a
vision Transformer.” The resulting “pure ConvNet models dubbed ConvNeXt ...compete
favorably with Transformers in terms of accuracy and scalability,” with results highlighting
performance on ImageNet and downstream detection/segmentation benchmarks. [20]

4.4 Implementation Details

All experiments were run on a local workstation with an NVIDIA GeForce GTX 1660 Ti
GPU using TensorFlow/Keras 2.15.0. To ensure a fair comparison across losses, the main
hyperparameters learning rate, batch size, callbacks/schedulers, and the overall training pro-
tocol were kept identical for each backbone (see . We used the official LungHist700
train/validation/test split at both 20x and 40x magnifications and followed the datasets®™s
augmentation recipe as described in §4.2] to maintain comparability with the dataset paper.

We evaluated five widely used convolutional backbones-ResNet50, EfficientNetV2B3, DenseNet121,
ConvNeXt and InceptionV3-initialized with ImageNet pretraining. Each backbone was trained
under the same settings with four loss formulations: categorical cross entropy (CCE), weighted
CCE (WCCE), focal loss (FL), and the proposed VALF; where applicable, we also include
Dynamic Weighted Focal Loss (DWFL) as a focal-variant baseline.

Code availability. Our TensorFlow implementation of VALF, training/evaluation scripts,
and experiment configurations are publicly available at VALFﬂ

4.5 Training Hyperparameters

All models are trained for up to 100 epochs with a mini-batch size of 4. We used Adam
and report the requested metrics per epoch. For learning rate, we ran each backbone with
each loss using both 10™% and 1075 and then chose the one that on average performed better
according to accuracy and used it for all the losses to achieve a fair comparison. To avoid
overfitting and to adapt the learning rate, we enable EarlyStopping on validation loss with
patience = 25, a ReduceLROnPlateau scheduler with patience = 10 and min_Ir = 1x 1077,
and a ModelCheckpoint that keeps the best weights by validation loss (plus a CSVLogger for
epoch-wise traces) excatly like the dataset paper. For VALF. class weights are held fixed for a
10-epoch warm-up and then updated at the end of every epoch using validation performance;
the updated weights are mean-normalized and fed into the next epoch.

4.6 Evaluation Metrics

Given the class imbalance in LungHist700, we evaluate the model in a one-vs-rest (OvR)
fashion for each class and report macro-averaged scores unless otherwise noted. Let C' be the
number of classes and, for class ¢ € {1,...,C}, let TP., FP., FN., TN, denote true positives,
false positives, false negatives, and true negatives, respectively.

Accuracy
> (TP, + TN,)
S (TP.+TN.+ FP.+ FN,)

(9)

Accuracy =

Role: Overall correctness across all classes. Useful for a quick sanity check, but can overesti-
mate performance under imbalance because majority classes dominate the denominator.

2Code: https://github.com/kavehvajedsamie/VALF
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Precision (macro)

C
. 1 TP,
PreClSlOHmacrO = 5 CE 1 W}_Pc (10)

Role: Fraction of predicted positives that are correct. Penalizes false positives; clinically,
higher precision reduces over-diagnosis (e.g., fewer normal tissues flagged as cancer).

Recall / Sensitivity (macro)

C
1 TP,

Recall = — —_—. 11

macro C;TPC—FFNC ( )

Role: Ability to find true positives. Penalizes false negatives; critical in medical settings to
avoid missed cancer cases, especially for minority classes.

F1-score (macro)

C ..
1 2 - Precision, - Recall,.
F1 = — 12

facto C ; Precision, + Recall,. ’ (12)

tod _ TP, _ TP, . 3 .
where Precision, = 75 %5~ Ja aen and Recall, = 7 PAEN, Role: Harmonic mean of precision and
recall, balancing over- and under-diagnosis. More informative than accuracy under imbalance
and sensitive to improvements VALF targets.

5 Results

5.1 Overall Comparison Across Backbones and Magnifications

Table 2 reports accuracy, precision, recall, and macro-F1 at 20x and 40x across five backbones
and four baselines (WCCE, CCE, FL, DWFL) plus VALF. VALF attains the highest macro-
F1 in most settings (8/10 configurations). Specifically, for ResNet50 it reaches 0.939 at 20x
(best baseline FL: 0.925, A=+0.014) and 0.875 at 40x (best baseline FL: 0.855, A=-0.020).
For EfficientNet, VALF yields 0.825 at 20x (best baseline CCE: 0.796, A=4-0.029) and 0.945
at 40x (best baseline FL: 0.905, A= + 0.040). For DenseNet121, VALF leads at 40x with
0.940 (best baseline FL: 0.925, A= + 0.015) but is slightly behind at 20x where WCCE is
best (0.833 vs. VALF 0.825). For InceptionV3 at 20x, DWFL is strongest (0.905); at 40x
VALF leads with 0.909. Finally, for ConvNeXt, VALF attains 0.831 at 20x (best baseline
CCE: 0.810, A=+ 0.021) and 0.890 at 40x (CCE: 0.889).

5.2 Effect of Magnification

VALF shows its largest gains at 40x. EfficientNet reaches F1 = 0.945 (best baseline FL: 0.905,
A=+10.040). DenseNet121 reaches 0.940 (best baseline FL: 0.925, A=+ 0.015). InceptionV3
reaches 0.909 (best baseline CCE: 0.884, A= + 0.025). ResNet50 peaks at 20x with F1 =
0.939 (best baseline FL: 0.925, A=+ 0.014), though VALF still leads at 40x (0.875 vs. FL
0.855, A=+ 0.020). For ConvNeXt, VALF is competitive at both scales, reaching 0.831 at
20x (vs. CCE 0.810) and 0.890 at 40x (vs. CCE 0.889).
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Table 2: Performance on LungHist700 Test Set with Multiple Magnifications (20x and 40x)

Model Loss 20x 40 %
Acc  Prec Rec F1 Acc  Prec Rec F1
WCCE | 0.90 0.92 0.87 0.895 | 0.82 0.82 0.84 0.830
ResNet50 CCE 092 092 091 0915 | 0.84 0.85 0.85 0.85
FL 092 092 093 0925 | 0.84 0.85 0.86 0.855
DWFL | 092 092 091 0915 | 0.84 0.85 0.85 0.85
VALF 0.94 093 0.95 0.939 | 0.86 0.87 0.88 0.875
WCCE | 0.79 0.78 0.77 0.775 | 0.88 0.88 0.89 0.885
EfficientNet CCE 0.79 085 0.75 0.796 | 0.84 0.86 0.84 0.849
FL 0.75 0.81 0.72 0.762 | 0.90 0.91 0.90 0.905
DWFL | 0.71 0.71 0.68 0.694 | 0.72 0.78 0.73 0.754
VALF 0.83 0.83 0.82 0.825 | 0.94 0.95 0.94 0.945
WCCE | 0.83 0.87 080 0.833 | 0.90 0.90 0.91 0.905
DenseNet121 CCE 0.79 0.78 078 0.78 | 0.84 0.87 0.83 0.849
FL 0.83 0.83 0.82 0.825 | 092 0.93 0.92 0.925
DWFL | 0.79 080 0.79 0.795 | 0.78 0.84 0.77 0.803
VALF 0.83 083 0.82 0.825 | 0.94 0.95 0.93 0.940
WCCE | 0.83 0.83 0.82 0.824 | 0.78 0.80 0.80 0.80
InceptionV3 CCE 0.90 0.88 0.90 0.889 | 0.88 0.90 0.87 0.884
FL 0.88 0.86 084 0.849 | 0.86 0.90 0.85 0.879
DWFL | 0.92 0.91 0.90 0.905 | 0.70 0.74 0.71 0.724
VALF | 090 0.89 089 0.89 | 0.90 0.92 0.90 0.909
WCCE | 0.77 0.80 0.79 0.795 | 0.72 0.74 0.75 0.745
ConvNeXt CCE 0.81 081 0.81 0.81 | 0.88 090 0.88 0.889
FL 0.69 069 069 069 | 0.84 0.86 0.85 0.855
DWFL | 0.77 084 0.76 0.798 | 0.74 0.86 0.77 0.812
VALF | 0.81 0.89 0.78 0.831 | 0.88 0.89 0.89 0.89

5.3 Precision-Recall Balance

Beyond accuracy, VALF frequently raises both precision and recall. Examples: ResNet50 at
20x improves from (0.92, 0.91)-(0.92, 0.93) under baselines to (0.93, 0.95); at 40x it moves
from (0.85, 0.86) (FL) to (0.87, 0.88). EfficientNet at 40x lifts (0.91, 0.90) (FL) to (0.95,
0.94); at 20x it trades a small precision drop (0.85 — 0.83) for a sizable recall gain (0.75 —
0.82), yielding a higher F1 (0.796 — 0.825). DenseNet121 at 40x improves from (0.93, 0.92)
(FL) to (0.95, 0.93). For ConvNeXt at 20x, VALF substantially boosts precision (0.81 —
0.89) with a slight recall decrease (0.81 — 0.78), still raising F1 (0.81 — 0.831).

Error patterns (Fig. [4). VALF collapses off-diagonal errors for SCC (recall ~ 1.00),
whereas WCCE/CCE/FL show leakage from SCC into ACA (e.g., 0.85 on the diagonal for
CCE/FL). NOR remains essentially unchanged across losses (recall ~0.92). ACA is not a
minority class here but appears more confusable with SCC: its recall drops modestly under
VALF (0.94 — 0.88) relative to WCCE/CCE, while still improving over FL (0.82). Overall,
the matrices show VALF rebalancing decisions to better capture the harder SCC patterns
without degrading NOR.
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Figure 4: Normalized confusion matrices on the LungHist700 test split for WCCE, CCE, FL,
and VALF. Rows are true labels (ACA, NOR, SCC); columns are predicted labels. Cell
values denote per-class prediction rates (row-normalized); darker is better. VALF reduces
off-diagonal errors-most notably between SCC and ACA-while preserving NOR performance.

6 Conclusion

This study presented a validation-adaptive focal loss, i.e., a plug and play modification of
focal loss that initializes per-class weights uniformly or from any user-specified prior and then
adapts them during training using validation feedback. By increasing the weight of under
performing classes and softly decreasing the rest followed by normalization, VALF tracks
evolving class difficulty without changing network architecture or training pipelines. On the
LungHist700 histopathology dataset, VALF improved minority class recognition and raised
overall performance across multiple backbones and magnifications. At 20x, we observed gains
in AUC, accuracy, precision, recall, and F1 over focal loss baselines (e.g., up to 0.99 AUC and
0.94 accuracy). At 40x, VALF delivered consistent improvements (e.g., EfficientNet from 0.88
to 0.94 accuracy), indicating that adaptive, per-class weighting complements focal’s instance-
level focusing to better balance sensitivity and specificity. Because VALF operates solely at the
loss level, it is easy to integrate and adds negligible overhead. Although VALF demonstrates
promising improvements across multiple backbones, a key limitation remains: our evaluation is
restricted to image level classification on a single moderate size dataset, and we did not assess
segmentation or object detection or very large or multi center datasets, primarily because of
limited computational resources. The future studies should test VALF beyond classification,
particularly in segmentation and multi-instance learning where imbalance is more severe.
Combining VALF with sampling or uncertainty-based methods may further improve minority
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class performance. It is also important to validate the approach on datasets from different
centers to check generalizability. Finally, analyzing how weights evolve during training could
improve interpretability and help align the method with pathologists diagnostic needs.
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