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Abstract Healthcare Internet of Things (HIoT) technology is revolutionising the healthcare indus-
try by enabling real-time data collection and analysis for personalised patient care. However, the
rapid expansion of HIoT technology introduces challenges such as increased latency and higher energy
consumption in fog computing environments, particularly when managing battery-operated devices.
To address these issues, this work proposes a novel scheduling strategy that optimises both power
consumption and latency through task-oriented scheduling for HIoT tasks. The proposed strategy,
named PLATOS (Power and Latency Aware Task Oriented Scheduling), is implemented in four se-
quential phases. In the first phase, HIoT tasks are categorised into three groups: priority-oriented,
storage-oriented, and computational-oriented. The second phase focuses on latency optimisation by
identifying the fog computing resources that yield the lowest execution delay for each task category.
In the third phase, power optimisation is achieved by selecting the resources that minimise energy
consumption. Finally, in the decision-making phase, high-performance fog resources are allocated to
high-priority tasks while the remaining tasks are scheduled based on a mapped list derived from the
latency and power optimisation phases. Simulation experiments conducted in iFogSim2 demonstrate
that PLATOS reduces energy consumption by 18.72% and latency by 8.65% when compared to the
state-of-the-art. These improvements enhance the efficiency and responsiveness of HIoT systems and
contribute to more effective patient care and proactive healthcare service delivery.
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1 Introduction
Fog computing extends cloud computing capabilities to the network edge, enabling computa-
tional resources to be positioned closer to data sources. This architecture addresses several
limitations of traditional cloud computing, including data privacy concerns, bandwidth con-
straints, and latency issues [1]. Over time, fog computing has been integrated with the
Internet of Things (IoT) across various domains, including atmospheric attenuation analysis
for rain data assessment [2, 3], smart cities [4], smart building solutions for individuals with
disabilities [5], security applications [6], healthcare, and more.

In the healthcare sector, the Healthcare Internet of Things (HIoT) refers to the integration
of IoT-enabled medical devices, wearables, sensors, and other connected technologies that
facilitate real-time health data collection and transmission [7, 8]. This integration enhances
patient monitoring, enables early diagnosis, and supports data-driven decision-making for
improved healthcare delivery.

Fog computing significantly enhances the HIoT ecosystem by processing and analysing
data near the data source. This edge processing reduces latency, accelerates data processing,
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and minimises the volume of data transmitted to the cloud [9]. In critical healthcare appli-
cations like remote patient monitoring, telemedicine, and emergency response, timely data
processing is crucial. Fog computing ensures that vital health data is processed promptly,
thereby improving patient outcomes and reducing the risk of adverse events. Thus, fog com-
puting has the potential to transform healthcare IoT by enabling more efficient and effective
data processing and analysis, leading to enhanced patient care and a more responsive health-
care system [10, 11].

Task allocation in an IoT environment involves distributing tasks and resources among
various IoT devices in a network. The heterogeneity of IoT devices, in terms of capabilities,
makes task allocation challenging. It is essential to optimise this process to assign tasks to
devices that can execute them efficiently while minimising resource usage [12]. Various ap-
proaches to task allocation exist. Centralised allocation involves a central entity managing
task distribution based on device capabilities and availability, which is straightforward but
can suffer from scalability and latency issues [13]. In contrast, decentralised allocation allows
each IoT device to independently decide which tasks to accept and how to allocate its re-
sources, offering greater flexibility and scalability but requiring more sophisticated algorithms
for efficient resource use [14]. Hybrid approaches that combine centralised and decentralised
methods are also employed, depending on the specific requirements of the IoT environment
[15]. Effective task allocation is crucial for IoT network management and optimisation, and
the appropriate approach should be selected based on the unique characteristics of the IoT
setup [16].

Power consumption is a critical factor in the task allocation process within an IoT environ-
ment. Many IoT devices are battery-powered and have limited energy resources, necessitating
careful power management to ensure device longevity and optimal performance. Efficient task
allocation minimises power consumption by assigning tasks to devices capable of performing
them with minimal energy use [17]. For instance, tasks requiring high processing power or
data transmission might be allocated to devices with more powerful processors or superior
communication capabilities, while less demanding tasks could be assigned to less powerful
devices. Additionally, energy-efficient algorithms and techniques, such as data compression,
aggregation, and dynamic voltage and frequency scaling, are employed to further reduce power
consumption during task execution [18, 19, 20]. By managing power consumption through
efficient task allocation and energy-saving techniques, IoT devices can perform their tasks op-
timally, ensuring extended battery life and enhancing the overall efficiency and effectiveness
of the IoT network [21].

Energy-efficient and task-oriented resource allocation for HIoT data in fog environments
presents several challenges that must be addressed to achieve optimal resource utilisation and
task performance [14]. One of the primary challenges is the energy constraints of many IoT
devices, which limit their ability to perform complex tasks or transmit large volumes of data.
Developing energy-efficient resource allocation strategies is essential to ensure these devices
can operate for extended periods without depleting their power reserves.

In healthcare IoT applications, low latency is crucial to ensure that patient data is trans-
mitted and processed swiftly. Allocating fog computing resources to minimise latency is chal-
lenging due to the distributed nature of fog environments. Furthermore, healthcare IoT data
is often sensitive and requires protection against unauthorised access or tampering. Resource
allocation strategies must consider these security requirements, which may involve additional
processing and encryption measures [10].

The heterogeneity of healthcare IoT devices, which vary in processing capabilities, memory,
and network connectivity, adds another layer of complexity to resource allocation. Strategies
must accommodate this diversity and allocate resources effectively. Scalability is also a sig-
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nificant challenge, as healthcare IoT applications generate vast amounts of data that need to
be processed efficiently. Resource allocation strategies must be scalable to handle large data
volumes and support future growth in the number of IoT devices and data [22].

Addressing these challenges requires treating energy-efficient and task-oriented resource
allocation for healthcare IoT data in a fog environment as a complex optimisation problem.
This problem necessitates careful consideration of energy constraints, latency requirements,
security concerns, device heterogeneity, and scalability [23]. By employing intelligent resource
allocation algorithms, it is possible to optimise resource utilisation and ensure the efficient
processing of healthcare IoT data in fog computing environments.

This research proposes a PLATOS strategy for HIoT tasks. The main contributions are
outlined below:

1. The research presents a framework that implements power and latency optimisation
through task-oriented scheduling for HIoT tasks in fog computing. Power and latency
are optimised through the following phases:

(a) Task-orientation phase: This phase categories HIoT tasks into three categories:
priority-oriented tasks, storage-oriented tasks, and computational-oriented tasks.

(b) Latency-optimisation phase: This phase identifies fog resources for each cate-
gory of tasks in ascending order of minimum latency during execution.

(c) Power-optimisation phase: This phase identifies fog computing resources for
each category of tasks in ascending order of minimum power consumption.

(d) Decision-making phase: This phase schedules high-performance fog resources
for high-priority HIoT tasks, while the remaining HIoT tasks are scheduled using
a mapped list of resources from the latency and power-optimisation phases.

2. The proposed strategy is evaluated through a simulation environment, with performance
evaluation parameters including energy consumption and latency. The simulation results
are compared with existing state-of-the-art strategies.

The paper is organised as follows: Sec. 2 discusses related work that is relevant to the
proposed research. Sec. 3 provides details on the system design and model. The evaluation
methods are described in Sec. 4. Sec. 5 provides the experimental setup, results, and discus-
sion. Sec. 6 concludes the article, highlighting limitations and suggesting directions for future
work.

2 Related Works
The related work is studied and analysed with respect of fog computing, HIoT, energy-efficient,
and task-oriented scheduling algorithms. The IoT has emerged as a key technology that
has the potential to revolutionise various industries, including healthcare. Remote patient
monitoring through IoT devices can help healthcare providers to monitor the health of patients
remotely and in real-time. However, the latency caused by transferring data from sensors
to the cloud and back, be a significant challenge in remote health monitoring applications.
To overcome this challenge, fog computing can be used as an intermediate layer between
sensors and cloud computing, which collects and processes data more efficiently and reduces
the amount of data transferred between sensors and the cloud. Wireless sensor networks
(WSNs) are commonly used in healthcare applications to collect and transmit data from
IoT devices to fog and cloud computing systems. However, these networks often send a
large number of tasks simultaneously, which results in task delays and decreased system
performance. Therefore, an appropriate task-scheduling algorithm is needed to prioritise
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tasks and ensure that high-priority tasks are processed quickly, regardless of their length.
In [24], the authors propose a new method called Tasks Classification and Virtual Machines
Categorisation (TCVC) based on task importance to improve the performance of static task
scheduling algorithms. The proposed method classifies tasks based on their importance into
three categories: high importance, medium importance, and low importance, depending on
the patient’s health status. The proposed research aims to improve the performance of task
scheduling algorithms in healthcare applications using IoT and fog computing. By prioritising
tasks based on their importance, the proposed method helps to ensure that high-priority tasks
are processed quickly and efficiently, even if they are long tasks. The use of fog computing as
an intermediate layer also helps to reduce latency and improve system efficiency.

The research work in [25] presents a new scheduler for Fog computing that optimises
network usage and delay specifically for the Internet of Everything (IoE) environment. Fog
computing offers storage, processing, analytical, and networking services at the network edge,
resolving the latency and bandwidth issues that Cloud computing faces. Nevertheless, Fog de-
vices at the network edge have limited resources, making job scheduling and resource allocation
challenging tasks. A well-designed job scheduling algorithm minimises energy consumption
and response time for application requests. The proposed scheduling algorithm was tested
using iFogSim and demonstrated improved network usage and delay compared to existing
approaches.

In [26], the authors highlight the requirements in cloud computing service usage due to
the expansion of IoT-based applications and the need for intelligent scheduling methods to
optimise the scheduling of IoT application tasks on computing resources. The authors suggest
a novel algorithm, CHMPAD, which integrates the chimp optimisation algorithm (ChOA),
marine predators algorithm, and disruption operator to prevent being trapped in local optima
and enhance the exploitation capability of the basic ChOA. The simulation results reveal
that CHMPAD significantly enhances the makespan time and throughput performance of
fog computing when compared to other scheduling algorithms. The proposed algorithm is
validated using synthetic and real workloads gathered from the Parallel Workload Archive.

In [27], the authors address the challenge of efficient deployment of fog computing re-
sources for executing heterogeneous and delay-sensitive IoT tasks. The authors propose a
mathematical model for task scheduling that considers the minimisation of energy consump-
tion, deadline violation time, and Quality of Service (QoS) requirements of IoT tasks. Two
semi-greedy-based algorithms, PSG and PSG-M, are proposed to map IoT tasks to fog nodes
efficiently. The performance evaluation shows that the proposed algorithms outperform exist-
ing algorithms in terms of meeting the deadline requirement, reducing deadline violation time,
optimising energy consumption, and makespan of the system. This paper provides a valuable
contribution to the efficient deployment of fog computing resources for IoT applications.

The proposed Energy-Efficient Internet of Medical Things to Fog Interoperability of Task
Scheduling (EEIoMT) framework by [27], appears to be a promising solution for real-time
healthcare applications that utilise fog computing. The framework addresses the critical need
for efficient task scheduling that minimises response time, latency, and energy consumption
while ensuring that priority-based tasks are executed within their deadline. The architecture
described in the study utilises ECG sensors to monitor heart health at home and sends the
sensed data to the fog scheduler for analysis. The scheduler selects the appropriate fog node
based on a weighted formula that considers the expected energy consumption and latency
of executing each task. Simulation results suggest that the proposed framework outperforms
existing models such as CHTM, LBS, and FNPA in terms of reducing energy usage, latency,
and network utilisation. The study provides valuable insights into the potential benefits of fog
computing in healthcare and the importance of developing efficient task scheduling algorithms
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to optimise its use. However, further research and testing are needed to validate the proposed
framework’s effectiveness in real-world settings and its potential impact on improving patient
outcomes.

Fog computing is a promising solution to address the challenges of bandwidth, network
latency, and energy consumption faced by cloud computing. Healthcare IoT devices generate
massive amounts of data that need to be efficiently managed with minimal latency, energy
consumption, and cost. Failures in tasks or nodes increase latency, energy consumption,
and cost, which can have severe consequences for patients. To address these challenges, a
“Fault Tolerant Data Management” (FTDM) scheme has been proposed for healthcare IoT
in fog computing [28]. FTDM efficiently organises and manages healthcare IoT data through
well-defined components and steps. The scheme includes a mechanism that works in two-
way and manages task and node failures. Simulation results using iFogSim show significant
improvements compared to the existing Greedy Knapsack Scheduling (GKS) strategy. The
FTDM scheme is particularly valuable in circumstances where patients need to be treated
remotely, such as during outbreaks of infectious diseases like COVID-19. Overall, the proposed
strategy is a cost-efficient, energy-aware, and fault-tolerant approach for managing healthcare
IoT data in fog computing, which improves system performance and saves patients’ lives by
minimising latency and providing fault tolerance.

Recent studies have highlighted the limitations of offloading IoT tasks to the cloud, es-
pecially under conditions such as resource contention and varying provisioning levels. [12]
examined traditional resource scheduling algorithms, noting their focus on cost minimisation
and resource optimisation, while often overlooking energy consumption as a crucial opti-
misation factor. They introduced a novel cooperative energy-aware resource allocation and
scheduling strategy, leveraging the Technique for Order of Preference by Similarity to Ideal So-
lution (TOPSIS) method. Their TOPSIS-based Resource Allocation (TOPREAL) approach
significantly enhances energy savings and execution time efficiency, outperforming existing
algorithms. However, their methodology did not address latency considerations.

A study by [29] introduces the Multi-Objectives Grey Wolf Optimiser (MGWO) algorithm,
which aims to minimise QoS objectives such as delay and energy consumption by efficiently
distributing tasks via a fog broker. This algorithm shows promise in reducing both transmis-
sion delays when tasks are sent to the fog and energy consumption when offloading tasks to the
cloud. The simulation results demonstrate the MGWO algorithm’s superiority over state-of-
the-art algorithms in enhancing performance metrics. However, while the MGWO algorithm
offers improvements in delay and energy consumption, it may not comprehensively address
the dynamic nature of IoT environments where task priorities can shift rapidly. Moreover,
the focus on minimising delay and energy consumption could overlook other crucial aspects
such as resource allocation efficiency and real-time adaptability. In comparison, our schedul-
ing (PLATOS) strategy offers a more holistic approach by categorising tasks and optimising
resources based on specific task requirements.

The integration of cloud and fog computing in the vehicular ad hoc network (VANET)
and the Internet of Vehicles (IoV) is addressed in a study by [30], which introduces a fuzzy
logic-based task scheduling system in VANET. This system aims to reduce latency and im-
prove response times when offloading tasks in IoV. It manages the transfer of workloads to
the fog computing layer effectively, considering the limited processing power, bandwidth, and
high-speed mobility of vehicles. The system demonstrates superiority over existing algorithms,
notably reducing average latency. However, while the fuzzy logic-based approach offers sig-
nificant improvements, it may not fully address the complex and dynamic nature of vehicular
networks, where task priorities and resource availability can fluctuate rapidly.

A study by [31] addresses the challenges of n-tier fog computing frameworks for IoT
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applications, focusing on the immediate execution of sensor-generated data with minimal
delay and energy consumption. The study highlights the issues of fog device failure and
its impact on system performance. To mitigate these issues, the authors propose an energy-
efficient task scheduling algorithm based on reactive fault tolerance. Developed using modified
particle swarm optimisation, this algorithm reschedules tasks to other executable fog nodes
upon device failure. The proposed technique aims to reduce energy consumption, latency,
and network bandwidth utilisation while increasing system reliability and success rate. While
this approach offers a robust solution for enhancing fog computing performance, it may face
scalability challenges as the number of fog devices or IoT applications increases. Additionally,
relying solely on reactive fault tolerance may not be sufficient in dynamic IoT environments,
where proactive measures could provide further benefits.

A study by [32] addresses the challenge of efficiently assigning tasks in fog computing to
minimise makespan and energy consumption while maximising the number of tasks meeting
their deadlines. The study proposes an enhanced semi-greedy algorithm, integrating fuzzy
logic to improve decision-making under varying conditions and uncertainties in the fog en-
vironment. Simulation experiments demonstrate that this algorithm surpasses the Priority-
aware Semi-Greedy (PSG) and PSG-MultiStart (PSG-M) algorithms in reducing makespan
and energy consumption and increasing deadline adherence. This flexible approach and nu-
anced task scheduling offer a significant advantage in complex fog computing scenarios. While
the integration of fuzzy logic enhances task scheduling efficiency, the approach may need fur-
ther testing across diverse real-world conditions to validate its robustness and adaptability in
various fog environments.

In [33], authors proposed an Optimal Energy-efficient Resource Allocation (OEeRA) al-
gorithm, building on the Minimal Cost Resource Allocation (MCRA) and Fault Identification
and Rectification (FIR) algorithms. This approach ensures effective task offloading in IoT-
FoG computing networks, assigning at least one fog node (FN) and resource block (RB) per
device. Faulty RBs are replaced using stored backups, improving processing and response
time and increasing fault detection accuracy. The OEeRA algorithm demonstrates significant
energy efficiency gains across varying configurations of FNs, RBs, and IoT devices. However,
the OEeRA algorithm shows promise in enhancing energy efficiency and fault tolerance, fur-
ther research is needed to explore its scalability and adaptability in real-world, dynamically
changing IoT environments.

The use of IoT devices in healthcare has the potential to revolutionise the industry, but
remote patient monitoring faces challenges due to latency caused by data transfer. Fog com-
puting is used as an intermediate layer to overcome this challenge, and task scheduling al-
gorithms are needed to prioritise tasks and ensure high-priority tasks are processed quickly.
Several studies propose new algorithms to improve the performance of static task scheduling
in healthcare applications using IoT and fog computing. These studies evaluate proposed
methods using simulation and show improved delay, network usage, energy consumption, and
system efficiency. The proposed frameworks and algorithms provide valuable insights into
the potential benefits of fog computing in healthcare but still need improvement in resource
scheduling with important parameters of healthcare such as task orientation, energy efficiency
and latency.

3 System Design and Model
3.1 Cloud-Fog System Architecture
The Cloud-Fog System Architecture comprises terminal devices, N fog nodes, and C cloud
servers, as illustrated in Fig. 1. Terminal devices, connected via a wireless channel, send
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sensor-generated data directly to fog nodes. These nodes, in turn, forward the data to a
nearby fog broker for analysis, estimation, and scheduling of end-user requests. Based on the
task characteristics, the broker decides whether the fog or cloud devices are more suitable for
task execution. Proximity to the fog nodes minimises time consumption at the broker. To
ensure optimal task scheduling that meets both transmission delay and energy consumption
criteria, the proposed algorithm is employed at the broker. The traffic model, considering
the varied power and capacity of resources, views terminal devices as an M/M/1 queue, fog
nodes as an M/M/C queue, and cloud servers as an M/M/∞ queue.

Figure 1: Cloud-Fog system architecture [29].

3.2 Mathematical Model for Task Scheduling Algorithm
The proposed framework is structured into three processing layers: microcontrollers, fog
nodes, and the cloud. In the fog layer, each node hosts fog servers, which function as micro
data centres or VMs. These servers vary in capacity across different layers. Specifically, fog
nodes possess significantly less computational power, storage, and server capacity than the
fog cloud, but they offer more than the microcontroller. However, when considering delays,
response time, and proximity to end users, computing nodes that are closer to the data source
exhibit lower latency and faster response times. Consequently, it is essential to execute crit-
ical and time-sensitive tasks on the appropriate computational node to minimise delays and
ensure deadlines are met.

In fog computing, one of the primary challenges in task scheduling is to efficiently allocate
IoT tasks to the most suitable fog nodes from the available options, aiming to optimise QoS.
This study focuses on latency and energy consumption as key QoS parameters.

Assume there are n tasks T that need to be delivered to the fog scheduler, which can be
expressed as follows:

T = {t1, t2, . . . , tn}, (1)

where each task ti is characterised by a set of attributes ti = TSi, TLi, typei, dti. Here, TSi

represents the task size (in bits), TLi is the task length (in Millions of Instructions, MI), typei
indicates whether the task is normal, moderate, or critical, and dti is the deadline by which
the task must be completed.

Now, consider that the fog computing system consists of m fog nodes F , which can be
expressed as:

F = {f1, f2, . . . , fm}, (2)

where each fog node fj is described by a set of attributes fj = {Sj , CCj , Ej}. In this con-
text, Sj denotes the storage capacity, CCj refers to the computing capacity (in Millions of
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Instructions Per Second, MIPS), and Ej is the total energy or battery capacity of the fog
node fj .

The task scheduling challenge involves allocating n tasks to m fog nodes in such a way
that the QoS parameters are optimised, using the notations defined above. Let Xij represent
the assignment of task ti to fog node fj , while Xicloud denotes the assignment of task ti to
the cloud.

We can analytically evaluate execution time, transmission time, response time, and energy
consumption to determine the optimal distribution of the tasks to the appropriate fog node.
Following this analysis, the most suitable node is selected, and the task is assigned accordingly.

Execution Time: The execution time of processing task ti on fog node fj or the cloud
is calculated using Eqs. (3) and (4) respectively:

Et(Xij) =
TLi

CCj
, (3)

Et(Xicloud) =
TLi

CCcloud
, (4)

where Et(Xij) and Et(Xicloud) represent the execution time of the task on the fog node and
cloud, respectively. CCj and CCcloud denote the computation capacity of the fog node and
the cloud, respectively.

Transmission Time: The transmission time of task ti from the microcontroller to the
fog scheduler Trt(FS) is calculated by dividing the task size TSi by the transmission rate
(bandwidth) BW :

Trt(FS) =
TSi

BW
(5)

The transmission time of task ti from the fog scheduler to the fog node Trt(Xij) or to the
cloud Trt(Xicloud) is calculated as in Eqs. (5) and (7):

Trt(Xij) =
TSsend

i + TSresponse
i

BW
, (6)

Trt(Xicloud) =
TSsend

i + TSresponse
i

BW
, (7)

The total transmission time of tasks from the microcontroller to the appropriate fog node
fj or the cloud can be calculated by combining Eqs. (5) and (6) or (5) and (7), respectively,
as per following Eqs. (8) and (9):

Trttotal(Xij) = Trt(FS) + Trt(Xij), (8)

Trttotal(Xicloud) = Trt(FS) + Trt(Xicloud). (9)

Formulation for Task Scheduling Problem: The objective of task scheduling is to
allocate IoT tasks to the resources of fog nodes or the cloud in the most efficient manner,
with the aim of minimising latency and energy consumption. This problem can be formulated
using Integer Linear Programming (ILP) [34] to represent the assignment of IoT tasks to
appropriate fog nodes, as follows:

m∑
j=1

Xi,j = 1 ∀i ∈ {1, . . . , n}; (10)

n∑
i=1

Xi,j × Ci ≤ CCj ∀j ∈ {1, . . . ,m}; (11)
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n∑
i=1

Xi,j × TSi ≤ Sj ∀j ∈ {1, . . . ,m}; (12)

n∑
i=1

Xi,j × Ep(Xij) ≤ Ej ∀j ∈ {1, . . . ,m}; (13)

RT (Xij) ≤ dti ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}; (14)

Xij ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}; (15)

Eq. (10) ensures that a task is not assigned to more than one fog node simultaneously. Eq. (11)
indicates that the computational demand required to execute the assigned tasks must not
exceed the computing capacity of the fog node. Eq. (12) ensures that the cumulative task size
of the tasks assigned to a fog node does not surpass its storage capacity. Eq. (13) guarantees
that the energy consumption required to complete the assigned tasks does not exceed the fog
node’s available battery capacity. Eq. (14) ensures that the total response time for fog node
fj to complete task ti does not exceed the task’s deadline. Finally, Eq. (15) defines the binary
decision variables, where Xij is 1 if fog node fj is selected to perform task ti, and 0 otherwise.

3.3 The PLATOS Algorithm
This work introduces a novel strategy called power and latency-aware task-oriented scheduling
for handling HIoT tasks. The PLATOS strategy is structured into four distinct stages to
ensure efficient task management and resource optimisation.

In the first stage, known as the task-orientation phase, tasks associated with HIoT are cat-
egorised into three distinct groups: priority-oriented, storage-oriented, and computationally-
oriented tasks. This classification facilitates targeted scheduling and resource allocation for
each type of task, ensuring that tasks are processed in alignment with their specific require-
ments. Priority-oriented tasks are those with stringent deadlines or significant impact on
overall system performance and are therefore scheduled first. Storage-oriented tasks are those
that demand significant memory resources, whereas computationally-oriented tasks require
intensive processing power. By segregating tasks in this manner, the system can allocate
resources more efficiently and effectively.

The second stage, referred to as the latency-optimisation phase, focuses on identifying
the optimal resources for each task category, prioritising the minimisation of delay in task
completion. This phase utilises a comprehensive analysis of available resources to allocate
them to tasks in ascending order of latency, ensuring that tasks with the most stringent timing
requirements are addressed promptly. This is particularly crucial in HIoT environments where
delays can lead to performance degradation or system failures. By aligning tasks with the
fastest available resources, the PLATOS strategy aims to minimise latency and improve the
responsiveness of the system.

The third stage termed the power-optimisation phase, involves selecting fog computing
resources for each task category based on their power consumption. Resources are sorted in
ascending order of power usage, enabling the allocation of energy-efficient resources that align
with the power consumption goals of the system. This phase is critical in managing the power
demands of HIoT environments, which often involve a multitude of devices and sensors. By
optimising power consumption, the PLATOS strategy not only reduces operational costs but
also extends the lifespan of the devices involved.

The final stage, the decision-making phase, is responsible for allocating high-performance
fog resources to high-priority HIoT tasks. This phase integrates the insights from the previous
two optimisation stages to make informed decisions on resource allocation. High-priority
tasks, which are identified based on their criticality and urgency, are matched with the most
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Figure 2: Proposed PLATOS strategy
Algorithm 1 PLATOS Strategy
Step 1: Task Collection
HIoT tasks collection: T = {t1, t2, . . . , tn}
HIoT tasks categorisation: C(T ) = {{Pt1, P t2, . . . , P tn}+{St1, St2, . . . , Stn}+{Comt1, Comt2, . . . , Comtn}}
Step 2: Latency Optimisation
Latency-aware Resources in ascending order: L(R) = {LR1 < LR2 < · · · < LRn}
Step 3: Power Optimisation
Power-aware Resources in ascending order: P (R) = {PR1 < PR2 < · · · < PRn}
Step 4: Resource Mapping & Decision Making
Resource Mapping & Decision Making: M(R) = {{LR1 < LR2 < · · · < LRn} ∩ {PR1 < PR2 < · · · < PRn}}
Step 5: Task Execution
Task execution: TE(M(R)) = {te1, te2, . . . , ten}
Status update to fog servers: SU(TE(M(R))) = {su1, su2, . . . , sun}
Step 6: Result Generation
Results from fog nodes: R(SU(TE(M(R)))) = {r1, r2, . . . , rn}

suitable resources to ensure swift and efficient execution. Meanwhile, the remaining tasks
are scheduled based on a mapped list of resources from the latency and power optimisation
phases. This comprehensive approach ensures that all tasks are executed efficiently while
balancing performance, power, and latency considerations.

Algorithm 1 demonstrates the proposed PLATOS Strategy.
In the IoT environment, the optimisation of resource allocation strategy is a significant

step to achieve energy efficiency, reduce latency, and improve overall system performance. The
resource allocation strategy determines how the available resources are allocated to different
HIoT tasks to achieve optimal performance with respect to power and latency optimisation.
By implementing the PLATOS strategy, it is possible to create a dynamic and responsive IoT
ecosystem capable of adapting to varying task demands and resource availabilities.

4 Evaluation Methods
The evaluation of the proposed strategy was conducted using the iFogSim2 simulation en-
vironment [35], an enhanced version of the original iFogSim [36]. This advanced simulation
tool is tailored for fog and edge computing environments and offers improved capabilities for
handling the complexities inherent in such systems. iFogSim2 extends the functionality of its
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predecessor by incorporating enhanced mobility and clustering features, which are essential
for modelling real-world scenarios where IoT devices and edge nodes operate under dynamic
conditions.

The primary objective of utilising iFogSim2 in this study was to assess the performance
of the proposed strategy under different configurations and operational conditions. The sim-
ulator is capable of managing service migration for multiple IoT device mobility models and
facilitates the creation of distributed clusters among edge/fog nodes across various hierarchi-
cal layers. This orchestration capability allows for a more accurate and flexible simulation of
complex environments. The modular design of iFogSim2 enables the selective use of compo-
nents, such as mobility and clustering, either independently or in combination, to simulate
more intricate scenarios.

A key aspect of iFogSim2 is its inclusion of various case studies and test scripts, which
enhance its usability and allow researchers to build new rules and scenarios more efficiently.
In this study, we leveraged these features to simulate the Cardiovascular Health Monitoring
(CHM) application, a widely used application for Electrocardiogram (ECG) monitoring to
diagnose heart diseases. The CHM application involves a loop of smart sensors based on
Healthcare IoT, which sense and transmit ECG signals to a centralised analysis component.
This component then analyses the heart condition based on the received ECG signals. Such
applications are designed to execute multiple tasks simultaneously, including filtering ECG
data, extracting ECG features, and generating real-time emergency alarms. They also sup-
port the long-term collection and analysis of patient data, which is crucial for future health
predictions.

The simulations were conducted on a PC with the following configuration: an Intel Core
i5 processor running at 2.50 GHz, 16 GB of RAM, and a Windows 10 64-bit operating system.
Tab. 1 provides a detailed overview of the system configurations used in the simulations.

To measure the effectiveness of the proposed strategy, we focused on two critical perfor-
mance parameters: energy consumption and latency. These metrics are crucial for evaluating
the efficiency and responsiveness of IoT applications in healthcare settings, where battery-
powered devices and real-time data analysis are common.

4.1 Energy Consumption
Energy consumption is a vital concern in the context of resource allocation for IoT data in fog
environments. This metric reflects the amount of energy used by IoT devices and fog nodes
during data collection, processing, and transmission. Efficient energy management strategies
are crucial to minimise energy consumption and extend the battery life of IoT devices, thereby
ensuring sustainable and uninterrupted operation.

The energy consumption in resource allocation for IoT data in fog environments can be
calculated using the formula: E = P × t, where E is the energy consumption in Joules (J), P
is the power consumption rate in Watts (W), and t is the duration in seconds (s) for which
the device is operational. Various factors influence the power consumption rate P , including

Table 1: Simulation System Configuration
Component Specification
Processor Intel Core i5 2.50 GHz
RAM 16 GB
Operating System Windows 10 64-bit
Simulation Tool iFogSim2
Application Cardiovascular Health Monitoring (CHM)
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the processing capacity of the device, the volume of data being processed and transmitted,
and the communication protocol employed.

4.2 Latency
Latency refers to the time delay between the generation of data by an IoT device and its
processing and analysis by a fog node or cloud server. In the healthcare sector, low latency
is crucial as delays in data processing and analysis can lead to serious consequences, such as
delayed treatment or misdiagnosis. Ensuring minimal latency is therefore essential for timely
and accurate diagnosis and treatment in healthcare IoT applications.

The formula to calculate latency is given by Latency = Tend−Tstart, where Latency is the
time delay in seconds (s), Tend is the time when the data is processed and analysed by the
fog node or cloud server, and Tstart is the time when the data is generated by the IoT device.
Factors affecting latency include the distance between the IoT device and the fog node or
cloud server, the processing capacity of the fog node or cloud server, and the communication
protocol used.

In conclusion, the proposed PLATOS strategy demonstrates significant improvements in
both energy consumption and latency compared to the FTDM strategy. These enhancements
are crucial for ensuring efficient and effective operation of healthcare IoT systems, ultimately
leading to better patient outcomes and more sustainable healthcare solutions.

5 Experiments, Results, and Discussion
The iFogSim simulator is modified and used to support the simulation of the proposed
PLATOS strategy. The evaluation of the strategy is based on key performance metrics such
as energy consumption and latency, which are crucial for the effectiveness of Healthcare IoT
tasks. Ensuring minimum latency and reduced energy consumption is paramount in health-
care IoT applications, as it directly influences the quality of patient care and the overall
efficiency of healthcare services. The simulation results of the proposed PLATOS strategy are
compared with the existing FTDM strategy [28].

Energy Consumption: Energy consumption is a pivotal concern in healthcare IoT sys-
tems due to the typically battery-powered nature of many IoT devices. These devices, which
include wearable health monitors and remote sensors, often face constraints related to battery
life and energy efficiency. Given that healthcare IoT systems require continuous operation for
real-time monitoring and data transmission, efficient energy management becomes crucial.

In healthcare IoT environments, energy consumption directly impacts the operational effi-
ciency and sustainability of IoT devices. High energy consumption can lead to frequent battery
replacements or recharges, which not only increases maintenance costs but also interrupts the
continuous monitoring of patients. Efficient energy management extends the operational life
of these devices, reduces operational costs, and enhances patient and healthcare provider
convenience.

The proposed PLATOS strategy has been evaluated for its effectiveness in reducing en-
ergy consumption compared to the existing FTDM strategy. Fig. 3 displays a comparative
analysis of the energy consumption between these strategies. The results indicate that the
PLATOS strategy significantly outperforms FTDM, achieving an 18.72% reduction in energy
consumption.

This substantial improvement can be attributed to the PLATOS strategy’s efficient task
scheduling and resource allocation mechanisms, which are optimised for minimising energy
usage. By strategically assigning tasks to nodes based on their energy consumption profiles,
the PLATOS strategy ensures that energy is used more efficiently across the network. This
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Figure 3: Energy consumption of the pro-
posed and existing strategies

Figure 4: Latency of the proposed and exist-
ing strategies

results in lower overall energy consumption, as the strategy avoids excessive power drain on
any single device and balances the load more effectively.

Moreover, the reduced energy consumption not only contributes to longer device lifetimes
but also enhances the overall sustainability of healthcare IoT operations. Lower energy usage
translates into fewer interruptions in service due to battery depletion, which is critical for
applications that require continuous and reliable monitoring, such as cardiovascular health
monitoring.

The effectiveness of the PLATOS strategy in minimising energy consumption underscores
its potential to improve the efficiency and sustainability of healthcare IoT systems. By inte-
grating advanced scheduling algorithms that consider energy efficiency as a key parameter,
the strategy addresses one of the major challenges in IoT operationsР“СћР’Р

’
Р’вЂќmanaging

energy resources effectively while maintaining high performance and reliability.
Latency: Latency is another vital parameter in healthcare IoT, as the timely trans-

mission of patient data is critical for accurate and prompt decision-making. High latency
can lead to delays in diagnosis and treatment, which may have severe implications, includ-
ing misdiagnosis or inadequate care. In scenarios such as remote patient monitoring, where
healthcare providers rely on real-time data to make informed decisions, minimising latency is
essential. Efficient latency management ensures that healthcare providers receive the neces-
sary data with minimal delay, thereby facilitating timely interventions and improving patient
outcomes. Fig. 4 presents the comparative analysis of latency between the PLATOS and
FTDM strategies.

The results indicate that the PLATOS strategy significantly reduces latency by 8.65%, thus
enhancing the responsiveness of healthcare systems and supporting critical decision-making
processes.

The proposed PLATOS strategy represents a significant advancement in the scheduling
and management of healthcare IoT data tasks. By categorising tasks based on healthcare fields
and considering the power consumption of fog and IoT devices, the strategy ensures that tasks
are executed efficiently and effectively. The advent of IoT technology is revolutionising the
healthcare sector, offering numerous benefits for patients and healthcare professionals alike.
Through the deployment of IoT devices such as wearables, sensors, and remote monitoring
systems, healthcare providers can collect and analyse data in real-time, facilitating proactive
and personalised healthcare services. This technological evolution not only improves patient
outcomes by enabling early detection of health issues but also helps in preventing hospital
readmissions and reducing healthcare costs.

Furthermore, IoT-enabled healthcare devices empower patients to manage chronic con-
ditions and adopt healthier lifestyles. Wearable devices that track physical activity, sleep
patterns, and vital signs encourage individuals to maintain regular exercise routines, mon-
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Figure 5: DEI vs. Number of Fog Devices Figure 6: ELDP vs Fog Devices

itor their health, and make informed decisions about their well-being. IoT technology also
enhances the operational efficiency of healthcare systems by automating tasks, optimising re-
source allocation, and reducing waiting times, thereby improving the overall quality of patient
care. The implementation of IoT-enabled healthcare devices facilitates remote consultations,
telemedicine, and virtual care, expanding access to healthcare services for individuals in re-
mote or underserved areas. The transformative potential of IoT technology in the healthcare
industry is immense, providing significant benefits in terms of improved patient outcomes,
enhanced disease management, streamlined healthcare operations, and increased access to
healthcare services.

The simulation-based evaluation of the proposed PLATOS strategy demonstrates its effi-
cacy in reducing energy consumption and latency by 18.72% and 8.65% respectively, compared
to the existing FTDM strategy. This improvement is attributed to the strategic optimisa-
tion of fog and IoT device power by allocating IoT tasks to nodes that consume the least
power. Additionally, the PLATOS strategy is designed to handle tasks as per their resource
requirements by assigning them to the most suitable resource, thereby minimising latency and
enhancing overall system performance.

Device Efficiency Index (DEI): The DEI is a metric designed to evaluate the efficiency
of fog devices in terms of both energy consumption and latency. The DEI is calculated by
the following formula:

DEI =
Number of Fog Devices

Energy Consumption × Latency + ϵ
, (16)

where:
• Number of fog devices represents the number of fog nodes available in the network.
• Energy Consumption is the total energy consumed by the fog nodes.
• Latency is the time delay associated with processing and transmitting tasks within the

fog network.
• ϵ is a small constant added to avoid division by zero, typically set to 10−6.

Fig. 5 shows the DEI for both the proposed system and the FTDM across different numbers
of fog devices.

The key observations are as follows:

• Initial Stages (15 and 30 Devices): The DEI values are relatively low, indicat-
ing that with fewer fog devices, both the proposed and benchmark systems exhibit
less efficiency in reducing energy consumption and latency. This might be due to the
underutilisation of available resources.

• Mid to High Stages (45 and 60 Devices): As the number of fog devices increases,
the DEI values rise significantly for the proposed system compared to the benchmark.
This suggests that the proposed system becomes more efficient at utilising fog resources
to optimise both energy consumption and latency as more devices are deployed.
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The DEI plot demonstrates that the proposed system achieves better efficiency than the
benchmark system, particularly as the network scales with more fog devices. This indicates
the effectiveness of the proposed task scheduling approach in managing energy and latency,
making it more suitable for large-scale IoT deployments.

Energy-Latency-Device Product (ELDP): The ELDP is proposed as a comprehen-
sive metric to evaluate the efficiency of fog computing systems. It combines three crucial
factors: energy consumption, latency, and the number of fog devices. The ELDP is defined
as the product of the total energy consumption, the average latency, and the number of fog
devices:

ELDP = Energy × Latency × Number of Fog Devices (17)

This metric provides an overall measure of the system’s efficiency, where lower ELDP
values indicate a more efficient system.

The ELDP values for both the proposed system and the benchmark system were com-
puted and plotted against the number of fog devices. As illustrated in Fig. 6, the following
observations can be made:

• Scalability: The ELDP generally increases with the number of fog devices, reflecting
the cumulative impact of adding more devices to the system. This is expected, as
more devices typically introduce additional energy consumption and latency. However,
the proposed system shows a more controlled increase in ELDP, particularly when the
number of devices exceeds 45. This suggests that the proposed system is more scalable
and efficient as it adds more fog devices.

• Comparison with Benchmark: The proposed system consistently exhibits a lower
ELDP compared to the benchmark system. This indicates that the proposed system is
more efficient in managing energy consumption and latency, especially as the number
of fog devices increases. The benchmark system shows a linear increase in ELDP,
highlighting its lower efficiency in handling the increased computational load.

• Optimal Device Count: Notably, the proposed system’s ELDP increases up to 45
devices and then slightly decreases as the number of devices reaches 60. This could
indicate an optimal number of fog devices for the proposed system, where the balance
between energy consumption and latency is most favourable. In contrast, the benchmark
system continues to show an upward trend, suggesting less efficiency beyond a certain
point.

• Implications: The ELDP metric emphasises the importance of balancing energy con-
sumption and latency in fog computing environments. The proposed system’s ability to
maintain a lower ELDP across different numbers of fog devices highlights its potential
for practical deployment in scenarios requiring efficient resource management.

The ELDP metric provides a holistic view of the performance of fog computing systems,
particularly in terms of energy and latency management across varying numbers of fog de-
vices. The analysis shows that the proposed system is superior in maintaining low energy
consumption and latency as the system scales, making it a more viable solution for large-scale
deployments.

6 Conclusion
In this study, a PLATOS approach is suggested for Healthcare IoT tasks. The PLATOS
plan was created with a four-stage implementation in mind. It divided the tasks related to
the HIoT into three different categories in the first step, known as the task-orientation phase.
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Priority-oriented activities, storage-oriented tasks, and computationally-oriented tasks are the
three categories mentioned. The second step, referred to as the latency-optimisation phase, is
where the best resources are found for each category of tasks in ascending order according to
the shortest delay when the tasks are performed. The third phase, referred to as the power-
optimisation phase, involves selecting the optimal computing resources for each category of
activity, ranking them according to least power usage. The decision-making step, which comes
after the third and final phase, is in charge of distributing high-performance fog resources to
the high-priority HIoT tasks. The latency and power-optimisation stages provide a mapped
list of resources, which is used to schedule the remaining HIoT jobs.

Simulations were run in iFogSim2, and the results show that the proposed PLATOS
method reduces energy consumption and latency in comparison to the present state-of-the-art
strategy by 18.72% and 8.65%, respectively. Furthermore, the proposed system demonstrated
improved efficiency through the DEI, indicating better utilisation of fog resources with in-
creased numbers of fog devices. Additionally, the ELDP provided a comprehensive measure
of the system’s performance, showing that the proposed approach is more scalable and effi-
cient, particularly as the system scales with more fog devices.

In the future, the proposed strategy will be further strengthened by implementing a fault-
tolerant mechanism. Additionally, future work will focus on integrating machine learning
techniques to enhance task classification and resource allocation dynamically. The scalability
of the PLATOS strategy will also be tested in large-scale real-world HIoT deployments to
validate its effectiveness beyond simulation environments.
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