
EURASIAN JOURNAL OF MATHEMATICAL
AND COMPUTER APPLICATIONS
ISSN 2306–6172
Volume 13, Issue 3 (2025) 36 – 49

LEAST SQUARE-BASED DIFFERENTIAL EVOLUTION ALGORITHM
FOR n-DIMENSIONAL DATA CLUSTERING PROBLEM

Latief M.A. , Pandiya R. 1 , Putri A.L.R.

Abstract The K-Means algorithm is commonly used for data clustering due to its simplicity and
effective implementation. However, it has certain drawbacks. One of the main issues with K-Means
is the random process involved in selecting the initial centroid, which can lead to varying results.
To address this issue, many researchers have developed methodologies to enhance the performance of
K-Means, aiming to achieve the optimal centroid. Data clustering is essentially a global optimization
problem, making the objective function crucial. The traditional K-Means algorithm uses the Euclidean
distance function as its objective function. However, this metric can sometimes result in non-separable
clusters. To mitigate this effect, least squares terms are introduced. The objective function, dependent
on the centroids, needs to be minimized using an appropriate method. This paper explores the
impact of using metaheuristic approaches (such as differential evolution), a combination of differential
evolution and K-Means, and the conventional K-Means algorithm on the formulated objective function
to determine the optimal centroid. Computational performance data, such as silhouette score and
CPU time, are collected during the computational phase. The results show that the combination of
differential evolution and K-Means is more efficient based on these indicators. Additionally, numerical
experiments are performed to solve the clustering problem.

Key words: global optimization, clustering, differential evolution, unsupervised machine learning.

AMS Mathematics Subject Classification: 49M37, 65K10, 90C30, 68T09.

DOI: 10.32523/2306-6172-2025-13-3-36-49.

1 Introduction
Clustering data is a data mining technique utilized to organize data points by identifying
similarities within a dataset. As stated in other definitions [1, 2, 3, 4], clustering involves
categorizing unlabeled data into clusters or groups based on similarities. Clustering plays
a crucial role in organizing unlabeled data into labeled categories, even in the absence of
evident pattern similarities. This approach in data mining can be applied to areas such
as recommender systems, image segmentation, and customer segmentation. A variety of
established methods exist to suit various data types and applications, including partitional
clustering, hierarchical clustering, fuzzy clustering, distribution model-based clustering, and
density-based clustering [5, 6].

K-Means is a popular non hierarchical clustering algorithm due to its computational speed
and intuitive nature by minimizing its objective function in its simplest form [7]. K-Means
is often used because the algorithm is simple and easy to implement. The way K-Means
works starts by selecting k initial points as the initial centroid of the existing points. Then
at each iteration, each point will be calculated its distance to the centroid using Euclidean
Distance. The class grouping of each point is determined based on the closest distance from
the cluster center. However, the distance between data points to the centroid calculated by
Euclidean distance triggers a poor selection of centroid or cluster center and is stuck at the
local minimum solution so as not to get the most optimal solution from the data [8, 9].

1Corresponding Author.

https://orcid.org/0009-0008-5076-6887
https://orcid.org/0000-0003-4245-2323
https://orcid.org/0009-0001-6185-0135

Least square-based differential evolution algorithm 37

Moreover, the authors in [10] explained that the initial cluster centroid in K-Means is de-
termined randomly causing unexpected convergence problems. Therefore, centroid selection
for K-Means algorithm becomes an important issue to be investigated in order to improve the
performance of K-Means algorithm. One of the many methods that can be used to overcome
the shortcomings of the K-Means algorithm is the optimization approach. The optimization
strategy is generally employed by transforming the clustering issue into an objective function,
where observed data is integrated, and the variable to be identified is the centroid. This opti-
mization strategy is categorized into two types: the metaheuristic optimization approach and
the deterministic optimization approach. Deterministic methods often necessitate numerous
assumptions for their application, unlike the metaheuristic approach, which is generally more
adaptable. As a result, this study will utilize the metaheuristic approach. A metaheuristic
algorithm is an advanced search strategy designed to solve optimization problems efficiently
by exploring the solution space through specialized methods [11]. A particularly effective
algorithm within metaheuristic optimization is the Differential Evolution algorithm.

Differential Evolution was also used in previous studies to optimize an algorithm. The
Authors in [12] applied Differential Evolution to the LightGBM algorithm to obtain the opti-
mal combination of parameter structure and model performance. The conclusion in the study
resulted that the DE algorithm (able to find the optimal optimization quickly, which is only
about 15 generations of optimization. Both previous studies only applied the algorithm to
the data and did not modify the algorithm such as in [13]. The modifications made in the
study aimed to improve the performance of the Differential Evolution algorithm by utilizing
the Fuzzy C-Means clustering approach in numerical optimization. As a result, the integra-
tion of fuzzy clustering and adaptive strategies in the DE algorithm can produce better and
more efficient solutions in numerical optimization. The authors in [14] used a different type of
Differential Evolution method, namely Multi-Objective Differential Evolution (MODE) used
to improve the feature selection process in emotion classification. The results obtained in the
study stated that MODE was able to achieve higher emotion recognition accuracy by using a
smaller number of features.

This research builds on previous studies by applying the Differential Evolution (DE) tech-
nique to establish the initial centroids of the K-Means algorithm. Traditionally, initial cen-
troids are chosen randomly, which can sometimes lead the K-Means algorithm to converge to a
local optimum rather than a global one. To address this, a more systematic approach, such as
DE, can be employed to select initial centroids. The issue of selecting initial centroids for the
K-Means algorithm can be effectively tackled using metaheuristic optimization methods like
Differential Evolution. Hence, this study explores the process of determining initial centroids
via the DE algorithm, which can then be used as starting points in the K-Means algorithm,
thereby enhancing its ability to reach a global optimum and boosting its overall efficiency. By
enhancing the K-Means algorithm through Differential Evolution, this study aims to develop
a clustering algorithm that demonstrates more dependable outcomes and enables more precise
clustering. The steps undertaken in this research are as follows:

1. Define the objective function, utilizing least squares.
2. Apply Differential Evolution to optimize the objective function established in stage 1.
3. Utilize the output of stage 2, specifically the initial centroid, as the initial center for the

K-Means algorithm.

The results of this research are intended to offer insight and solutions to scholars in the clus-
tering domain, contributing to the creation of models that yield accurate clustering decisions.

The structure of this paper is as follows: Initially, the first section provides an introduction

38 Latief M.A., Pandiya R., Putri A.L.R.

to the discussed issue. Following this, the second section outlines the assumptions constrain-
ing the initial centroid’s determination. Section 3 elaborates on the Differential Evolution
algorithm. Subsequently, sections 4 and 5 offer an analysis of the outcomes derived from com-
putational experiments and their comparisons. Finally, the research findings are summarized
in the concluding section.

2 Problem formulation
In this section, we will examine the presumptions regarding the function’s limitations in
determining the initial partition. Consider a set Q = {qi ∈ Rn : i = 1, . . . ,m} ⊂ Rn divided
into k mutually exclusive clusters π1, . . . , πk, where 1 ≤ m, as follows:

k⋃
i=1

πi = Q, πi ∩ πj = ∅, i ̸= j, |xj | ≥ 1, (1)

where j = 1, . . . , k, the partition of Eq.(1) will be represented as
∏

Q = π1, . . . , πk, and each
π1, . . . , πk subset will be termed a cluster in R⋉. If d : R⋉ × R⋉ → [0,+∞) is a distance-like
function, then by minimizing the distance condition for each cluster πj ∈

∏
, we can determine

its center cj , which is defined by

cj = c(πj) := argmin
x∈Cj

∑
ai∈πj

d(x, ai). (2)

In (2) Cj is conv(πj). Let f : P (Q, k) → [0,+∞) be defined as an objective function over the
set of all partitions P (Q, k) of Q containing k clusters,

f
(∏)

=
k∑

j=1

∑
ai∈πj

d(cj , ai), (3)

so then optimal partition can defined as

f

(∗∏)
= min∏

∈P (Q,k)
f
(∏)

.

Alternatively, for a specific set of centers c1, . . . , ck ∈ Rn, by applying the minimum
distance criterion, from (3) we can define the partition

∏
= {π1, . . . , πk} of the set Q as

follows:
πj = {a ∈ Q | d(cj , a) ≤ d(cs, a),∀s = 1, . . . , k}, (4)

where j = 1, . . . , k. To guarantee that each member of set Q is included in only one cluster,
we can thus transform the challenge of determining the optimal partition of set Q into the
subsequent optimization problem.

min
c1,...,ck∈Rn

G(c1, ..., ck), G(c1, ..., ck) =

m∑
i=1

min
j=1,...,k

d(cj , ai), G : Rkn → R+, (5)

and R+ represents the set of all vectors in Rn that have nonnegative components. Generally,
this functional is not differentiable and can possess multiple local minima. Accordingly, the
problem stated in (5) necessitates optimization, and in this research, least squares will be
employed to perform the optimization for the problem in (5). Equation (5) has a functional
problem that is not differentiable and may have some local minimum problems. To solve
these optimization problems, Kogan [15] and Teboulle [16] used the Least Squares sense for
the distance-like function as follows:

d(x, y) = ∥x− y∥2, x, y ∈ Rn. (6)
Accordingly, this research employs (6) as an objective function to make Differential Evolution
suitable for solving clustering problem.

Least square-based differential evolution algorithm 39

3 The implementation of DE to the clustering problem

Differential Evolution (DE) algorithm was introduced by Storn and Price in 1995 as a meta-
heuristic approach to solving continuous optimization problems. While it borrows several
concepts from the classical genetic algorithm (GA), DE is more straightforward to implement
[17]. The first formal publication on DE appeared as a technical report in 1995. Since then,
DE has shown its effectiveness in multiple contests, such as the IEEE International Contest
on Evolutionary Optimization (ICEO) in 1996 and 1997. The fundamental idea of DE is to
use variations among individuals within the population to find solutions. Though DE utilizes
mutation and crossover operations, it focuses on geometric arguments during its search. DE
follows the same computational steps as the Evolutionary Algorithm (EA) but distinguishes
itself by employing unique parameter vectors to explore the objective function space. Like
other population-based algorithms, DE generates new candidate solutions by perturbing ex-
isting ones. It modifies the current generation vector using the difference calculated between
two randomly selected population vectors. To form a trial vector, DE, in its simplest form,
adds a scaled difference of one random vector to another randomly selected population vector
[17]. In the selection phase, trial vectors are pitted against population vectors with the same
index. After evaluating all trial vectors, the winning vector from these crossover competitions
is preserved for the next generation in the evolutionary cycle. The steps of the Differential
Evolution algorithm are:

1. Vector Initialization

The initialization process begins with a randomly generated population of real-valued
dimension parameter vectors. Each vector in this population, termed a genome or chro-
mosome, represents a potential solution to the multi-dimensional optimization problem.
Differential Evolution (DE) aims to locate the global optimum in a D-dimensional con-
tinuous hyperspace. To determine the initial members of the population vector, the
following equation (7) is applied:

xi,j(0) = xmin,j + randi,j(0, 1).(xmax,j − xmin,j), (7)

where xmin and xmax denote the lower and upper bounds of the data or problem, respec-
tively. Once all components of the target vector are obtained, each vector is represented
as:

X⃗i(t) = [x1,1(t), x1,2(t),, xi,D(t)]
T , i = 1, 2, . . . , NP.

2. Mutation

In biological terms, mutation is a change in a chromosome’s gene characteristics. In Dif-
ferential Evolution, mutation creates a donor vector to modify each population member
at every generation. To generate a donor vector for each target vector (population
member), three different parameters, randomly selected from the current population,
are used. These are mutually exclusive integer indices drawn randomly from the range
[1, NP] and distinct from the base vector index i. The difference between these indices
is scaled by F and added to Xr1 . The result of this process is the donor vector. The
mutation process is expressed by:

V⃗i(t) = X⃗ri1
(t) + F.(X⃗ri2

(t)− X⃗ri3
(t)). (8)

3. Crossover

To enhance the potential diversity of the population, crossover operations are imple-
mented following the generation of donor vectors via mutation. Differential Evolution
(DE) algorithms can adopt two crossover types: exponential and binomial. During this

40 Latief M.A., Pandiya R., Putri A.L.R.

process, the donor vector swaps its components with the target vector to create the trial
vector. In exponential crossover, an integer n is initially chosen at random from the set
[0, D−1]. This integer serves as the starting point on the target vector for the crossover,
marking where the components’ exchange with the donor vector begins. Additionally,
another integer L is selected from within the interval [1, D], indicating the number of
components the donor vector contributes to the target. Following the selection of n and
L, the crossover begins

ui,j(t) =

{
vi,j(t), j = ⟨n⟩D,, ⟨n+ L− 1⟩D
xi,j(t), j ∈ [0, D − 1]

, (9)

where the square brackets D denote a modulo function with modulus D. The integer L
is taken from [1, 2, . . . , D]. Therefore, the probability , is called the crossover rate and
appears as a control parameter of DE just like F. For each donor vector, a new set of n
and L must be randomly chosen.

4. Selection

The final phase of a DE iteration is selection, which determines whether the target
vector X(t)i or the trial vector U(t)i will persist to the next generation. The choice
of retaining the original X(t)i in the population or substituting it with U(t)i at the
following time step t + 1 relies completely on the principle of survival of the fittest. If
the trial vector produces a better fitness value, it will replace the target vector in the
next time step.

In this context, a better fitness value refers to a lower objective function value for min-
imization problems, and a higher objective function value for maximization problems.
The selection process can be expressed as

X⃗i(t+ 1) =

{
U⃗i(t)iff(U⃗i(t)) ≤ f(X⃗i(t))

X⃗i(t)iff(U⃗i(t)) > f(X⃗i(t))
, (10)

where f(X) is the objective function aimed at minimization. Due to the binary nature
of the selection process, meaning either the target vector or its offspring survives, the
population size stays constant across many generations. Consequently, the fitness of the
population members either increases over successive generations or stays the same, but
it does not decline.

Subsequently, the DE algorithm will be incorporated with the objective function (6) using
the pseudo code outlined below:
Least Square-Based Differential Evolution Algorithm

Set Initial Parameters:
Specify NP (Size of Population)
Specify MaxIter (Max Number of Iterations)
Specify F (Scaling Factor, with a range of [0, 2])
Specify CR (Crossover Rate, within the range [0, 1])
Identify k (Count of Clusters)
Define m (Total Data Points) and n (Number of Dimensions)
Formulate Objective Function G:

G(c1, . . . , ck) =
m∑
i=1

min
j

∥cj − ai∥2,

where ai represents a data point and cj stands for a centroid vector in an n-dimensional
space.

Least square-based differential evolution algorithm 41

Create Initial Population:
for each member p of the population (for p = 1, . . . , NP) do

Randomly generate k centroids c1, . . . , ck as vectors in n-dimensional space.
Ensure all elements of the centroid vectors are nonnegative.

end for
Evaluate the Initial Population:
for each entity p within the population do

Compute G(c1, . . . , ck) for entity p.
Assign the fitness score of entity p as the computed G value.

end for
Evolutionary Process:
for iteration = 1 to MaxIter do

for every individual i in the population do
Mutation:
Randomly choose three distinct individuals r1, r2, and r3 from the population.
Create mutant vector V where V = r1 + F · (r2 − r3).
Ensure each component of V is nonnegative (enforce limits if required).
Crossover:
Create a trial vector U .
for each dimension j within the vector do

if rand(0, 1) < CR then
Assign V [j] to U [j].

else
Assign individual[i][j] to U [j].

end if
end for
Selection:
Compute G(U) for the trial vector U .
if G(U) is lower than the fitness of individual[i] then

Substitute individual[i] with U within the population.
end if

end for
end for
Termination:
if MaxIter is attained then

Terminate the process.
end if
Output:
Identify and return the individual in the population with the smallest objective function
value as the optimal solution.
This solution denotes the best-fitting cluster centroids.

4 Computational experiments
In this research, numerous experiments were executed to evaluate the effectiveness of the
proposed method. Therefore, this section will elaborate on the experimental procedures and
evaluation to derive conclusions. This experiment was conducted using a Jupyter notebook
on a Windows 10 system with an Intel(R) Core i7 processor at 2.6 GHz and 8 GB of RAM.

The first experiment aims to test the computation of the proposed method, the results of

42 Latief M.A., Pandiya R., Putri A.L.R.

which can be seen in Tab. 1. Tab. 1 uses the following notations:

1. α is the number of row

2. β is the number of dimension

3. λ is the number of clusters

4. sb is the Silhoeuette Score of DE+KMeans

5. tb is the running time of DE+KMeans

Computational experiments were performed on datasets containing 1,000, 5,000, and
10,000 samples. These datasets originate from numerical experiments produced by the data
randomization process with values ranging between 0 and 100. Each dataset is available in
2 and 3 dimensions respectively, as highlighted in Tab. 1. The computational trials involved
a predetermined set of clusters: 2, 3, and 5. This study reveals that simply increasing the
number of clusters does not necessarily enhance the silhouette score for any specific data
size. It suggests that merely adding clusters does not invariably improve cluster separation
quality. In general, the best silhouette scores are achieved with fewer clusters (either 2 or 3),
particularly in 3D datasets. For instance, in a dataset of 1000 with 3 dimensions, 2 clusters
yield a relatively high score of 0.355713785. Conversely, when the number of clusters increases
to 5, the silhouette score typically decreases, indicating reduced separation quality between
clusters.

The execution time is also affected, rising with larger datasets and more clusters. For
example, processing 10,000 data points with 3 dimensions and 5 clusters takes 0.56808567 sec-
onds. As expected, both larger datasets and more clusters lead to higher execution times due
to greater computational demands. Overall, DE+KMeans is more effective on low-dimensional
(2D) data with fewer clusters, especially with smaller datasets. While the silhouette score
slightly diminishes as the number of clusters grows, the execution time increases notably with
both data size and cluster count.

Table 1: General Computational Results

α β λ sb tb
1000 2 2 0.351712 0.006982

3 0.388482 0.008193
5 0.378432 0.005983

3 2 0.252825 0.005984
3 0.25381 0.007968
5 0.272624 0.008977

5000 2 2 0.355714 0.011971
3 0.378233 0.103799
5 0.378041 0.010355

3 2 0.249015 0.005971
3 0.245607 0.006982
5 0.269963 0.009524

10000 2 2 0.35602 0.008976
3 0.382222 0.052598
5 0.382611 0.054601

3 2 0.248241 0.319514
3 0.242721 0.088114
5 0.265742 0.568086

Least square-based differential evolution algorithm 43

5 Comparison
During the comparison testing phase, two tests will be conducted: one on n-dimensional data
and another on one-dimensional data. The n-dimensional test aims to assess the reliability
of the DE+KMeans algorithm in data clustering. This test utilizes the same scenario and
dataset as in the computation experiment phase, but in this comparison, the DE+KMeans
algorithm is evaluated against two other algorithms: DE and KMeans. The one-dimensional
data test seeks to assess the stability of the DE+KMeans algorithm by applying it to 100 one-
dimensional datasets and comparing the results with those obtained from DE and KMeans.
As in the computational test, this test also looks at how much silhouette score is obtained and
how much time it takes to produce a cluster. Comparison result can be seen in the Tabs. 2
and 3. Tabs. 2 and 3 uses the following spesific notations:

1. α is the number of row
2. N is the i-th trial
3. β is the number of dimension
4. λ is the number of clusters
5. s is the Silhoeuette Score
6. t is the running time
7. a, b, c are Differential Evolution, DE+KMeans, and KMeans

According to the Silhouette Score evaluation across 18 tests in the Tab. 2, the DE +
KMeans algorithm outperformed the KMeans algorithm 13 times, underperformed 3 times,
and matched scores twice. Conversely, the DE algorithm alone did not outperform the
DE+KMeans combination and KMeans but had a score that was comparatively close. In
addition to evaluating the Silhouette Score, the study also examines the run time of the
methods throughout the clustering process. Consequently, the hybrid algorithm combining
DE and KMeans outperformed in almost all tests performed. Based on the computational
testing outcomes, it is evident that the DE+KMeans combination is more effective for clus-
tering than using KMeans or DE alone.

Across 100 trials comparing the two algorithms, it was observed that DE+KMeans outper-
formed both KMeans without optimization and DE. The silhouette score and runtime com-
parison results as shown in Tab. 3. The tables illustrate that out of 100 trials, DE+KMeans
performs superiorly in terms of silhouette score and runtime. Additionally, we also graphically
represent the distribution scores and runtime to compare DE+KMeans with KMeans. Figs. 1-
2 illustrate that the distribution of DE+KMeans scores is generally superior. Additionally,
DE+KMeans outperforms in computational time, as depicted in Fig. 2. Consequently, at this
point of comparison, DE+KMeans effectively identifies the initial centroid better than the
individual DE and KMeans algorithms.

6 Compactness and Homogenity Cluster Evaluation

This section presents a comparative analysis of the K-Means algorithm and the DE-KMeans
algorithm to evaluate the degree of cluster compactness achieved by each technique. The ex-
perimental data differs from the previous test, yet it still utilizes random data for compactness
test. The experimental data differs from the previous test, yet it still utilizes random data.
The variation lies in how the data is generated, specifically by ensuring the formation of dis-
tinct groupings. The test involved crafting four distinct scenarios based on varying standard
deviation values, which influence the spacing between clusters. The standard deviation values

44 Latief M.A., Pandiya R., Putri A.L.R.

Table 2: Comparison Results

α β λ s t
a b c a b c

1000 2 2 0.334115 0.351712 0.351712 34.73574 0.006982 0.061423
3 0.28449 0.388482 0.38845 57.87727 0.008193 0.103635
5 0.274968 0.378432 0.378611 16.82297 0.005983 0.094745

3 2 0.1632 0.252825 0.252972 38.93418 0.005984 0.089445
3 0.136284 0.25381 0.253699 54.58894 0.007968 0.087197
5 0.190135 0.272624 0.271217 82.2534 0.008977 0.089081

5000 2 2 0.269084 0.355714 0.355714 181.0725 0.011971 0.056023
3 0.363331 0.378233 0.378232 265.3607 0.103799 0.053845
5 0.215638 0.378041 0.375089 411.6037 0.010355 0.091681

3 2 0.197189 0.249015 0.249006 182.6966 0.005971 0.057052
3 0.221292 0.245607 0.245574 273.0665 0.006982 0.095544
5 0.179124 0.269963 0.268296 421.3279 0.009524 0.118408

10000 2 2 0.332426 0.35602 0.356004 359.6633 0.008976 0.062538
3 0.310461 0.382222 0.382211 485.6237 0.052598 0.086382
5 0.291638 0.382611 0.379986 833.4744 0.054601 0.207403

3 2 0.225036 0.248241 0.248226 420.1548 0.319514 0.086279
3 0.229446 0.242721 0.24266 569.6182 0.088114 0.212933
5 0.225157 0.265742 0.269555 889.8035 0.568086 0.187169

applied were 1.5, 2.0, 2.5, and 3.0. Throughout this experiment, two clusters, two features,
and 1000 samples were maintained. Data distribution is illustrated in Fig. 3.

Following the clustering execution using both techniques, the results evaluated through
the Silhouette Score and Within-Cluster Sum of Squares (WCSS) are presented in Tab. 4,
where σ is the standard deviation, s is the Silhouette Score, w is the WCSS, b is DE+KMeans,
and c is KMeans.

The findings illustrate that for data with standard deviations of 1.5 and 2.0, K-Means
and DE+KMeans show no noticeable distinctions regarding the Silhouette Score and WCSS.
This implies that both algorithms can generate similarly cohesive and distinct clusters when
the natural separation is ample. Nonetheless, for data with a standard deviation of 2.5,
DE+KMeans outperforms K-Means. The Silhouette Score for DE+KMeans reaches
0.580089926977142, compared to 0.580094211588442 for K-Means. Regarding WCSS,
DE+KMeans achieves a lower value of 11755.2945687871, surpassing K-Means’ result of

0 2 0 4 0 6 0 8 0 1 0 0

N u m b e r o f T r i a l s

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

T
i

m
e

(

s
)

R u n n i n g T i m e D E + K - M e a n s v s R u n n i n g T i m e K - M e a n s

R u n n i n g T i m e D E + K - M e a n s

R u n n i n g T i m e K - M e a n s

0 . 5 7 0 . 5 8 0 . 5 9 0 . 6 0 0 . 6 1 0 . 6 2

S c o r e

0

5

1 0

1 5

2 0

F
r

e
q

u
e

n
c

y

D E + K - M e a n s S c o r e v s K - M e a n s S c o r e

D E + K - M e a n s S c o r e

K - M e a n s S c o r e

Figure 1: Distribution Score of DE+KMeans
and KMeans

Figure 2: The Running Time of DE+KMeans
and KMeans

Least square-based differential evolution algorithm 45

Table 3: Comparison Results on 1-D Data
N s t

a b c a b c
1 0.562647535 0.591013315 0.590744209 50.67484832 0.015947104 0.055851221
2 0.591528681 0.59509394 0.59497149 44.94694924 0.005983829 0.063828707
3 0.576266952 0.58982947 0.590287935 45.63507724 0.003963947 0.062832355
4 0.516336154 0.598402206 0.598594775 44.62163568 0.002994299 0.048870087
5 0.55093843 0.580999322 0.580999322 44.6436379 0.00299263 0.054853678
6 0.245503964 0.581162052 0.581025998 45.31455898 0.002990007 0.052857161
7 0.477903175 0.601897283 0.601897283 45.14308381 0.004948139 0.050863743
8 0.545836431 0.597939659 0.598192647 45.594769 0.002995968 0.059837103
9 0.360803454 0.597443895 0.597358166 44.89892912 0.002990723 0.052858114
10 0.362430404 0.589149295 0.589038765 44.62690616 0.00299263 0.054850101
11 0.542172516 0.585079535 0.585193538 44.66195011 0.003988266 0.05783391
12 0.467428361 0.58993992 0.5851764 45.27667046 0.002991915 0.054862022
13 0.452009518 0.601212079 0.601343148 44.65931439 0.002993584 0.084773064
14 0.557765548 0.610782663 0.610782663 44.79385519 0.002993345 0.057845354
15 0.587372983 0.587234848 0.587195208 44.91555309 0.002992153 0.056848526
16 0.466270768 0.584366205 0.58776882 44.62131548 0.002991676 0.058843374
17 0.583397218 0.587377619 0.587242246 46.39012909 0.002991676 0.051864147
18 0.576561991 0.593730477 0.593624592 45.01229858 0.002994776 0.055851221
19 0.389643248 0.593583632 0.593583632 44.95328712 0.002994061 0.059839249
20 0.361420221 0.590930595 0.591155689 45.25005817 0.003963709 0.056847811
21 0.598372823 0.602329413 0.602351796 45.13917112 0.002965689 0.052859306
22 0.47574888 0.619643898 0.619643898 45.10650849 0.002990246 0.048870325
23 0.571497947 0.590343256 0.590195573 45.19552851 0.002960443 0.052859068
24 0.463108942 0.597731301 0.597731301 46.38924837 0.002990007 0.054846048
25 0.564911061 0.595304426 0.594669747 46.49196863 0.00299263 0.054405689
26 0.566206606 0.574920507 0.574552543 44.98650217 0.003988504 0.051860332
27 0.542910938 0.596524534 0.596524534 45.20502782 0.002989769 0.055738688
28 0.551501743 0.581130709 0.579919917 45.06911278 0.003989697 0.050864935
29 0.573741367 0.591556946 0.591091464 44.49493027 0.003988028 0.058844566
30 0.550875294 0.607609919 0.607609919 44.76673889 0.002990007 0.054853201
31 0.227133838 0.599888453 0.599888453 44.77537417 0.00299263 0.057846069
32 0.575963683 0.594284532 0.594284532 44.9046638 0.001998663 0.051861763
33 0.376037384 0.569862661 0.569796137 44.8649683 0.003987789 0.062831879
34 0.576766132 0.603109293 0.603394226 44.96564746 0.003988743 0.052855492
35 0.501052612 0.586659707 0.58669072 45.09357333 0.00299263 0.057846546
36 0.379425606 0.585272658 0.585682074 44.90278339 0.002992153 0.048868656
37 0.558144805 0.591877465 0.590812984 44.87715316 0.003988743 0.066807032
38 0.486017167 0.577365515 0.577708682 45.44776201 0.00398922 0.05185318
39 0.350493722 0.594240698 0.594240698 44.66088033 0.00498724 0.0528512
40 0.479880983 0.597571134 0.597571134 44.7402308 0.002991676 0.056847334
41 0.577661915 0.60210753 0.602107777 44.9872849 0.003989935 0.057845354
42 0.44168964 0.593622055 0.593757617 45.76324034 0.002991438 0.050864935
43 0.426231418 0.581111839 0.58131986 45.54889703 0.002994299 0.057844639
44 0.46043052 0.59287171 0.59287171 45.83807135 0.002991915 0.055852175
45 0.471037273 0.577499311 0.577615009 45.29319501 0.006980658 0.050862789
46 0.538536299 0.596187612 0.596145131 45.92455196 0.003986359 0.068814754
47 0.443742905 0.603515858 0.603515858 45.49062872 0.002992392 0.078789711
48 0.583597958 0.583813789 0.584106536 45.88088465 0.003989697 0.067819357
49 0.358412047 0.600787546 0.600787546 45.21264648 0.002996683 0.055850506
50 0.405358012 0.592369596 0.591837386 45.89582253 0.002991915 0.048869133

46 Latief M.A., Pandiya R., Putri A.L.R.

51 0.440976884 0.595292188 0.595292188 44.7676065 0.002991676 0.051860571
52 0.444608642 0.589050877 0.588221993 45.55388713 0.003990412 0.052322626
53 0.380479036 0.612065813 0.612106237 45.63908124 0.003994942 0.051865578
54 0.52504356 0.586231289 0.586040243 46.65978456 0.002991438 0.06682086
55 0.346505959 0.584476239 0.584476239 45.088902 0.003988266 0.0578444
56 0.580383921 0.589285905 0.589285905 45.34135342 0.006980896 0.057845831
57 0.498595475 0.58332306 0.582995696 44.8041048 0.002991915 0.059840202
58 0.42354484 0.594073552 0.594073552 44.96531701 0.002990723 0.054843426
59 0.411003938 0.607939198 0.607970154 45.25614023 0.002994299 0.048871279
60 0.529314726 0.603432703 0.603432703 45.07545829 0.004968643 0.063832283
61 0.433525384 0.60318488 0.60318488 45.38379765 0.002991676 0.053856373
62 0.420587812 0.594430388 0.594430388 45.20732188 0.003988981 0.050864697
63 0.570835629 0.587096756 0.587096756 44.97121239 0.005985737 0.057840824
64 0.400412741 0.600538944 0.600392634 44.89221859 0.00299263 0.048870564
65 0.59447097 0.596209814 0.596209814 45.32764578 0.003989697 0.053855181
66 0.457910067 0.594884629 0.594952989 45.05395436 0.003997564 0.052860498
67 0.559458686 0.593664675 0.59376192 45.8599298 0.004987717 0.053853989
68 0.582687235 0.587557856 0.587655837 45.34940267 0.002993584 0.071808815
69 0.286075542 0.596426521 0.596426521 44.99223542 0.002992868 0.067817688
70 0.568317647 0.58321179 0.582669411 46.12144852 0.003988504 0.058842897
71 0.572450108 0.602011383 0.602011383 45.36452413 0.002993345 0.063827515
72 0.448469458 0.587480454 0.587480454 44.73765969 0.003990412 0.049868345
73 0.444291661 0.590659527 0.590579558 45.09645247 0.001993895 0.051859856
74 0.469754831 0.59932601 0.599368883 44.36743379 0.005990982 0.049376011
75 0.471712553 0.587173232 0.586896836 45.69979525 0.003990173 0.048869371
76 0.288449513 0.597947005 0.597947005 44.4369328 0.003989935 0.05984354
77 0.529497761 0.59623602 0.59623602 45.31856871 0.002992392 0.054903507
78 0.427719862 0.600118686 0.600118686 45.27994823 0.003990412 0.054853916
79 0.549172241 0.594743419 0.594826985 45.94388771 0.006969213 0.05185914
80 0.561253965 0.584980565 0.584918191 45.32071781 0.002990961 0.053855896
81 0.492775611 0.586987964 0.587044194 45.21375847 0.003988028 0.053857565
82 0.571164131 0.585127793 0.585127793 45.78133059 0.002989769 0.066822052
83 0.263681648 0.589206984 0.588926977 45.12504625 0.002991915 0.059841394
84 0.405528982 0.585896037 0.585896037 45.74722314 0.003989935 0.050864935
85 0.419570575 0.59863157 0.598544731 45.17078328 0.003989458 0.059850454
86 0.399294899 0.606352404 0.606946152 45.26563311 0.007979155 0.058842182
87 0.569981316 0.577444712 0.577359869 45.81158018 0.002992392 0.057845592
88 0.527771528 0.593933543 0.593933543 47.38597918 0.00299263 0.062832594
89 0.398598003 0.599911628 0.599922238 60.74008417 0.00498724 0.05385828
90 0.560041951 0.597563376 0.597068771 57.76946115 0.002991676 0.051861525
91 0.270633347 0.611196046 0.610571521 54.19370484 0.00299263 0.05485487
92 0.558178365 0.60076038 0.600594863 54.69181418 0.00299263 0.055851698
93 0.545294761 0.580740296 0.580931122 54.84835124 0.003989458 0.067823172
94 0.579181764 0.582272358 0.582272358 54.49602509 0.004966497 0.054854393
95 0.456406483 0.58930752 0.589285421 55.34188485 0.002994061 0.052857876
96 0.465952704 0.590431781 0.590431781 52.76015997 0.003989697 0.05186224
97 0.522684964 0.590662324 0.590537309 48.89275622 0.003988028 0.048860312
98 0.582525384 0.607964417 0.607964417 48.52631283 0.003981352 0.050863504
99 0.506174904 0.598889681 0.598867952 49.28045106 0.00598526 0.058842659
100 0.506094496 0.606834916 0.6068935 53.48102164 0.00398922 0.047385216

Least square-based differential evolution algorithm 47

Figure 3: Data distribution: a) 1000 Rows with 2 Clusters and 1.5 Standard Deviation
Configuration, b) 1000 Rows with 2 Clusters and 2.0 Standard Deviation Configuration,
c) 1000 Rows with 2 Clusters and 2.5 Standard Deviation Configuration, d) 1000 Rows with
2 Clusters and 3.0 Standard Deviation Configuration.

11755.3715909048. A lower WCSS value suggests that DE+KMeans excels at clustering the
data, forming clusters that are more compact compared to those of K-Means.

In data with a standard deviation of 3.0, a significant difference is observed in the WCSS
metric. DE+KMeans obtained a value of 16294.2890125106, while K-Means had a slightly
higher value, namely 16294.3952598849. This shows that in more dispersed data conditions,
where the distance between clusters is getting smaller, DE+KMeans is still able to produce
more compact clusters than K-Means. From the results of this experiment it can be concluded
that under conditions of more naturally separated data, both algorithms give almost identical
results. However, when the data become more difficult to cluster, such as at standard devia-
tions of 2.5 and 3.0, DE+KMeans shows an advantage in maintaining cluster compactness, as
indicated by the lower WCSS value. This advantage indicates that the DE+KMeans method
is able to optimize the centroid position better than conventional K-Means, especially in more
complex data conditions. The homogeneity test was carried out using the Breast Cancer Wis-
consin (Diagnostic) dataset sourced from the UCI dataset repository. This dataset comprises
two classes, Malignant and Benign, with 569 instances across 30 features. The purpose of the
homogeneity test is to assess how well the clustering outcomes align with the original class
labels. A Homogeneity Score of 1 means each cluster contains samples from only one class,
whereas a score nearing 0 implies that classes are intermixed within clusters. The results in-
dicate that the Homogeneity Score for both K-Means and K-Means optimized via Differential
Evolution (DE + KMeans) remains the same at 0.61147 on the Breast Cancer Wisconsin (Di-
agnostic) dataset. This score suggests that the clustering results account for approximately
61.1% of the original label information. The similar Homogeneity Scores for K-Means and

48 Latief M.A., Pandiya R., Putri A.L.R.

DE+KMeans imply that Differential Evolution optimization does not enhance class separa-
tion quality. This might be due to factors like a naturally well-separated data distribution,
making DE-based centroid initialization redundant. Additionally, the parameters F (0.7) and
CR (0.9) may not be optimal, leading to ineffective exploration of the solution space. Further-
more, the dataset’s class imbalance may hinder K-Means from achieving improved separation,
thus maintaining the same Homogeneity Score. An alternative might involve adjusting the
DE algorithm parameters.

Following the clustering execution using both techniques, the results evaluated through
the Silhouette Score and Within-Cluster Sum of Squares (WCSS) are presented in Tab. 3.
Where σ is the standard deviation, s is the Silhouette Score, w is the WCSS, b is DE+KMeans,
and c is KMeans.

Table 4: Result of Compactness Cluster Evaluation
σ s w

b c b c
1.5 0.7379930396 0.7379930396 4376.0944133074 4376.0944133074
2 0.6547868066 0.6547868066 7683.3590752235 7683.3590752235
2.5 0.5800899270 0.5800942116 11755.2945687871 11755.3715909048
3 0.5241596100 0.5241596100 16294.2890125106 16294.3952598849

7 Conclusion

Optimization algorithms can address various issues, including algorithmic challenges. As in
this study, metaheuristic optimization algorithms are employed to solve the global solution
issue in the KMeans algorithm, which arises due to random initial centroid searches. These
random searches often result in suboptimal centroids, leading to less effective clustering out-
comes. The researchers utilized the Differential Evolution (DE) algorithm with a least squares
objective function to optimize KMeans for determining the optimal initial centroids.

The results of the comparison between the DE, DE + KMeans, and KMeans algorithms
demonstrate that the KMeans algorithm optimized with DE exhibits superior performance.
Specifically, in the compactness test using Silhouette Score and Within-Cluster Sum of Squares
(WCSS), DE+KMeans showed better clustering quality than KMeans, particularly when the
data distribution became more complex (higher standard deviation). While both algorithms
performed similarly when clusters were naturally well-separated (standard deviation 1.5 and
2.0), DE+KMeans achieved lower WCSS and comparable or better Silhouette Scores at stan-
dard deviations of 2.5 and 3.0. This indicates that DE+KMeans can produce more compact
clusters in challenging clustering scenarios.

In addition to compactness, the Homogeneity Score was also analyzed to assess how well
clusters contain only data points from a single class. The results indicate that, in some cases,
the homogeneity of DE+KMeans and KMeans was identical, suggesting that the optimization
process did not significantly improve the class purity within clusters. This could be due to
the inherent structure of the dataset or the influence of the chosen optimization parameters.
However, DE+KMeans still showed advantages in cluster compactness and overall clustering
quality, making it a valuable optimization approach.

Thus, it is concluded that the DE algorithm effectively optimizes KMeans for finding
optimal initial centroids and improving cluster compactness. However, while DE+KMeans
enhances clustering in terms of WCSS and Silhouette Score, its impact on homogeneity varies
depending on the dataset characteristics. This research is confined to numerical data and does

Least square-based differential evolution algorithm 49

not encompass data with categorical characteristics or small data dimensions. Future research
should explore the same method on categorical data and large data dimensions (big data) to
further validate its effectiveness and investigate parameter tuning techniques to enhance both
compactness and homogeneity in clustering results.

References
[1] Adeen N., Abdulazeez M., Zeebaree D., Systematic review of unsupervised genomic clustering algorithms

techniques for high dimensional datasets, Technology Reports of Kansai University, 62 (2020), 355-374.
[2] Ur Rehman A., Brahim Belhaouari S., Divide well to merge better: A novel clustering algorithm, Pattern

Recognition, 122 (2022), 108305.
[3] Xu X., Ding S., Wang Y., Wang L., Jia W., A fast density peaks clustering algorithm with sparse search,

Information Sciences, 554 (2021), 61-83.
[4] Zhao J., Ding Y., Zhai Y., Jiang Y., Zhai Y., Hu M., Explore unlabeled big data learning to online failure

prediction in safety-aware cloud environment, Journal of Parallel and Distributed Computing, vol. 153
(2021), pp. 53–63.

[5] Aljibawi M., Nazri M. Z. A., Sani N. S., An enhanced mudi-stream algorithm for clustering data stream,
Journal of Theoretical and Applied Information Technology, 100 (2022), 3012-3021.

[6] Bataineh B., Fast component density clustering in spatial databases: A novel algorithm, Information, 13
(2022), 1-18.

[7] Melnykov V., Michael S., Clustering large datasets by merging k-means solutions, Journal of Classifica-
tion, 37 (2020), 97-123.

[8] Pandiya R., Ahdika A., Khomsah S., Ramadhani R. D., A new integral function algorithm for global
optimization and its application to the data clustering problem, MENDEL, 29 (2023), 162-168.

[9] Paul S., De S., Dey S., A novel approach of data clustering using an improved particle swarm optimization
based kВ–means clustering algorithm, IEEE International Conference on Electronics, Computing and
Communication Technologies (CONECCT), IEEE, 2020, 1-6.

[10] Ahmed M., Seraj R., Islam S. M. S., The k-means algorithm: A comprehensive survey and performance
evaluation, Electronics, 9 (2020), 1295.

[11] Harifi S., Khalilian M., Mohammadzadeh J., Ebrahimnejad S., Using metaheuristic algorithms to improve
k-means clustering: A comparative study, Revue d’Intelligence Artificielle, 34 (2020), 297-305.

[12] Pan Z., Fang S., Wang H., Lightgbm technique and differential evolution algorithm based multi-objective
optimization design of ds-apmm, IEEE Transactions on Energy Conversion, 36 (2020), 441-455.

[13] Bilal, Pant M., Vig G., Clustering based adaptive differential evolution for numerical optimization, IEEE
Congress on evolutionary computation (CEC), IEEE, 2020, 1-8.

[14] Yue L., Hu P., Chu S., Pan J., English speech emotion classification based on multi-objective differential
evolution, Applied Sciences, 13 (2023), 12262.

[15] Kogan J., Introduction to clustering large and high-dimensional data, Cambridge University Press, 2007.
[16] Teboulle M., A unified continuous optimization framework for center-based clustering methods, Journal

of Machine Learning Research, 8 (2007), 65-102.
[17] Das S., Abraham A., Konar A., Metaheuristic clustering, Springer Science & Business Media, 2009.

Muhammad Abdul Latief,
Department of Data Science, Telkom University,
Jl. DI. Panjaitan 128, Purwokerto, Indonesia,
Email: abdullatief@student.telkomuniversity.ac.id

Ridwan Pandiya,
Department of Informatics, Telkom University,
Jl. DI. Panjaitan 128, Purwokerto, Indonesia,
Email: ridwanp@telkomuniversity.ac.id

Aina Latifa Riyana Putri,
Department of Data Science, Telkom University,
Jl. DI. Panjaitan 128, Purwokerto, Indonesia,
Email: ainaqp@telkomuniversity.ac.id

Received 19.06.2024, Accepted 01.10.2024, Available online 30.09.2025.

	Introduction
	Problem formulation
	The implementation of DE to the clustering problem
	Computational experiments
	Comparison
	Compactness and Homogenity Cluster Evaluation
	Conclusion

