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DETECTING BUILDING DEFECTS WITH DEEP LEARNING
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Abstract Building defects on external walls can include cracks, mould, dampness from waterproofing
failures, fungus growth due to high humidity, and paint peeling. These building defects are commonly
caused by wear and tear, improper maintenance, and weather conditions. The identification of these
defects is very important to maintain the structural health and safety of buildings, which are often a
large financial asset. Manual visual inspection is a traditional technique for defect detection and the
most laborious way to identify wear defects, in addition to other nondestructive testing procedures
that determine defect properties. Advances in DL and computer vision are expected to improve the
efficiency of defect detection. For instance, the DL-based YOLOv10 (You Only Look Once) method
provides real-time defect detection that is fast and accurate. This study provided the YOLOv10
technique for the automated detection and localization of building defects. In addition, this study not
only makes defect detection more efficient but also helps researchers to advance the overall inspection
process with more efficiency.
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1 Introduction
Degradation of buildings is unavoidable due to weather conditions, wear and tear, and im-
proper maintenance. It is very important to understand the significant types of building
defects that can affect various aspects of a building’s condition (Faqih and Zayed, 2021 [9]).
Building defects such as cracks in walls, water leaks, dampness, mould, paint peeling, and
poor construction can lead to the degradation of buildings. Detecting these building defects is
important to maintain the structural health and safety of buildings. Building plays a crucial
role in the development of cities. Its development with organized maintenance is one of the
key characteristics of developed cities. Efficient condition monitoring is essential to sustain
its functional requirements (Mohseni et al., 2023 [30]). As per the International Council for
Research and Innovation in Building and Construction - Working Commission W086: Build-
ing Pathology (CIB-W086) report (Freitas and Peixoto, 2013 [11] ), such building defects can
accelerate the degeneration of buildings, which can lead to a yearly maintenance cost of up
to 5% of the total construction cost.

It is really important to understand different types of defects and the factors affecting them
to correctly assess the building condition. Sometimes, minor defects can become major if they
are not identified. It can lead to serious issues that will become more challenging to solve.
Moreover, one type of defect may cause other types of building defects. Buildings deteriorate
at different rates based on their design details, quality of materials, construction methods
and standards, environmental conditions, the skill of the workers, and how the building is
used. Design is an important factor contributing to hidden defects in buildings. About 66%
of the defects discovered early in usage could have been avoided with better design (Chong
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and Low, 2006 [5]). Weather related factors include sunlight, rain, wind, and humidity.
When humidity moves from wet areas to dry areas, it can lead to the growth of algae and
fungus. Low quality building materials are often damaged by destruction and accidents, and
sometimes materials deteriorate faster than expected. Poor design frequently causes issues
from loads and residential. Geological problems, such as cracks from soil settlement, can
be particularly dangerous. In a study by (Chong and Low, 2006 [5]), these factors were
investigated. The authors examined 74 buildings over nine months and found that moisture
from damp areas, weather, low material quality, and usage were the primary factors. The
study concluded that these defects could be potentially avoided by using better materials,
implementing damage prevention measures, treating water leakage, improving design details
and conducting thorough site assessments. In addition, many studies have identified the
common defects in buildings, such as reinforced corrosion from chemical reactions within
the concrete, which reduces the durability of beams and pillars. Roof leakage, caused by
water pressure and poor concrete filling. Cement oozing, or salt staining, results from poor
construction and an improper mixture of concrete. Cracks and popping in tiles are due to
adhesive failure. Wall cracks can occur due to vibrations from the metal support system for
the air conditioning system. Exposed metal installations are sensitive to rapid corrosion due
to environmental factors. Lastly, a lack of construction knowledge and maintenance expertise
plays a major role in building defects (Kian, 2001 [21]) (Marshall et al., 2009 [28]). It is also
considered a building defect when weed plants, vines, moss, or roots start growing from cracks
in the wall due to dampness which damages the building faГ§ade. The plant’s roots penetrate
the wall, causing further cracks and deterioration, which can lead to serious structural damage.
Such defects are presented in Figure 1.

Figure 1: Examples of building defects.
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Numerous studies investigate various building defects and provide detailed information.
In this study, we will focus on the dampness defect. The term “dampness” refers to the condi-
tion where a sufficient amount of moisture causes deterioration in building walls. Dampness
in the buildings is caused by many factors, primarily involving the presence and movement
of moisture. Moisture in the atmosphere consists of invisible water vapor. This vapor moves
in response to temperature changes and can form water droplets. The formation of these
droplets on surfaces is caused by condensation, which depends on the temperature and hu-
midity of the air. Leakages from roofs, walls, and issues in plumbing systems can also promote
excessive moisture into the building. Another common cause is poor ventilation, which leads
to high humidity. Damaged and weak insulation can also contribute to raising the humid air.
Additionally, environmental factors like heavy rain and flooding can escalate the dampness
issues (Thomas, 1986 [42]). When moisture from the ground rises through a building’s walls,
rising dampness happens. This occurs as a result of capillary action forcing moisture in an
upward direction via porous materials like plaster or bricks. Elevated groundwater levels,
inadequate drainage, and deficient damp proofing are some of the factors that cause rising
damp. Rain can enter buildings through fences, chimneys, and roof drain systems, especially
during windy conditions. This frequently affects wind exposed facades and roofs. Where
faulty construction, bad workmanship, bad design, and negligence can make the issue worse.
(Bakri & Mydin, 2014 [2] ). Dampness can also come from wet areas in buildings, including
bathrooms and kitchens, that have poor plumbing fixtures. Dampness changes with different
environmental conditions. Additionally, Dampness can leave stains and traces of mould, and
moss. When the dampness is visible, it can be seen in the form of mould, fungus, and stains
on the surfaces. Such signs confirm that the building is damp.

Dampness and mould have a significant number of serious effects. It can have serious
health impacts on adults, children, and infants, affecting the respiratory and allergy systems.
There is a higher chance of respiratory illnesses like asthma, bronchitis, and other chronic lung
diseases. (Mendell et al., 2011 [29]). According to a review conducted by (Fisk et al., 2007
[10]) dampness-related risk factors in residential buildings are related to significant increases
in different important respiratory health issues, including a 50% rise in asthma cases. The
electrical system is a critical part of a building’s structure. When water leaks due to dampness
it can lead to serious short circuits and fire hazards. This can create significant life threatening
risks for the occupants. Furthermore, dampness can lead to the corrosion of metal parts in
the building structure. This can cause structural damage, weakened stability, and major
safety problems. This degradation could potentially affect the building’s structural integrity
and safety and require expensive maintenance. Lastly, due to dampness, paint and plaster
can peel off from walls and roofs, damaging the building’s appearance. It can damage floor
coverings like tiles and carpets. Paint can also degrade because it expands and contracts
due to fluctuations in temperature, seasonal changes, exposure to sunlight, and pollution,
leading to flaking, peeling, blistering, and fading. This study focuses on mould, stains, and
paint deterioration, which are the most common and interconnected defects resulting from
dampness (Thomas, 1986 [42]) (Bakri, & Mydin, 2014 [2]). Buildings that are damp promote
the growth of mould, corrosion of metals, wood parasites, and decomposing fungus; all of
these are harmful to the health and comfort of residents. In order to prevent dampness,
buildings should be well ventilated. Excessive moisture can be eliminated by keeping the
surface warm above the dew point temperature. Which can be achieved by proper heating
and better thermal insulation (Thomas,1986 [42]) (Bakri & Mydin, 2014 [2]). The service
life of existing building structures can be increased by correctly inspecting building defects
using an organized condition assessment before they collapse, which can reduce the need for
maintenance and repairs (Paulo et al., 2014 [31]).
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The basic method for inspecting buildings for defects is human visual inspection. This
method is time-consuming, expensive, and labor-intensive. As a result, new methods to sup-
port or replace manual inspections are essential (Tan et al., 2024 [39]). In the early stage
of defect detection, researchers used visual inspection, vibration testing, and non-destructive
testing (NDT) methods to detect the defects. Numerous techniques have been developed to
detect defects by analyzing vibrations. These techniques apply to a variety of structures, such
as buildings, bridges, dams, and road surfaces (Lifshitz & Rotem, 1969 [25] ) . However, these
methods have shifted to traditional defect detection approaches, which involve measurement,
feature extraction, and classification to identify defects using machine learning (ML) methods.
For instance, artificial neural networks (ANN) were used by (Mansour et al., 2024 [27]) to
predict the shear strength of concrete beams. Support vector machines (SVM) were utilized
by (Hoang, 2018 [16]) to analyze features extracted by image processing and classify them into
specific categories, and by (Hadjidemetriou et al., 2018 [15]) for automatically detecting and
quantifying pavement patches. Genetic algorithms (GA) and multilayer perceptron (MLP)
were compared by (Rababaah, 2005 [36]) to improve the automated classification of asphalt
pavement cracks using computer vision. Random forest (RF) was employed by (Shi et al.,
2016 [37]) to automatically detect cracks. Fuzzy logic was used by (Pragalath et al., 2018
[35]) to determine damages caused by different types of defects, such as corrosion, mould,
fatigue, shrinkage, honeycombing, and loading. Additionally, Bayesian approaches were used
to improve the accuracy of assessing building damage after an earthquake, as demonstrated
by (Erazo & Hernandez, 2016). On the other hand, computer vision techniques are becoming
more popular because they provide clear graphical representation of defect detection in red,
green, and blue (RGB) images (Stephen et al., 1993 [38]) (Abdel-Qader et al., 2003 [1]). The
defect features still need to be identified manually when using computer vision techniques.
It requires a sufficient amount of light to identify the defects. Problems like blurriness and
shadows affect their effectiveness, and conventional ML techniques are less efficient at classi-
fying various kinds of defects. It has been a challenge to identify defects with varying light,
temperature, and noise conditions. For this, more advanced learning techniques are required
to effectively classify these defects. To address the challenges associated with traditional ML
methods, (Cha et al., 2017 [4]) proposed a deep learning (DL) method to detect the defects
more effectively. DL techniques use multiple layers to analyze and understand the complex
data. It is able to automatically identify detailed damage features from images by learn-
ing a large labeled dataset. DL has shown significant results in fields like object detection,
image recognition, and virtual assistant. In order to improve defect detection, (Cha et al.,
2017 [4]) combined DL with a convolutional neural network (CNN) to solve the problem of
manually identifying and categorizing damage using traditional approaches. This method
automatically extracts required features from images and was able to detect concrete cracks
with 97% accuracy even in difficult situations like blurriness and shadows. Furthermore, a
faster region-based convolutional neural network (Fast R-CNN) was developed to improve this
model. This method shows a high accuracy of 87.8%, allowing for real-time defect detection
(Cha et al., 2018 [4]). This study also highlights the development of augmented reality (AR)
and unnamed aerial vehicles (UAVs), which make it possible to combine virtual data with
real world conditions. This feature shows that AR with UAVs can visualize defect data from
computer vision, making inspections more efficient. However, it is also important to discuss
the challenges associated with implementing this technology, as highlighted by (Ellenberg et
al., 2014 [7]). The literature includes many studies on defect detection, and recent research
has increasingly focused on the automated detection of defects using DL in structures dam-
aged by earthquakes (German et al., 2012 [14]) (Ji et al., 2018 [18]) (Vetrivel et al., 2018
[43]) (Tarutal et al., 2020 [40]). In this study, it is important to provide the most recent and
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commonly used DL methods along with their applications and accuracy, as detailed in Table
1. Along with, a brief summary of each method, and its relevance to building defect detection
is also presented to offer a comprehensive understanding of their effectiveness in the field of
building defect detection.

Table 1. Identification of building defects using DL methods with their accuracy.
Reference Application Modeling

technique
Accuracy

Cha et al., 2017 Crack detection in buildings CNN 98%
Ji et al., 2018 Identification of collapsed building in

post- earthquake
CNN 78.6%

Perez et al.,
2019

Detecting building defects CNN 87.50%

Cumbajin et
al, 2024

Defect detection in ceramic pipes CNN 98%

Kalantar et al.,
2020

Detection of damaged building in
post- earthquake

CNN 76.86%

Kung et al.,
2021

Defect detection in building CNN 87.75%

Vetrivel et al.,
2018

Disaster damage detection CNN, TL 85%

Jayaraju et al.,
2022

Crack detection in buildings CNN, RNN 99%

Garrrido et al.,
2021

Identify and classify building
faГ§ade defects

R-CNN 92.8%

Kuchipudi and
Ghosh, 2024

Automated detection of building de-
fects

R-CNN 98%

Yang, 2024 Defect detection in building Fast R-CNN 94%
Lee et al., 2020 Detection of building faГ§ade defects Fast R-CNN 62.7%
Wang et al.,
2021

Automated detection of building de-
fects

Mask R-CNN 78.97%

Ma, 2020 Detection of collapsed building in
post- earthquake

YOLOv3 90.89%

Fu & Angkaw-
isittpan, 2023

Defect detection in heritage build-
ings

YOLOv5 99.2%

Tan et al., 2024 Detecting building defects YOLOv5, Deep-
SORT, AR

78.63%

Jiang et al.,
2021

Crack detection in buildings U-Net 97.82%

Peng et al.,
2021

Detection of building defects Center Net,
Fuzzy Cluster-
ing

90%

Perez and Tah,
2021

Structural health monitoring of
buildings defects

Tensor flow, TL,
SSD Mobile Net

80%

A CNN based approach is used by (Cha et al., 2017 [4]) for detecting the cracks on the
buildings. The images of these defects are used as a dataset. The proposed network recorded
the accuracy of 98% using 40 K images having 256 × 256-pixel resolution. The sliding window
technique is utilized for the scanning of high resolution images to obtained the clear vision
of defects. This proposed method is very effective at good lighting condition. Infrastructural
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damage by Haiti 2010 earthquake is assessed by (Ji et al., 2018 [18]) using the CNN method.
The dataset is obtained from very high resolution satellite images. Firstly, to reduce the im-
balance, three balancing methods are integrated with CNN which are random over-sampling,
random under-sampling, and cost-sensitive. After balancing steps, the proposed network
achieved the overall accuracy of 78.6% with width larger than 46-pixel resolution. This per-
formance can be improved using more training data using advance ensemble DL methods.
Building condition assessment are time and cost consuming, laborious with safety risks. For
this (Perez et al., 2019 [34]) proposed a CNN trained network to automatically detect the
building defects like mould, fungi, stain and paint deterioration. A total of 2,622,224 × 224
image dataset are used with Visual Geometry Group 16 (VGG-16) classifier on ImageNet.
Different augmentation techniques are used to generate large dataset to make the model more
robust. The proposed model is also compared with ResNet-50, and Inception models with
class activation mapping (CAM) technique. The model shows an overall accuracy of 87.50%.

An automatic defect detection system is developed by (Cumbajin et al., 2024 [6]), using
CNN techniques. The dataset is generated using high resolution camera with good lighting
conditions. ResNet is utilized as a CNN network with training from scratch (TFS), transfer
learning (TL), and fine-tuning (FT) to achieve the high accuracy of 98% and F1-score of
97.29%. Automatic and visual inspection techniques using remote sensor images are tradi-
tional methods to detect building defects. However, shadows and light condition making it
more challenging. For this (Kalantar et al., 2020 [20]) developed three CNN models, such as
twin model, fusion model, and composite model, using remote sensor images from the 2016
Kumamoto earthquake, Japan. The twin model achieved the highest accuracy of 76.86%. De-
terioration of building faГ§ade are public safety hazard, which required active maintenance
and timey repair of building defects. Apart from traditional method, (Kung et al., 2021 [23])
developed a CNN model to automatically detect and localize the building defects. The to-
tal 5680 images obtained from UAV with a resolution of 224 × 224 and 3024 × 4032 pixels
are used as a dataset. The data is augmented to solve the overfitting problem. The pro-
posed model is fine-tuned with transfer learning and VGG classifier and achieved the overall
accuracy of 87.75%.

In a study by (Vetrivel et al., 2018 [43]), severe building damages are automatically de-
tected by using 3D images from UAVs. A multiple-kernel-learning algorithm was utilized to
integrate the 3D features for classification. The integration of CNN and 3D features signifi-
cantly achieved the overall accuracy of 85%. The condition of buildings is mostly affected by
the environmental condition. It can be in a form of cracks, mould, stain and paint deteriora-
tion. (Jayaraju et al., 2022 [17]) focuses on the cracks defect and utilized and compared CNN
and Recurrent Neural Network (RNN) methods. The dataset contains 40,000 RGB images
of cracks with 4032 × 3024 pixel. As a result, the CNN method achieved highest accuracy
of 99%, whereas RNN achieved only 45% accuracy. (Garrido et al., 2021 [13]) explored the
process of defect identification of building faГ§ades. The data is achieved from InfraRed
Thermography (IRT). A total of 826 thermal images were used. The classification of these
dataset is done by using spatial and temporal DL models. The spatial model which is Mask
R-CNN is used to detect and classify different defects and the temporal model which is Gated
Recurrent Unit (GRU) is used to estimate the depth of defects automatically. The proposed
Mask R-CNN method achieved an accuracy of 92.8%. A region-based convolutional neural
network (R-CNN) method is used by (Kuchipudi & Ghosh, 2024 [22]) to automatically detect
and localize the defects in concreter structures. The ultrasonic image dataset is generated
with synthetic aperture focusing technique. The performance of the model is compared with
the “you only look once” YOLOv4 model. The developed R-CNN model achieved the accu-
racy of 98%., which was not possible with the YOLOv4 model. In an experimental study
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conducted by (Yang, 2024 [45]), Fast R-CNN method is used to detect the building defects.
For this, building wall cracks are simulated to evaluate the detection accuracy. A 4032 ×
3024-pixel image taken by cell phone is used to develop image recognition technology. Later,
it is compared with traditional method and DL based methods like Fast R-CNN. Where, the
proposed Fast R-CNN model achieved the accuracy of 94%. (Lee et al., 2020 [24]) proposed a
monitoring system that detect the building faГ§ade defects using an object detection method
based on DL method to efficiently detect the defect. A Fast R-CNN method is employed
to accurately detect the delamination, cracks, peeled paint, and water leaks defects. The
image of these defects were obtained using a digital camera with a resolution of 800 × 600.
pixels. The proposed Fast R-CNN model achieved an average accuracy of 62.7% for all type
of defects. Automatic detection of unreinforced concrete buildings using image segmentation
method integrated with Mask R-CNN method is presented by (Wang et al., 2021 [44]) in his
study. Street view images of Salina Cruz city, Oaxaca State, Mexico are used as a dataset.
The total 10,541 building images are classified using segmentation method. Later using Mask
R-CNN the unreinforced concrete buildings are successfully identified with a 78.97% average
accuracy.

Figure 2: Taxonomy of DL methods for detecting building defects.

Collapsed buildings in Yushu and Wenchuan earthquake in china are detected and localized
using CNN based YOLOv3 model by (Ma, 2020 [26]) in his research study. A sample of 2180
remote sensing images with 416 × 416 pixels are used as a dataset. Three different models
which are YOLOv3, YOLOv3-ShuffleNet, and YOLOv3-S-GIoU are utilized and compared
to detect the collapsed buildings in post-earthquake. The YOLOv3 model achieved an ideal
accuracy of 90.89%. A YOLOv5 based model with Swin Transformer is developed by (Fu &
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Angkawisittpan, 2023 [12] ) to automatically detect the surface defects of heritage buildings.
A total 2400 images with 512 × 512 pixels of moss, cracking, alkalization, staining, and
deterioration defects are used. The YOLOv5 model is used for classifying and detecting only
plant penetration defects. Whereas, the Swin Transformer is used for image segmentation and
detecting other defects like cracking, alkalization, staining, deterioration, and moss. The Swin
Transformer achieved 95.78% accuracy while YOLOv5 model achieved highest accuracy of
99.2%. In addition, (Tan et al., 2024 [39]) developed an AR-based defect inspection application
using YOLOv5 and DeepSORT algorithms for real-time defect detection and tracking. The
proposed system combines computer vision, AR, and building information modeling (BIM) to
improve the defect inspection process. To develop the model, a dataset of 7,430 images with a
resolution of 2532 × 1170 pixels is utilized. AR-based method achieved an accuracy of 78.63%.
(Jiang et al., 2021 [19]) presented an efficient method for defect detection and visualization
of buildings using DL based method. The 3D phots are collected using drones and cameras.
The U-Net method is used for image segmentation to detect and localize the defect. The
developed model achieved an overall accuracy of 97.82%. Building faГ§ade and its falling is
very common building deterioration defect. For this (Peng et al., 2021 [32]) proposed a DL
based method to identify debonding defect. An UAVs based thermography detection method
is integrated with Center point network and fuzzy clustering to quantify and recognize such
defects. A dataset of 1000 images with 640 × 480 pixels is utilized. The proposed model
performed accurately and achieved an accuracy of above 90%. (Perez and Tah, 2021 [33])
developed a DL based model to detect the building defects which can be used to assess the
condition and health of buildings. The 875 images of building defects such as cracks, mould,
stain and paint deterioration are collected for the dataset. Data augmentation technique is
used to improve the dataset. VGG image annotator is used to annotate the images. Tensor
Flow model is integrated with single-shot multibox detection (SSD) Mobile Nets to detect
the defect using mobile phone. This developed real time defect detector performed well and
achieved 80% accuracy. After discussing and presenting a brief review of the most used DL
methods, a taxonomy categorizing these methods based on their respective authors can be
seen in Figure 2. This can provide a clear overview of the different DL methods and their
contributions of building defect detection. Considering the above-mentioned DL methods for
the application of detecting building defects, it is apparent that CNNs, R-CNN, Mask R-CNN,
Faster R-CNN, RNN, TL, YOLO and other ensemble methods are the most popular. Here,
it is worth mentioning that the value of accuracy can be different across studies. In addition,
the values of accuracy in some studies were calculated for different methods. To ensure a fair
comparison of the DL methods, we standardized the accuracy percentage and calculated the
average when there were multiple accuracy values are reported. Any possible error is cross
checked. The comparative performance analysis of DL methods for detecting building defects
using percentage of model accuracy are presented in Figure 3.
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Figure 3: Comparative performance analysis of DL methods for detecting building defects.

It has been notice that, the CNNs are most widely used DL method due to their efficiency
and strong performance in handling complex datasets, particularly in the cases where image
datasets are not clear. This comparative performance analysis suggests that the limitations of
major DL methods such as accuracy, instability, performance, and robustness can be improved
by hybridizing different DL methods or using ensemble variations. This trend is likely to
develop the future of building defect identification.

Based on the above research, there has been a lack of focus on applying advanced DL
techniques to improve the smart sensors for identifying building defects with more efficiency.
There is a notable research gap in automated building condition assessments, even though
buildings are a major financial asset. The primary aim of this research is to explore the
use of the DL-based YOLOv10 method for real-time defect detection. This approach will
allow YOLOv10 to perform defect detection processes with high speed and efficiency. This
study will focus on detection and localization of key defects in buildings such as cracks,
mould, paint peeling, and stains. The analysis process will include only clear images to
avoid problems like blurriness and shadows. The future study will explore the limitations
and challenges associated with the YOLOv10 method. It is also important to highlight the
recent developments that align with the objectives of our research. (Perez et al., 2019) make
a significant contribution by employing a DL based CNN method with transfer learning for
automatic detection and localization of building defects. This study by (Perez et al., 2019) is
related to our research on automated defect identification and its localization. Their research
provides insightful information, and we will utilize their dataset to further develop and advance
our own research.
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2 Materials and Methods:

There are some significant DL networks, such as R-CNN, Faster R-CNN, DNN, and the
YOLO series (v1 to v8), have been widely applied to damage detection and localization
tasks, identifying issues like mould, dampness, paint deterioration, and other building defects.
YOLO is a regression-based method. In order to utilize the YOLO model, an input image is
passed through a CNN to extract the features. The image is divided into a grid, and each grid
cell’s class and location are predicted in a single pass. The objects in each cell are predicted,
along with a confidence level. After this, YOLO removed duplicate boxes and kept the most
accurate predictions using a method known as Non-Maximum Suppression. The final output
is a set of predicted bounding boxes and class labels for each object in the image. Because of
this, YOLO is a fast and effective method in identifying multiple factors in one single pass (Ma
et al., 2020 [26]). It is worth mentioning that YOLO models simplify the process by using a
single regression output to predict both the object class and bounding box coordinates, unlike
Fast R-CNN, which uses separate outputs for classification and box coordinates (Terven et
al., 2023 [41]). A schematic representation of the YOLOv3 model is shown in Figure 4.

Figure 4: Schematic representation of the YOLOv3 model, with red arrows indicating the
process of up-sampling performed twice.

The YOLOv3 network structure, as presented in the study by (Ma et al., 2020 [26]). The
process starts with resizing the input image to 416×416×3 pixels. After feature extraction
using Darknet53, the image is transformed into a 13×13×126 feature map. Additionally, two
more feature maps of size 26×26×512 and 52×52×256 are created. The detection occurs at
three different scales. The feature map being up-sampled two times to merge the information
across scales. This up sampling helps to provide more accurate detections. Each cell predicts
three bounding boxes using anchor boxes, and the best-fitting box is selected. The network
predicts the center (XY), width and height (WH), score of confidence, and category of object
for each bounding box. The final output is based on the set of predicted bounding boxes
and class labels for each object in the image. The YOLO series performs well in balancing
speed and accuracy, making it ideal choice for such applications. For example, (Zhang et
al., 2022) employed the ResNet18-YOLOv2 model with GPR for automatic void detection on
airport runways. (Zhang et al., 2020) utilized YOLOv3 to detect various types of concrete
damage in highway bridges. (Yu et al., 2021) developed a YOLOv4 model for UAV-based
crack detection on bridges, using focal loss to improve the detection accuracy. (Zhao et al.,
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H]

Figure 5: A sample of dataset used to train the model.

2022) proposed a YOLOv5-based method for UAV-based dam damage detection, integrating
a 3D reconstruction model to improve performance. It can be concluded that YOLO models
have evolved into YOLOv10 by integrating advanced techniques such as ResNet18 and 3D
reconstruction to enhance accuracy, speed, and efficiency in object detection. The latest
version, YOLOv10, is particularly effective in detecting and localizing building defects. They
balance speed and accuracy, making them ideal for real-time damage detection applications
like UAV inspections. These models demonstrate improved detection accuracy for issues like
mould, dampness, cracks, and other structural damage. Overall, YOLO-based models have
proven to be an efficient tool for maintaining the safety and integrity of critical infrastructures,
which is why YOLOv10 has been chosen for its superior performance in our study.

This research aims to develop a DL based YOLOv10 model to classify the dampness defects
as mould, damp, and paint deterioration as peel. To develop a robust dataset, images of such
defects are collected from different sources, cropped, and resized. The sample of image dataset
used in this work is shown in Figure.5. The data is labelled into 4 classes such as mould, damp,
and peel. The YOLOv10 model is pre-trained on a large dataset and then fine-tuned for this
task to achieve the efficient results. In addition, this study also explores the challenges of
identifying these defects due to their irregular shapes, colors, and other environmental factors
such as location, background, and lighting condition. Further sections detail the dataset
preparation, training process, and evaluation results, demonstrating YOLOv10’s effectiveness
in classifying dampness defects accurately and efficiently.

3 Results

Figure 6. displays the examples of correctly classified defects. The images in this figure
illustrate cases where the model successfully predicted the correct class for damp, mould, and
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peeling, respectively. Whereas, Figure 7. shows the examples of defects classification errors.
The images in this figure demonstrate different cases where the model failed to predict the
correct class. As demonstrated YOLOv10 works well in spotting building defects, but its
performance depends on the type of defect. Since mould was more common in the dataset,
the model learned to detect it more accurately than damp or peeling paint. The plots also
suggest that while some defects share similar features, mould stands out more clearly, which
explains the stronger results. The confidence curves reveal that the model is precise, but
it sometimes misses damp and peeling defects, especially when they are less obvious. The
precision-recall curve backs this up, which shows mould as the most reliably detected class.
Overall, the model handles clear and well-defined defects well, but to improve detection of
subtle ones, we’ll need more balanced training data and smarter ways of teaching the model
to pick up on fine details.

Figure 6: (a) (b) (c) (d) (e) (f) & (g) are the examples of the correct classification.
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Figure 7: (a) (b) (c) & (d) are the examples of the classification errors.

Figure 8: (a) Visualization of Class Lables (b) Correlation Between Class Labels
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Figure 9: (a) F1-Confidence Curve, (b) Precision-Confidence Curve, (c) Precision-Recall
Curve, (d) Recall-Confidence Curve.

Figure 10: (a) Confusion Matrix, (b) Normalized Confusion Matrix

4 Conclusion

Our results show that the YOLOv10 model can detect building defects with promising ac-
curacy, but performance varies across defect types. The confusion matrices highlight that
mould was detected with high precision and recall, while damp and peeling paint showed
more misclassifications, which suggests visual overlap or dataset imbalance. The precision-
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confidence and F1-confidence curves indicate that the model maintains strong precision even
at higher confidence thresholds, but recall drops for harder classes like peeling. The precision-
recall analysis confirms this trade-off, with mould reaching the best balance while damp lags
behind. Overall, the model demonstrates that real-time automated detection of defects is
feasible, though improving recall for subtle defects will require more diverse training data or
additional feature cues.

5 Abbreviation

:
Abbreviation Definition AbbreviationDefinition
CIB-W086 International Council for Re-

search and Innovation in Building
and Construction - Working Com-
mission W086: Building Pathol-
ogy

UAVs Unnamed Aerial Ve-
hicles

NDT Non-Destructive Testing VGG-16 Visual Geometry
Group 16

ML Machine Learning CAM Class Activation
Mapping

ANN Artificial Neural Network FT Fine Tuning
SVM Support Vector Machine 3D 3 Dimensional
GA Genetic Algorithm RNN Recurrent Neural

Network
MLP Multilayer Perceptron IRT InfraRed Thermogra-

phy
RF Random Forest GRU Gated Recurrent

Unit
RGB Red, Green, Blue R-CNN Region Based Convo-

lutional Neural Net-
work

DL Deep learning YOLO You Only Look at
Once

CNN Convolutional Neural Network BIM Building Information
Modeling

Fast R-CNN Faster Region Based Convolu-
tional Neural Network

SSD Single-Shot multibox
Detection

AR Augmented Reality
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