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Abstract In this article, we study the well-posedness and asymptotic behaviour of solutions
one-dimensional porous-elastic system in thermoelasticity of type III with distributed delay
term. We first give the well-posedness of the system by using semigroup method and Lumer-
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1 Introduction

In this article, we investigate the well-posedness and exponential stability for a porous-
elastic system in thermoelasticity of type III with distributed delay term, under the
initial and boundary conditions, which has the form

ρωtt − µωxx − bφx = 0, (x, t) ∈ (0, 1)× (0,∞),

Jφtt − δφxx + bωx + ξφ+ βθx = 0, (x, t) ∈ (0, 1)× (0,∞),

αθtt − δθxx + βφttx − kθtxx −
∫ τ2

τ1

g(s)θtxx(x, t− s)ds = 0, (x, t)∈(0, 1)×(0,∞),

ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x), φ(x, 0) = φ0(x), x ∈ (0, 1), (1)
φt(x, 0) = φ1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x), x ∈ (0, 1),

ω(0, t) = ω(1, t) = φx(0, t) = φx(1, t) = θ(0, t) = θ(1, t) = 0, t ∈ (0,∞),

θtx(x,−t) = f0(x, t), (x, t) ∈ (0, 1)× (0, τ2),

where ω= ω(x, t), φ=φ(x, t) and θ= θ(x, t) are the displacement of the solid elastic
material, the volume fraction, and the difference temperature, respectively. The pa-
rameter ρ is the mass density and J equals to the product of the equilibrated inertia
by the mass density. The coefficients µ, b, δ, ξ, β, α, and k are positive constants, such
that

µ/ρ = δ/J, (2)

and
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µξ > b2, (3)

and g : [τ1, τ2] → R is a bounded function, with τ1 and τ2 are two real numbers
satisfying 0 ≤ τ1 < τ2. The initial data ω0, ω1, φ0, φ1, θ0, θ1, and f0 belongs to the
suitable functional space.

In [1], Lacheheb et al. considered the system (1) without distributed delay term.
The authors established the well-posedness result and proved that the system is ex-
ponentially stable under condition (2), (3) and a polynomial decay when the wave-
propagation speeds are different. As for the previous results and developments of
porous-elastic problems, they have stated and summarized in great detail in [1]. The
readers, for a better understanding of present work, are strongly recommended to [1]
and the reference therein (e.g. [2]-[9]).

Time delays arise in many applications because most phenomena naturally depend
not only on the present state but also on some past occurrences. Introducing the delay
term makes the problem different from those considered in the literatures. It has been
established that voluntary introduction of delay can benefit the control (see [10]). On
the other hand, it may not only destabilize a system which is asymptotically stable in
the absence of delay but may also lead to ill-posedness (see [11, 12] and the references
therein). Therefore, the issue of well-posedness and the stability result of systems with
delay are of practical and theoretical importance. In recent years, the control of partial
differential equations with time delay effects has become an active area of research (e.g.
[13]–[20]). Nicaise and Pignotti [19] considered the wave equation with liner frictional
damping and internal distributed delay

ρutt −△u+ µ1ut + a (x)

∫ τ2

τ1

µ1 (s)ut (t− s) ds = 0,

in Ω × (0, 1) , with initial and mixed Dirichlet-Neumann boundary conditions and a
is a suitable function. They obtained exponential decay of the solution under the
assumption that

∥a∥∞
∫ τ2

τ1

µ2 (s) ds < µ1.

The authors also obtained the same result when the distributed delay acted on the part
of the boundary. Kafini et al. [15] considered the following Timoshenko-type system
of thermoelasticity of type III with distributive delay

ρ1φtt − k (φx + ψ)x = 0,

ρ2ψtt − bψxx + k(φx + ψ) + βθtx = 0,

ρ3θtt − δθxx − kθtxx −
∫ τ2

τ1

g(s)θtxx(x, t− s)ds+ γφtx = 0,

where τ1 < τ2 are non-negative constants such that g : [τ1, τ2] → R+ represents dis-
tributive time delay. They proved an exponential decay in the case of equal wave
speeds and a polynomial decay result in the case of nonequal wave speeds with smooth
initial data. Recently, Khochemane et al. [16] considered the following one-dimensional
porous-elastic system with distributed delay term acting on the porous equation

ρutt − µuxx − bϕx = 0, x ∈ (0, 1), t > 0,

Jϕtt − δϕxx + bux + ξϕ+ µ1ϕt +

∫ τ2

τ1

µ2(s)ϕt(t− s)ds = 0, x ∈ (0, 1), t > 0.
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Under suitable assumptions on the weight of distributed delay, the authors established
the well-posedness result and show that the dissipation given by this complementary
control stabilizes exponentially the system for the case of equal speeds of wave propa-
gation.

Motivated by the above results, we establish the well-posedness result and prove
that the system is exponentially stable for the case of equal speed of wave propagation.
The paper is organized as follows. In Section 1, we present preliminaries and main
results. In Section 2, we use the semi-group method to prove the existence and unique-
ness of the solutions. In Section 3, we use the energy method to prove the exponential
stability result under the conditions (2) and (3).

2 Preliminaries and main results

To exhibit the dissipative nature of the problem (1), we introduce some new variables

u = ωt, ϕ = φt.

As in [21], we introduce the new variable

z(x, ρ, s, t) = θtx(x, t− ρs), x ∈ (0, 1), ρ ∈ (0, 1), s ∈ (τ1, τ2), t > 0.

A simple differentiation shows that z satisfies

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0, x ∈ (0, 1), ρ ∈ (0, 1), s ∈ (τ1, τ2), t > 0.

Then system (1) takes the form

ρutt − µuxx − bϕx = 0, (x, t) ∈ (0, 1)× (0,∞),

Jϕtt − δϕxx + bux + ξϕ+ βθtx = 0, (x, t) ∈ (0, 1)× (0,∞),

αθtt − δθxx + βϕtx − kθtxx −
∫ τ2

τ1

g(s)zx(x, 1, s, t)ds = 0, (x, t)∈(0, 1)×(0,∞),

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0, (x, ρ, s, t)∈(0, 1)×(0, 1)×(τ1, τ2)×(0,∞), (4)
u(x, 0) = u0(x), ut(x, 0) = u1(x), ϕ(x, 0) = ϕ0(x), x ∈ (0, 1),

ϕt(x, 0) = ϕ1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x), x ∈ (0, 1),

u(0, t) = u(1, t) = ϕx(0, t) = ϕx(1, t) = θ(0, t) = θ(1, t) = 0, t ∈ (0,∞),

z(x, ρ, s, 0) = f0(x, ρs), (x, ρ, s) ∈ (0, 1)× (0, 1)× (τ1, τ2).

Concerning the weight of the delay, we assume that∫ τ2

τ1

|g (s)| ds < k. (5)

From equation (4)2 and the boundary conditions, we easily verify that
d2

dt2

∫ 1

0

ϕ (x, t) dx+
ξ

J

∫ 1

0

ϕ (x, t) dx = 0.

We introduce

ϕ̄ (x, t) = ϕ (x, t)−
(∫ 1

0

ϕ0 (x) dx

)
cos

(√
ξ

J
t

)
−

√
J

ξ

(∫ 1

0

ϕ1 (x) dx

)
sin

(√
ξ

J
t

)
.
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We know that
(
u, ϕ̄, θ, z

)
satisfies the boundary conditions, and more importantly∫ 1

0

ϕ̄ (x, t) dx = 0, ∀t ≥ 0.

Hence, the use of Poincaré inequality for ϕ̄ is justified. In what follows, we will work
with ϕ̄ . For convenience, we write ϕ.

From now on, we let U = (u, v, ϕ, ψ, θ, ϑ, z)T , where v = ut, ψ = ϕt and ϑ = θt.
System (4) can be written as an evolutionary equation

U ′(t) = AU(t), t > 0, U(0) = U0 = (u0, u1, ϕ0, ϕ1, θ0, θ1, f0)
T . (6)

where A is a linear operator defined by

AU =



v
µ

ρ
uxx +

b

ρ
ϕx

ψ
δ

J
ϕxx −

b

J
ux −

ξ

J
ϕ− β

J
ϑx

ϑ
δ

α
θxx −

β

α
ψx +

k

α
ϑxx +

1

α

∫ τ2
τ1
g (s) zx(x, 1, s, t)ds

−1

s
zρ(x, ρ, s, t)


.

We consider the following space H1
∗ (0, 1) = H1(0, 1) ∩ L2

∗(0, 1), where L2
∗(0, 1) = {w ∈

L2(0, 1),
∫ 1

0
w(x)dx = 0}, and the energy space

H=H1
0 (0, 1)×L2(0, 1)×H1

∗ (0, 1)×L2
∗(0, 1)×H1

0 (0, 1)×L2(0, 1)×L2((0, 1)×(0, 1)×(τ1, τ2)),

equipped with the inner product〈
U, Ũ

〉
H

=

∫ 1

0

[ρvṽ + µuxũx + ξϕϕ̃+ Jψψ̃ + δϕxϕ̃x + δθxθ̃x + αϑϑ̃+ buxϕ̃+ bϕũx]dx

+

∫ 1

0

∫ 1

0

∫ τ2

τ1

s |g (s)| z (x, ρ, s) z̃ (x, ρ, s) dsdρdx. (7)

The domain of A is given by

D(A) =


U ∈ H | u ∈ H2(0, 1) ∩H1

0 (0, 1), v ∈ H1
0 (0, 1), ϕ ∈ H2

∗ (0, 1) ∩H1
∗ (0, 1),

ψ ∈ H1
∗ (0, 1), ϑ ∈ H1

0 (0, 1), δθ +
(
k +

∫ τ2
τ1
g(s)e−sds

)
ϑ ∈ H2(0, 1),

z, zρ ∈ L2((0, 1)× (0, 1)× (τ1, τ2))

 ,

where H2
∗ (0, 1)= {w∈H2(0, 1); wx(0)=wx(1)= 0}. Clearly, D(A) is dense in H. We

give the following well-posedness result of problem (6).

Theorem 2.1. Let U0 ∈ H and assume that (5) hold. Then, there exists a unique so-
lution U ∈C(R+;H) of problem (6). Moreover, if U0∈D(A), then U ∈ C(R+;D(A))∩
C1(R+;H).
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To state our decay result, we introduce the following energy functional:

E(t) =
1

2

∫ 1

0

[
ρu2t + Jϕ2

t + αθ2t + µu2x + δϕ2
x + δθ2x + ξϕ2 + 2bϕux

]
dx

+
1

2

∫ 1

0

∫ 1

0

∫ τ2

τ1

s |g (s)| z2 (x, ρ, s, t) dsdρdx. (8)

We have the following exponentially stable result.
Theorem 2.2. Let (u, ϕ, θ, z) be the solution of the system (4) and we assume that
(2), (5) hold. Then, the solution (u, ϕ, θ, z) decays exponentially, i.e. there exist two
positive constants k0 and k1 such that

E(t) ≤ k0e
−k1t, ∀t ≥ 0. (9)

3 Well-posedness

In this section, we give the proof of the well-posedness of problem (4) by making use
of Lumer-Philips theorem [22, 23].

Proof. (of Theorem 2.1) To prove the well-posedness result, it suffices to show that
A : D(A) → H is a maximal monotone operator. For this purpose, we need the
following two steps: A is dissipative and Id−A is surjective.

Step 1. A is dissipative.
For any U = (u, v, ϕ, ψ, θ, ϑ, z)T ∈ D(A), by using the inner product and integrating

by parts, we can imply that

⟨AU,U⟩H = −k
∫ 1

0

ϑ2
xdx+

∫ 1

0

ϑ

∫ τ2

τ1

g(s)zx(x, 1, s, t)dsdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

|g(s)|z(x, ρ, s, t)zρ(x, ρ, s, t)dsdρdx. (10)

The last two terms of the right side of (10) can be estimated as follows∫ 1

0

ϑ

∫ τ2

τ1

g(s)zx(x, 1, s, t)dsdx=−
∫ 1

0

ϑx

∫ τ2

τ1

g(s)z(x, 1, s, t)dsdx

≤ 1

2

∫ τ2

τ1

|g(s)|ds
∫ 1

0

ϑ2
xdx+

1

2

∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx, (11)

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

|g(s)z(x, ρ, s, t)zρ(x, ρ, s, t)dsdρdx

=
1

2

∫ τ2

τ1

|g(s)|ds
∫ 1

0

ϑ2
xdx−

1

2

∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx. (12)

Substituting (11) and (12) into (10), and using (5), we obtain

⟨AU,U⟩H ≤ −
(
k −

∫ τ2

τ1

|g(s)|ds
)∫ 1

0

ϑ2
xdx ≤ 0.

Hence, the operator A is dissipative.
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Step 2. Id−A is surjective.
To prove that the operator Id−A is surjective, that is, for any F = (f1, ..., f7) ∈ H,

there exists U = (u, v, ϕ, ψ, θ, ϑ, z)T ∈ D(A) satisfying

(Id−A)U = F, (13)

which is equivalent to

u− v = f1, ρv − µuxx − bϕx = ρf2, ϕ− ψ = f3,

Jψ − δϕxx + bux + ξϕ+ βϑx = Jf4, θ − ϑ = f5, (14)
αϑ− δθxx + βψx − kϑxx −

∫ τ2

τ1

g (s) zx(x, 1, s, t)ds = αf6,

sz(x, ρ, s, t) + zρ(x, ρ, s, t) = sf7.

We note that the last equation in (14) with z(x, 0, s, t) = ϑx(x, t), has a unique
solution

z(x, ρ, s, t) = ϑx(x, t)e
−ρs + se−ρs

∫ ρ

0

eδsf7(x, δ, s)dδ. (15)

(14)1, (14)3 and (14)5 give

v = u− f1, ψ = ϕ− f3, ϑ = θ − f5. (16)

Inserting (16) into (14)2, (14)4 and (14)6, we get

ρu−µuxx−bϕx=h1, (J+ξ)ϕ−δϕxx+bux+βθx=h2, αθ−µ1θxx+βϕx=h3, (17)

where
h1 = ρf1 + ρf2, h2 = Jf3 + Jf4 + β∂xf5,

h3 = αf5 + αf6 + β∂xf3 −
(
k +

∫ τ2

τ1

g (s) e−sds

)
∂xxf5

+

∫ τ2

τ1

g (s) se−s

∫ 1

0

eδs∂xf7 (x, δ, s) dδds,

µ1 = δ + k +

∫ τ2

τ1

g (s) e−sds.

In order to solve (17), we consider the following variational formulation

B
(
(u, ϕ, θ)T , (ũ, ϕ̃, θ̃)T

)
= L(ũ, ϕ̃, θ̃)T , (18)

where B : [H1
0 (0, 1)×H1

∗ (0, 1)×H1
0 (0, 1)]

2→R is the bilinear form given by

B
(
(u, ϕ, θ)T, (ũ, ϕ̃, θ̃)T

)
=ρ

∫ 1

0

uũdx+µ

∫ 1

0

uxũxdx+(J+ξ)

∫ 1

0

ϕϕ̃dx

+δ

∫ 1

0

ϕxϕ̃xdx+α

∫ 1

0

θθ̃dx+µ1

∫ 1

0

θxθ̃xdx+b

∫ 1

0

(ϕũx+uxϕ̃)dx+β

∫ 1

0

(θxϕ̃+ϕxθ̃)dx,

and L : [H1
0 (0, 1)×H1

∗ (0, 1)×H1
0 (0, 1)] → R is the linear form defined by

L(ũ, ϕ̃, θ̃)T =

∫ 1

0

h1ũdx+

∫ 1

0

h2ϕ̃dx+

∫ 1

0

h3θ̃dx.

Now, for V = H1
0 (0, 1)×H1

∗ (0, 1)×H1
0 (0, 1) equipped with the norm
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∥(u, ϕ, θ)∥2V = ∥u∥2 + ∥ϕ∥2 + ∥θ∥2 + ∥ux∥2 + ∥ϕx∥2 + ∥θx∥2,

then, we have

B
(
(u, ϕ, θ)T , (u, ϕ, θ)T

)
= ρ

∫ 1

0

u2dx+ δ

∫ 1

0

ϕ2
xdx+ α

∫ 1

0

θ2dx

+ µ1

∫ 1

0

θ2xdx+ (J + ξ)

∫ 1

0

ϕ2dx+ µ

∫ 1

0

u2xdx+ 2b

∫ 1

0

ϕuxdx.

On the other hand, we can write

µu2x + 2bϕux + ξϕ2

=
1

2

[
µ

(
ux+

b

µ
ϕ

)2
+ ξ

(
ϕ+

b

ξ
ux

)2
+

(
µ− b2

ξ

)
u2x+

(
ξ− b2

µ

)
ϕ2

]
,

since µξ > b2, we deduce that

µu2x + 2bϕux + ξϕ2 >
1

2

[(
µ− b2

ξ

)
u2x +

(
ξ − b2

µ

)
ϕ2

]
,

then, for some M0 > 0,

B
(
(u, ϕ, θ)T , (u, ϕ, θ)T

)
≥M0 ∥(u, ϕ, θ)∥2V .

Thus, B is coercive. On the other hand, we can easily show, using Cauchy-Schwarz
inequality, that B and L are continuous. Applying the Lax-Milgram Lemma, we de-
duce that for all (ũ, ϕ̃, θ̃)T ∈ V , problem (18) admits a unique solution (u, ϕ, θ)T ∈ V .
Applying the classical elliptic regularity, it follows from (17) that

u ∈ H2(0, 1), ϕ ∈ H2
∗ (0, 1), δθ +

(
k +

∫ τ2

τ1

g(s)e−sds

)
ϑ ∈ H2(0, 1).

Therefore, the operator Id−A is surjective. Consequently, the result of Theorem 2.1
follows from the Lumer-Philips theorem.

4 Exponential stability

In this section, we prove the exponential decay result in Theorem 2.2. It will be
achieved by using the energy method. To achieve our goal, we need the following
lemmas.

Lemma 4.1. Let (u, ϕ, θ, z) be the solution of (4) and assume (5) holds. Then the
energy functional, defined by (8) satisfies

E ′(t) ≤ −
(
k −

∫ τ2

τ1

|g(s)|ds
)∫ 1

0

θ2txdx ≤ 0, ∀t ≥ 0. (19)

Proof. Multiplying (4)1, (4)2 and (4)3 by ut, ϕt and θt, respectively, and integrating
over (0, 1), using integration by parts and the boundary conditions, we obtain
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1

2

d

dt

∫ 1

0

[
ρu2t + µu2x + ξϕ2 + Jϕ2

t + δϕ2
x + αθ2t + δθ2x + 2buxϕ

]
dx

= −k
∫ 1

0

θ2txdx+

∫ 1

0

θt

∫ τ2

τ1

g(s)zx(x, 1, s, t)dsdx. (20)

Multiplying (4)4 by |g(s)|z, integrating the product over (0, 1)× (0, 1)× (τ1, τ2), and
recall that z(x, 0, s, t) = θtx(x, t), yield

1

2

d

dt

∫ 1

0

∫ 1

0

∫ τ2

τ1

s |g (s)| z2(x, ρ, s, t)dsdρdx

=
1

2

∫ 1

0

∫ τ2

τ1

|g (s)| θ2txdsdx−
1

2

∫ 1

0

∫ τ2

τ1

|g (s)| z2(x, 1, s, t)dsdx. (21)

A combination of (20) and (21) gives

E ′(t) = −k
∫ 1

0

θ2txdx+

∫ 1

0

θt

∫ τ2

τ1

g (s) zx(x, 1, s, t)dsdx

+
1

2

∫ 1

0

∫ τ2

τ1

|g(s)|θ2txdsdx−
1

2

∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx. (22)

Meanwhile, using Young’s inequality, we have∫ 1

0

θt

∫ τ2

τ1

g(s)zx(x, 1, s, t)dsdx=−
∫ 1

0

θtx

∫ τ2

τ1

g(s)z(x, 1, s, t)dsdx

≤ 1

2

(∫ τ2

τ1

|g(s)|ds
)∫ 1

0

θ2txdx+
1

2

∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx. (23)

Simple substitution of (23) into (22) and using (5) give (19), which concludes the
proof.

Remark 1. Note that E(t) is non-negative. In fact, by considering

µu2x + 2bϕux + ξϕ2

=
1

2

[
µ

(
ux+

b

µ
ϕ

)2
+ξ

(
ϕ+

b

ξ
ux

)2
+

(
µ− b2

ξ

)
u2x+

(
ξ− b2

µ

)
ϕ2

]
,

and using (3), we get µu2x + 2bϕux + ξϕ2 > 0. Consequently, it follows that E(t) > 0.

Next, in order to construct a Lyapunov functional equivalent to the energy, we will
prove several lemmas with the purpose of creating negative counterparts of the terms
that appear in the energy.

Lemma 4.2. Let (u, ϕ, θ, z) be the solution of (5). Then the functional

L1 (t) = −ρ
∫ 1

0

uutdx,

satisfies the estimate

L′
1(t) ≤ −ρ

∫ 1

0

u2tdx+
3µ

2

∫ 1

0

u2xdx+
b2

2µ

∫ 1

0

ϕ2
xdx. (24)
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Proof. By differentiating L1 (t) with respect to t, then exploiting the first equation in
(4), and integrating by parts, we obtain

L′
1(t) = −ρ

∫ 1

0

u2tdx+ µ

∫ 1

0

u2xdx+ b

∫ 1

0

uxϕdx.

Using Young’s and Poincaré inequalities, estimate (24) is established.

Lemma 4.3. Let (u, ϕ, θ, z) be the solution of (4). Then the functional

L2(t) =
µ

ρ

∫ 1

0

ϕtuxdx+
δ

J

∫ 1

0

ϕxutdx,

satisfies the estimate

L′
2(t)≤− µb

2ρJ

∫ 1

0

u2xdx+
µξ2

ρJb

∫ 1

0

ϕ2dx+
δb

Jρ

∫ 1

0

ϕ2
xdx+

µβ2

ρJb

∫ 1

0

θ2txdx. (25)

Proof. By differentiating L2 (t) with respect to t, then exploiting the first and the
second equations in (4), and integrating by parts, we obtain

L′
2(t) = −µb

ρJ

∫ 1

0

u2xdx−
µξ

ρJ

∫ 1

0

ϕuxdx+
δb

Jρ

∫ 1

0

ϕ2
xdx

− µβ

ρJ

∫ 1

0

θtxuxdx+

(
δ

J
− µ

ρ

)∫ 1

0

ϕtxutdx. (26)

Using Young’s inequality, we obtain

−µξ
ρJ

∫ 1

0

ϕuxdx ≤ µb

4ρJ

∫ 1

0

u2xdx+
µξ2

ρJb

∫ 1

0

ϕ2dx, (27)

−µβ
ρJ

∫ 1

0

θtxuxdx ≤ µb

4ρJ

∫ 1

0

u2xdx+
µβ2

ρJb

∫ 1

0

θ2txdx. (28)

Substituting (27) and (28) in (26) and using (2), we get (25).

Lemma 4.4. Let (u, ϕ, θ, z) be the solution of (4). Then the functional

L3(t) = J

∫ 1

0

ϕϕtdx−
ρb

µ

∫ 1

0

ut

(∫ x

0

ϕ(y)dy

)
dx,

satisfies, for any ε1 > 0, the estimate

L′
3(t)≤−δ

2

∫ 1

0

ϕ2
xdx− γ1

∫ 1

0

ϕ2dx+

(
J+

ρ2b2

4ε1µ2

)∫ 1

0

ϕ2
tdx+ ε1

∫ 1

0

u2tdx+
β2

2δ

∫ 1

0

θ2t dx, (29)

where γ1 = ξ − b2/µ > 0.

Proof. By differentiating L3 (t) with respect to t, then exploiting the first and the
second equations in (4), and integrating by parts, we obtain
L′
3(t)

=J

∫ 1

0

ϕ2
tdx+ J

∫ 1

0

ϕϕttdx−
ρb

µ

∫ 1

0

utt

(∫ x

0

ϕ(y)dy

)
dx− ρb

µ

∫ 1

0

ut

(∫ x

0

ϕt(y)dy

)
dx
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=J

∫ 1

0

ϕ2
tdx− δ

∫ 1

0

ϕ2
xdx−

(
ξ− b2

µ

)∫ 1

0

ϕ2dx+β

∫ 1

0

θtϕxdx−
ρb

µ

∫ 1

0

ut

(∫ x

0

ϕt(y)dy

)
dx. (30)

By using Young’s inequality, we have

β

∫ 1

0

θtϕxdx ≤ β2

2δ

∫ 1

0

θ2t dx+
δ

2

∫ 1

0

ϕ2
xdx, (31)

using Young’s and Cauchy–Schwarz inequalities with ε1 > 0, we get

−ρb
µ

∫ 1

0

ut

(∫ x

0

ϕt (y) dy

)
dx ≤ ε1

∫ 1

0

u2tdx+
ρ2b2

4ε1µ2

∫ 1

0

ϕ2
tdx. (32)

Inserting (31) and (32) in (30), we obtain (29).

Lemma 4.5. Let (u, ϕ, θ, z) be the solution of (4). Then the functional

L4(t) = −α
∫ 1

0

θt

(∫ x

0

ϕt (y) dy

)
dx,

satisfies, for any ε2 > 0, the estimate

L′
4(t)≤−β

4

∫ 1

0

ϕ2
tdx+ε2

∫ 1

0

ϕ2
xdx+ε2

∫ 1

0

ϕ2dx+
δ2

β

∫ 1

0

θ2xdx+C1(ε2)

∫ 1

0

θ2t dx

+
k2

β

∫ 1

0

θ2txdx+ε2

∫ 1

0

u2xdx+
1

β

∫ τ2

τ1

|g(s)|ds
∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx, (33)

where C1(ε2) =
βα

J
+

b2α2

4ε2J2
+

δ2α2

4ε2J2
+

ξ2α2

4ε2J2
.

Proof. By differentiating L4(t) with respect to t, then exploiting the second and the
third equations in (4), and integrating by parts, we obtain

L′
4(t)=−β

∫ 1

0

ϕ2
tdx+δ

∫ 1

0

θxϕtdx+k

∫ 1

0

θtxϕtdx+

∫ 1

0

ϕt

∫ τ2

τ1

g(s)z(x, 1, s, t)dsdx

+
βα

J

∫ 1

0

θ2t dx−
δα

J

∫ 1

0

θtϕxdx+
bα

J

∫ 1

0

θtudx+
ξα

J

∫ 1

0

θt

(∫ x

0

ϕdy

)
dx. (34)

Using Young’s, Cauchy–Schwarz and Poincaré inequalities,

δ

∫ 1

0

θxϕtdx ≤ β

4

∫ 1

0

ϕ2
tdx+

δ2

β

∫ 1

0

θ2xdx, (35)

k

∫ 1

0

θtxϕtdx ≤ β

4

∫ 1

0

ϕ2
tdx+

k2

β

∫ 1

0

θ2txdx, (36)∫ 1

0

ϕt

∫ τ2

τ1

g(s)z(x, 1, s, t)dsdx ≤ β

4

∫ 1

0

ϕ2
tdx+

1

β

∫ τ2

τ1

|g(s)|ds

×
∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx, (37)

−δα
J

∫ 1

0

θtϕxdx ≤ δ2α2

4ε2J2

∫ 1

0

θ2t dx+ ε2

∫ 1

0

ϕ2
xdx, (38)

bα

J

∫ 1

0

θtudx ≤ b2α2

4ε2J2

∫ 1

0

θ2t dx+ ε2

∫ 1

0

u2xdx, (39)

ξα

J

∫ 1

0

θt

(∫ x

0

ϕdy

)
dx ≤ ξ2α2

4ε2J2

∫ 1

0

θ2t dx+ ε2

∫ 1

0

ϕ2dx, (40)
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where ε2 > 0. Estimate (33) follows by substituting (35)-(40) into (34).

Lemma 4.6. Let (u, ϕ, θ, z) be the solution of (4). Then the functional

L5(t) = α

∫ 1

0

θθtdx+
k

2

∫ 1

0

θ2xdx+ β

∫ 1

0

ϕxθdx,

satisfies, for any ε3 > 0, the estimate

L′
5(t) ≤ −δ

2

∫ 1

0

θ2xdx+

(
α +

β2

4ε3

)∫ 1

0

θ2t dx+ ε3

∫ 1

0

ϕ2
xdx

+
1

2δ

∫ τ2

τ1

|g(s)|ds
∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx. (41)

Proof. By differentiating L5(t) with respect to t, using the equation (4)3 and integrating
by parts, we obtain

L′
5(t)=−δ

∫ 1

0

θ2xdx+ α

∫ 1

0

θ2t dx+ β

∫ 1

0

ϕxθtdx−
∫ 1

0

θx

∫ τ2

τ1

g(s)z(x, 1, s, t)dsdx. (42)

Using Young’s and Cauchy–Schwarz inequalities with ε3 > 0, we get

β

∫ 1

0

ϕxθtdx ≤ β2

4ε3

∫ 1

0

θ2t dx+ ε3

∫ 1

0

ϕ2
xdx, (43)

−
∫ 1

0

θx

∫ τ2

τ1

g(s)z(x, 1, s, t)dsdx ≤ δ

2

∫ 1

0

θ2xdx+
1

2δ

∫ τ2

τ1

|g(s)|ds

×
∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx. (44)

Substituting (43) and (44) in (42), we get (41).

Lemma 4.7. Let (u, ϕ, θ, z) be the solution of (4). Then the functional

L6(t) =

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ|g(s)|z2 (x, ρ, s, t) dsdρdx,

satisfies, for some positive constant n1, the following estimate

L′
6(t) ≤ −n1

∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx+ k

∫ 1

0

θ2txdx

−n1

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|g(s)|z2(x, ρ, s, t)dsdρdx. (45)

Proof. By differentiating L6(t) with respect to t, and using the equation (4)4, we obtain

L′
6(t) = −2

∫ 1

0

∫ 1

0

∫ τ2

τ1

e−sρ|g(s)|z(x, ρ, s, t)zρ(x, ρ, s, t)dsdρdx

= − d

dρ

∫ 1

0

∫ 1

0

∫ τ2

τ1

e−sρ|g(s)|z2(x, ρ, s, t)dsdρdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ|g(s)|z2(x, ρ, s, t)dsdρdx

= −
∫ 1

0

∫ τ2

τ1

|g(s)|
[
e−sz2(x, 1, s, t)− z2(x, 0, s, t)

]
dsdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ|g(s)|z2(x, ρ, s, t)dsdρdx.
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Using the fact that z(x, 0, s, t) = θtx and e−s ≤ e−sρ ≤ 1, for all 0 < ρ < 1 we obtain

L′
6(t) ≤ −

∫ 1

0

∫ τ2

τ1

e−s|g(s)|z2(x, 1, s, t)dsdx+
∫ τ2

τ1

|g(s)|ds
∫ 1

0

θ2txdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−s|g(s)|z2(x, ρ, s, t)dsdρdx.

Because −e−s is an increasing function, we have −e−s ≤ −e−τ2 , for all s ∈ [τ1, τ2].
Finally, setting n1 = e−τ2 and recalling (5), we obtain (45).

Proof. (of Theorem 2.2) We define the Lyapunov functional L as follows

L(t) = NE(t) + L1(t) +
6∑

i=2

NiLi(t), (46)

where N,N2, N3, N4, N5 and N6 are positive constants to be determined properly.
By differentiating (46) and recalling (19), (24), (25), (29), (33), (41), (45) and using

of
∫ 1

0
θ2t dx ≤

∫ 1

0
θ2txdx, we arrive at

L′(t) ≤

− [ρ− ε1N3]

∫ 1

0

u2tdx−
[
β

4
N4 −

(
J +

ρ2b2

4ε1µ2

)
N3

] ∫ 1

0

ϕ2
tdx

−
[
N

(
k −

∫ τ2

τ1

|g(s)|ds
)
− µβ2

ρJb
N2 −

β2

2δ
N3 −

(
C1(ε2) +

k2

β

)
N4

−
(
α +

β2

4ε3

)
N5 − kN6

] ∫ 1

0

θ2txdx−
[
µb

2ρJ
N2 −

3µ

2
− ε2N4

] ∫ 1

0

u2xdx

−
[
δ

2
N3 −

b2

2µ
− δb

Jρ
N2 − ε2N4 − ε3N5

] ∫ 1

0

ϕ2
xdx

−
[
δ

2
N5 −

δ2

β
N4

] ∫ 1

0

θ2xdx−
[
γ1N3 −

µξ2

ρJb
N2 − ε2N4

] ∫ 1

0

ϕ2dx

−
[
n1N6 −

(
N4

β
+
N5

2δ

)∫ τ2

τ1

|g(s)|ds
] ∫ 1

0

∫ τ2

τ1

|g(s)|z2(x, 1, s, t)dsdx

−n1N6

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|g(s)|z2(x, ρ, s, t)dsdρdx. (47)

At this point, we need to choose our constants carefully. First, we take N5 = (4δ/β)N4.
We set ε1 = ρ/(2N3), then we choose N2 large enough such that (N2µb)/(2ρJ)−3µ/2 >
0. Next, we select N3 large so that (δN3)/2 − b2/(2µ) − (δbN2)/(Jρ) > 0, γ1N3 −
(µξ2N2)/(ρJb) > 0. Now, we choose N4 large so that (βN4)/4−N3(J+ρ

2b2)/(4ε1µ
2) >

0. After that, we select ε2, ε3 small enough so that (µbN2)/(2ρJ)− 3µ/2− ε2N4 > 0,
γ1N3 − (µξ2N2)(ρJb) − ε2N4 > 0, and (δN3)/2 − b2/(2µ) − (δbN2)/(Jρ) − ε2N4 −
ε3N5 > 0. Furthermore, we can take N6 sufficiently large such that n1N6 − (N4/β +
N5/(2δ))

∫ τ2
τ1

|g(s)|ds > 0. Finally, we choose N large enough such that γ > 0, where
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γ = N
(
k −

∫ τ2
τ1

|g(s)|ds
)
− (µβ2N2)/(ρJb)− (β2N3)/(2δ)− (C1(ε2) + k2/β)N4 − (α+

β2/(4ε3))N5 − kN6.
Thus, we obtain that there exists a positive constant η0 such that (47) yields

L′ (t) ≤ −η0E(t), ∀t ≥ 0. (48)

On the hand, it is not hard to see that L(t) ∼ E(t), i.e. there exist two positive
constants β1 and β2 such that

β1E(t) ≤ L(t) ≤ β2E(t), ∀t ≥ 0. (49)

Combining (48) and (49), we obtain that

L′(t) ≤ −k1L(t), ∀t ≥ 0, (50)

for the positive constant k1 = η0/β2. A simple integration of (50) over (0, t) gives

L(t) ≤ L(0)e−k1t, ∀t ≥ 0. (51)

Finally, by combining (49) and (51) we obtain (9) with k0 = β2E(0)/β1, which com-
pletes the proof.
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