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ACOUSTIC IMAGING IN SEMI-GEODESIC COORDINATES,
NUMERICAL EXPERIMENT
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Abstract The problem of imaging of discontinuities of the velocity function by the data of the inverse
problem for the wave equation is considered. A method of imaging in semi-geodetic coordinates based
on the Blagoveshchenskii formula is used. The results of numerical modeling are presented.
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1 Introduction
Let u be a solution to the following (forward) problem for the wave equation

1

c2(x, y)
utt = uxx + uyy, ∞ < x < ∞ y > 0, t > 0, (1)

u|t=0 = 0, ut|t=0 = 0, (2)
uy|y=0 = fδxα

, (3)

where f ∈ C∞
0 (0, t0) is a short impulse, δxα(x) = δ(x− xα) is the Dirac function supported at point

xα ∈ Γ0 ⊂ Γ, where Γ is the x-axis, velocity c is assumed to be piecewise smooth. Inverse data
u0(x, t;xα) = u(x, 0, t;xα), x ∈ Γ0

are given at the same segment where sources located. We consider the problem of imaging disconti-
nuities of the velocity by the inverse data.

One of the main procedures in seismic data processing is migration (reverse-time migration, Ki-
crhhoff migration [1], etc.) which gives an image of the acoustic (seismic) medium. In this case,
as a rule, the velocity function is considered to be given. An error in velocity setting can lead to
large distortions in the image. In the present work, we assume that velocity is unknown and use the
approach for acoustic imaging in semi-geodesic coordinates which was proposed in [2]. This approach
is based on the Blagoveshchenskii formula of the scalar product of waves, which is one of the basic
tools of the Boundary Control method. Being written in semi-geodetic coordinates, this formula leads
to the possibility of determining waves propagating in an unknown medium. This possibility is based
on triangular decomposition of the matrix C of the scalar products. Possessing such waves, one can
construct an image of the acoustic medium in semi-geodetic coordinates. Another ingredient of our
approach is an imaging condition associated with discontinuities of the velocity. The term imaging
condition comes from seismic processing, where it is used in migration, and means a formula for
imaging.

Triangular factorization of the connecting operator C (in our case matrix) is the main procedure
of the Boundary Control method for visualizing waves. First, it was mentioned in [3], (see also [4], [5],
[6]). There are many works that contain results on numerical modeling using the Boundary Control
method. They are mainly related to solving the inverse problem (velocity restoration) based on solving
the boundary control problem ([7],[8],[9],[10],[11]). We do not solve the inverse problem, but visualize
an acoustic media based on direct triangular factorization and some formula for imaging.

This article is a continuation of the works [2],[12].
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2 Imaging condition
We denote by B(xα, t) = {(x, y) ∈ R2

+| dist((x, y), (xα, 0) < t} the riemannian hemi-ball of radius t
and centered at (xα, 0) (the distance between the points (x, y) and (xα, 0) is understood in the sense
of riemannian metric δij/c2). Notice that wave u(x, y, t;xα) is supported in B(xα, t). For simplicity,
we assume that the velocity is a constant near the boundary. In the following lemma t0 is the length
of the impulse f .

Lemma. Let c|B(xα,t0) = c0 = const, ∀xα ∈ Γ0. Then the following equality
sing suppu(·, ·, t, xα) = sing supp c ∩B(xα, t) holds for t ≥ t0.

Proof. The fundamental solution to the two-dimensional wave equation is

K(x, y, t) =
1

2πc0
√
c20t

2 − x2 − y2
H(c0t−

√
x2 + y2),

where H is the Heaviside function. It coincides (up to factor 1/2) with the Green function of the
Neumann problem. Then for source fδxα

we have solution to the problem with constant velocity

u0(x, y, t;xα) = (f ∗K)(x− xα, y, t) =
1

4πc0

∫ t

(
√

(x−xα)2+y2/c0

f(t− s)ds√
c20s

2 − (x− xα)2 − y2
.

From f ∈ C∞
0 (0, t0) it follows that u0, ∂tu0 ∈ C∞(B(xα, t0) (it may be shown by integrating by parts

). Clearly u = u0 for t ≤ t0. Then we have for t > t0

uxx + uyy =
1

c2(x, y)
utt, (4)

u|t=t0 = u0|t=t0 , ut|t=t0 = u0t|t=t0 , (5)
uy|y=0 = 0. (6)

Problem (4)-(6) has unique solution in H1(B(xα, T ) × [t0, T ]) for T > t0 (this is easy to show,
following the method of a priori estimates in [13]). Moreover, due to the smoothness of f the solution
is smooth in time, u ∈ C∞([t0, T ];H

1(B(xα, T )), and then u is smooth everywhere the velocity is
smooth. Indeed, let c be smooth in some neighborhood Ux,y of point (x, y). Then from (4) we have
uxx + uyy ∈ C∞([t0, T ];H

1(Ux,y)). This implies u ∈ C∞([t0, T ];H
3(Ux,y). It follows from the well-

known property of elliptic operators about smoothness [14] (in our case the smoothness of u is greater
than the smoothness of uxx + uyy by two). Proceeding we have u ∈ C∞([t0, T ] × Ux,y). And vice
versa, if u ∈ C∞([t0, t]× Ux,y), then from (4) it follows that c is smooth in Ux,y.

Thus, the waves (its derivatives) from all sources have discontinuities at the same set supp c. Based
on this, we propose the following formula for imaging (imaging condition) of velocity discontinuities:

F (x, y) :=
∑
α

∫ T

0

u2
t (x, y, t;xα)dt, (x, y) ∈ ΩT . (7)

Strictly speaking, formula (7) is of empiric character. Below (section Forward problem) we show an
example of how it works for single source and for all sources.

3 Matrix C
Our approach to imaging is based on the Blagovestchenskii forlmula for scalar product of waves [15].
We derive shortly this formula in a form, convenient for us. For any solutions u, v to the wave equation
the identity 1

c2
(utvt + (∇u,∇v)) = div(ut∇v + vt∇u)

holds. Let tα, tβ ∈ [0, T ], tα ≤ tβ , xα, xβ ∈ Γ0,

v(x, y, t) =
1

2
[u (x, y, t− tα + tβ ;xβ)− u (x, y, tα − t+ tβ ;xβ)]

and u is u(x, y, t;xα). Integrating (2) over R2
+ × [0, tα] and due to v(x, y, tα) = 0, vt(x, y, tα) =

ut(x, y, tβ ;xβ) we get
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Cαβ :=

∫
ΩT

ut(x, y, tα;xα)ut(x, y, tβ ;xβ)
dxdy

c2(x, y)
=

=
1

2

∫ tα

0

u0
t (xβ , tα − t;xα)[f(tβ − t)− f(tβ + t)]dt

+
1

2

∫ tα

0

f(tα − t)[u0
t (xα; tβ − t, xβ) + u0

t (xα, tβ + t;xβ ]dt.

(8)

Here ΩT is the domain filled up with waves up to the moment T , ΩT =
⋃

xα∈Γ0

B(xα, T ). Notice that

right hand side of (8) is symmetric w.r.t. α, β. We will call numbers α, β controls. Each control α
determines source xα and radius tα of hemi-ball B(xα, tα).

Introduce semi-geodesic coordinates (x′, τ) of point (x, y) (Fig. 1)

(x, y) = γ(x′, τ), x′ ∈ Γ, τ ∈ [0, T ],

where γ(x′, τ) is the segment of the geodesic starting from point x′ ∈ Γ orthogonally to the boundary
of the length τ = dist(x, y;x′, 0). We assume that the map γ : (x′, τ) 7→ γ(x′, τ) is a diffeomorphism
Γ× [0, T ] on its range. This is true for small enough T . In the semi-geodesic coordinates we have

Cαβ =

∫
γ−1(ΩT )

J(x′, τ)

c2(γ(x′, τ))
ut(γ(x

′, τ), tα;xα)ut(γ(x
′, τ), tβ ;xβ)dx

′dτ,

where J(x′, τ) is the Jacobian of the map γ.
We rewrite this in the form

Cαβ =

∫
γ−1(ΩT )

v(x′, τ, tα, xα)v(x
′, τ, tβ , xβ)dx

′dτ,

where
v(x′, τ, tα, xα) =

√
J(x′, τ)

c(γ(x′, τ))
ut(γ(x

′, τ), tα;xα).

If Γ0 = Γ, the domain γ−1(ΩT ) is known, γ−1(ΩT ) = Γ × [0, T ]. In our case Γ0 ̸= Γ, and domain
γ−1(ΩT ) is unknown. We replace domain γ−1(ΩT ) with Γ0 × [0, T ] = Σ. By doing so, we introduce
an error in the integral. So in what follows

Cαβ =

∫
Σ

v(x′, τ, tα, xα)v(x
′, τ, tβ , xβ)dx

′dτ. (9)

We call domain Σ screen following M.I. Belishev and v(·, ·, tα, xα) wave on the screen, generated by
control α. It is on the screen that we will obtain the image according to the following formula

F ′(x′, τ) =
∑
α

∫ T

0

v2(x′, τ, t, xα)dt, (x′, τ) ∈ Σ. (10)

Figure 1: Semi-geodesic
coordinates

Figure 2: Model
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4 Forward problem
In our numerical experiment, we used the two-dimensional layered model (Fig. 2).

To solve the forward problem we used finite difference time domain method (FDTD) for the
first-order acoustic system for p = ut and V = ∇u:

1

c2
pt = divV, Vt = ∇p.

As the impulse f(t) we used the (truncated) Ricker wavelet (Fig. 3). We used shifted grids with the
12-th accuracy in space and the 2-nd accuracy in time.

Figure 3: Ricker impulse, f0 = 40Hz - dominant frequency

The steps in space (0.005 km) and time (0.0004 s) satisfy the Courant condition ∆t < ∆h/(kcmax

√
2),

where parameter k depends on the order of approximation, in our case k = 1, 34. The calculation
domain is rectangle 3.5 km × 1 km, the number of boundary points is Ns = 151. The sources are
uniformly located on segment [1.5 km, 2.5 km]. Time T is 0.416 s.

After solving the forward problem, we tested the formula (7). Fig. 4 is the image computed for
one source (no summation over α) and Fig. 5 is the image with summation over all sources.

To get such an image one need to have waves, which unknown in the inverse problem. Nevertheless,
one can find waves v in the semi-geodesic coordinates in (9). Finding such waves leads to the problem
of triangular factorization of the matrix C.

5 Triangular factorization and imaging

Our screen after discretization is a set of Ns ×Nt points, Ns is the number of sources, and Nt is the
number of time samples (in our case Ns = 151, Nt = 150). We parametrize ponts of the screen by
greek letters , so that any σ = 0, ..., Ns ×Nt corresponds point (xσ, τσ) of the screen. We arrange the
points of the screen starting from the bottom left corner and ending with the top right one. We also
associate any screen point α with a control, determined by source xα and radius tα of filling domain
B(xα, tα).

We replace integral
Cαβ =

∫
Σ

v(x′, τ, tα, xα)v(x
′, τ, tβ , xβ)dx

′dτ

with sum
Cαβ =

Ns×Nt∑
σ=1

v(xσ, τσ, tα, xα)v(xσ, τσ, tβ , xβ)

or in the matrix form
C = V ∗V, Vσα = v(xσ, τσ, tα, xα).

Due to kinematic reason matrix V is upper triangular. Indeed, let σ > α. Then τσ ≥ tα. If
xσ ̸= xα then dist(γ(xσ, τσ), (xα, 0)) > τσ ≥ tα since τσ is the distance of point γ(xσ, τσ) to the
boundary. Therefore, γ(xσ, τσ) /∈ B(xα,, tα). If xσ = xα then σ > α implies τσ > tα and again
γ(xσ, tσ) /∈ B(xα,, tα). In any case σ > α implies ut(γ(xσ, τσ), tα;xα) = 0 and therefore Vσα = 0.

That is, to get waves on the screen, it suffices to perform a triangular factorization of the matrix
C. The complexity of this problem is that C is ill-conditioned (but it is non-negative). We applied
the following procedure for triangular factorization.
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Figure 4: Image from one source

Figure 5: Image obtained after summation over all sources

Assume that C is positive and let C = XΛX∗ be its spectral decomposition, where matrix X
is orthogonal and Λ is diagonal. Consider the QR decomposition of matrix

√
ΛX∗ = QR, where Q

is orthogonal and R is upper triangular. Then C = X
√
Λ
√
ΛX∗ = (QR)∗QR = R∗R and therefore

R = V .
In our numerical experiment C had a few negative eigenvalues of small absolute value. We replaced

Λ with Λ+αI with small positive α (we take α equals modulo of minimal eigenvalue):
√
Λ + αIX∗ =

QαRα and obtain matrix Rα which we identify with V . Finally, we obtain the image in the semi-
geodesic coordinates by the formula F ′ = diag(RαR

∗
α) or

F ′(xσ, τσ) =

Ns×Nt∑
α=1

v2(xσ, τσ, tα, xα),

that corresponds to (10).
The resulting image (Fig. 7) contains some noise. Using a high-pass filter, we removed low fre-

quencies for all columns of the image. (Each column corresponds to a normal ray intersecting inner

Figure 6: Screen Σ
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Figure 7: Reconstructed image
in semi-geodetic coordinates

Figure 8: Model and reconstructed image after filtering in
semi-geodetic coordinates

boundaries). This suppresses slow changes in image brightness, and we get an image in which the
boundaries are enhanced. In the last two figures, we compare the image of our model, calculated in
the semi-geodetic coordinates, and the reconstructed image after filtering.

If there is any approximation to the velocity, then it is easy to recalculate the image in the semi-
geodetic coordinates into the corresponding Cartesian coordinates. Note that the image will retain
the “correct” summation over the sources, regardless of this approximation. In the case of the reverse
time or Kirchhoff migration, the incorrect velocity leads to out-of-phase summation of the waves.
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