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Abstract The article proposes a mathematical formulation aimed at estimating the spread
of the virus, while considering the limitations imposed to available resources for epidemic
prevention. Mathematically, such a problem can be formulated as a constrained optimal
control problem. An algorithm using the penalty function method to solve the problem is
proposed. Computational experiments were carried out to simulate the development of the
initial stage of the epidemic based on real epidemiological data on the Covid-19 pandemic in
Novosibirsk in 2020.
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1 Introduction
The coronavirus pandemic has highlighted a lot of problems, including the necessity
for the formulation of strategies regulating social distancing policies by governments.
The various approaches adopted by different countries to mitigate the spread of mor-
bidity have demonstrated that these strategies yield diverse impacts on the socio-
epidemiological situation, as illustrated by examples in [1]–[3]. In particular, it was
shown that non-pharmaceutical interventions (virus prevention) are critical in the early
stages of a new disease’s emergence, given that the features of the spread of the virus
remain uncertain when confronting a novel threat.

The social literature identifies several challenges faced by planners, when choosing
a particular preventive strategy [4]–[6]. This include social factors, such as skepticism
towards information provided by health authorities and a tendency to underestimate
risk becoming infected, and also economic limitations when implementing quarantine
measures. As a result, assessing possible scenarios for government decisions regarding
the implementation of various antiviral measures in the context of resource constraints
becomes increasingly relevant.

From the researcher’s perspective, the problem involves identifying effective math-
ematical models that accurately represent the situation, along with methodologies for
solving these models. Note, that several studies have been undertaken with similar ob-
jectives. For instance, in [7], an optimal control model is introduced, derived from the
fundamental epidemiological SIS model. In this framework, the decision-maker utilizes
collected tax revenues to allocate funds either for prevention measures aimed at the
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population or for the treatment of infected individuals. By quantifying the social costs
associated with prevention and treatment, the authors ascertain which policies yield
the greatest cost-effectiveness under varying conditions, demonstrating that prevention
(or treatment) is advantageous when infection rates are low (or high). The article [8]
presents a mean field model based on the assumption that individuals act in their self-
interest to maximize personal utility. It was concluded that, given the costs involved
in encouraging the population to adhere to antiviral measures, the policy of reducing
contact among infected individuals should persist even after the epidemic has waned.

The authors of the paper [9] put forth an enhanced discretized SIR model, demon-
strating that the prioritization of preventive measures by the population results in
decreased consumption and an economic downturn, while simultaneously contributing
to a reduction in the number of infections. Similarly, the studies [10]–[12] present ex-
tensions to differential epidemiological models of SIR, which incorporate the influence
of morbidity spread on the economic metrics of the region being modeled.

Thus, the search for new models for assessing various anti-epidemic measures is an
actual problem. Note that most of the work in this area is based on describing the
dynamics of the spread of the disease using a simple epidemiological SIR model. At
the same time, an assessment of the dynamics of the COVID-19 pandemic shows that
the clustering into non-immune/susceptible (S), infected (I) and immune/recovered
(R) groups is not enough to describe the spread of a complex virus. Therefore, the
estimates obtained using such models remain very distant. Moreover, researchers in
this area do not consider the limitations imposed on the available resources for the
prevention and treatment of morbidity, which can also lead to an incorrect assessment
of the consequences of the spread of the epidemic and the anti-epidemic measures used
by the planner.

The current work presents a mathematical model of optimal control that simulates
the dynamics of the spread of epidemic, taking into account limited resources aimed
at combating the spread of the virus. Here, the behavior of the system is determined
by the cost functional and restrictions, which can be chosen in a different form, taking
into account the simulated situation. A general approach to solving such problems is
considered.

2 Mathematical formulation of problem

2.1 The description of epidemic propagation
The basis for assessing the impact of various restrictive measures on the spread of
morbidity is the method of describing the dynamics of the epidemic. Here, the gener-
ally accepted and most widespread approach is the mathematical SIR model and its
derivatives. The first such model was proposed back in the 1920s and the general idea
of this approach is to cluster the population into several epidemiological groups (in
the case of the SIR model: S -susceptible/non-immune, I-infected; R - those who have
received immunity due to recovery or death) and introduction of connections between
them. The probabilities of an individual’s transition from one group to another, as
well as the initial distribution of the population among epidemiological groups, are the
parameters of the model. Nowadays, SIR models (also called compartmental models)
are widespread and there are more than a hundred modifications of the original model
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[13], associated with more detailed clustering of the population and/or with taking into
account the temporal variability of model parameters.

The mathematical model used in this study for description of viral dynamic is based
on the following principles. Firstly, clustering of the population into 7 epidemiological
groups was chosen as the basis for the epidemiological component of the model: S(t)
represents the portion of the population that is susceptible to the virus, E(t) corre-
sponds to individuals who are asymptomatically infected (exposed), I(t) refers to those
who exhibit symptoms of infection, R(t) indicates individuals who have recovered, H(t)
encompasses hospitalized patients, C(t) denotes those in critical condition, and D(t)
signifies the number of fatalities. The interaction among these groups is governed by
probabilities of transferring (model coefficients) as illustrated in Fig. 1. Mathemati-
cally, the SEIR-HCD model is presented as the following system of ordinary differential
equations.

dµS

dt
= −(1− a/5) (βI(t)µS(t)µI(t) + βE(t)µS(t)µE(t)) + wimmµR(t),

dµE

dt
= (1− a/5) (βI(t)µS(t)µI(t) + βE(t)µS(t)µE(t))− wincµE(t),

dµI

dt
= wincµE(t)− winfµI(t),

dµR

dt
= θ · winfµI(t) + (1− εHC) · whospµH(t)− wimmµR(t),

dµH

dt
= (1− θ) · winfµI(t) + (1−m) · wcritµC(t)− whospµH(t),

dµC

dt
= εHCwhospµH(t)− wcritµC(t),

dµD

dt
= µwcritµC(t)

(1)

with corresponding initial values: {µi(0)}, i ∈ {S,E, I, R,H,C,D}
µi(0) = µ0i = const. (2)

Here µi represents the proportion of the population associated with the corresponding
epidemiological group. A comprehensive description of the parameters along with their
potential ranges of variation is provided in Table 1. Unlike the model discussed in [15],
we introduce the fraction of each epidemiological group at a given time t rather than
the absolute number of individuals in each group. Additionally, in contrast with [15]
we define the model parameters as frequencies wimm, winc, winf , whosp, wcrit, where
w◦ =

1
t◦

with the corresponding values for each parameter denoted by ◦.
The SEIR-HCD model has more detailed description of epidemic spread than the

basic SIR model. As an advantage, the model takes into account the hospitalized
and critically ill people, the treatment of whom is more expensive in economic sense.
The model is studied in [15, 17] in relates to sensitivity and prognoses possibilities for
coronavirus. In the paper [18] the agent model based on (1) is presented.

2.2 Economic correction to model
Now add the economic component to the model. Assume that the total income available
the social planner for carrying out anti-epidemic measures (prevention and treatment)
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Figure 1: SEIR-HCD flow diagram

is

Yt = (µS(t) + µE(t) + µR(t)) · r. (3)

Table 1: Descriptions and approximate values of parameters in the SEIR-HCD model
Description, Symbol Potential Values
Self-isolation index calculated by Yandex, a (0, 5)
Probability to get infected when contacting with
symptomatic individual, βI

(0, 1)

Probability to get infected when contacting with
asymptomatic individual, βE

(0, 1)

Mean proportion of hospitalized cases requiring me-
chanical ventilation, εHC

(0, 1)

Mean proportion of infected individuals presenting no
complications, θ

(0, 1)

COVID-19-related mortality rate, m (0, 0.5)
Reverse to number of days between contact and be-
coming exposed, winc

1/14− 1/2; 1/days

Reverse to duration in days for a severe case to esca-
late to a critical state, whosp

1/5− 1/4; 1/days

Reverse to duration of the symptomatic period, winf 1/14− 2/5; 1/days
Reverse to mean length of period with using of ven-
tilation, wcrit

1/20− 1/10; 1/days

Reverse to immunity period, wimm 1/150− 1/60; 1/days
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Here r is positive constant determined the fraction of the average per capita income
of the working population aimed at financing the prevention and treatment of the
disease. Note that the coefficient r is determined by a combination of two factors: the
fraction of the working-age population producing goods and services relative to the
entire population, as well as the fraction of the tax determined by the social planner
to react to the epidemic.

Expenditures on prevention and treatment reflect the social and economic costs
of both direct costs associated with epidemic containment policies and indirect costs
associated with a decrease in the labor force as morbidity increases. The costs of
prevention and treatment will be determined using the following expression

Ct = (µS(t) + µE(t) + µR(t)) · cp + µI(t) · ci + µH(t) · ch + µC(t) · cc.
Here cp is the cost paid by the uninfected (or considering themselves uninfected) part
of the population due to compliance with restrictions and prevention; ci – expenses for
treatment of patients who do not require hospitalization; ch – expenses for maintain-
ing hospitalized patients; cc – costs of maintaining critically ill patients on mechanical
ventilation. Let u (t) : [0, T ] → R be a continuous function, meaning the cumula-
tive loyalty of the population to isolation (compliance with restrictions). Put that
0 ≤ u (t) ≤ 1 ∀t, where 0 means the complete loyalty of the population to antiviral
measures, and 1 means the exact opposite case. Assume that cp = cp(t) depends on
the isolation strategy u(t)

cp(t) = pp(1− u(t)),
where pp is the price paid for prevention by an individual. The costs of treating patients
who do not require hospitalization are determined by the price of treatment for an
individual: ci = pi. The costs of maintaining hospitalized patients will be determined
in the following form:

ch(t) =


ph

Hmax − µH(t) + 1
, if µH(t) ≤ Hmax,

(µH(t)−Hmax)ph, otherwise,
(4)

where ph is the price of treatment for an individual who is hospitalized. The costs of
maintaining critically ill patients on mechanical ventilation are determined in a similar
way:

cc(t) =


pc

Cmax − µC(t) + 1
, if µC(t) ≤ Cmax,

(µC(t)− Cmax)pc, otherwise.
(5)

In (4),(5) constants Hmax, Cmax determine the maximum number of beds available in
the region for the corresponding epidemiological groups. Thus, it is assumed that it is
not profitable for the population to comply with restrictions due to additional economic
costs, but the cost of each additional patient requiring hospitalization increases linearly.

2.3 Optimal control problem formulation
Assume that the rate of infection spread within the non-immune population depends
on the isolation strategy chosen by the population and varies according to the rule:

βI(t) = βmin
I +

(
βmax
I − βmin

I

)
u(t), βE(t) = βmin

E +
(
βmax
E − βmin

E

)
u(t). (6)

Consider an optimal control problem with constraints. We will find the solution as
a set of functions {µSEIRHCD, u} that provides a minimum of the functional
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J =

T∫
0

(Ct)
2dt, (7)

where the notation µSEIRHCD(t) means the vector of state functions of the controlled
system µSEIRHCD(t) := {mS(t),mE(t),mI(t),mR(t),mH(t),mC(t),mD(t)}. The opti-
mal control problem is therefore formulated in the following manner: minimize the
functional defined by (7) subject to the constraints imposed by the differential equa-
tions (1)–(2), while taking into consideration the expressions outlined in (3)-(6) and
the following inequalities:

u(t) ≤ 1, ∀t ∈ [0, T ], (8)
u(t) ≥ 0, ∀t ∈ [0, T ], (9)

Ct(t) ≤ Y (t), ∀t ∈ [0, T ]. (10)
Here, inequalities (8), (9) allow one to remain within the chosen interval for measuring
the rate of spread of the virus, and inequality (10) is a key restriction for the system
under consideration, which determines that the level of costs associated with the fight
against the virus does not exceed the resource which social planner can provide.

Note that the functions used are continuously differentiable with respect to u at
least on open intervals where the corresponding function is defined. This guarantees the
existence of a solution to the problem. Problem reformulation when describing other
situations is possible, taking into account the fulfillment of the indicated condition.

3 Penalty functions algorithm for problem solving
Most constrained optimal control problems are too complex to obtain analytical solu-
tions. Penalty methods (penalty function methods) are widely used for solving similar
optimization problems (see works [19]–[21], and work by analyzing the convergence of
the method [22]). The idea of the penalty method is to reformulate the entire functional
taking into account restrictions in the form of a penalty and solve the unconstrained
optimization problem. Note also that the penalty method is not the only one in its field.
Also, to solve optimal control problems with constraints, the discretization method [23],
the non-smooth Newton method [24, 25], and the control parameterization method [26]
are used.

Thus, instead of the problem of minimizing the functional (7) the other optimal
control problem is considered. The functional

J =

T∫
0

(
(Ct)

2 +
1

ξ1
(P1)

2 +
1

ξ2
(P2)

2 +
1

ξ3
(P3)

2

)
dt (11)

is minimized, where functions P1, P2, P3 determine the penalties as

P1(t)=

{
0, if u(t) ≤ 1,

u(t)−1, otherwize,
P2(t)=

{
0, if u(t) ≥ 0,

−u(t), otherwize,
P3(t)=

{
0, if Ct(t) ≤ Yt(t),

Ct(t)−Yt(t), otherwize.

In (11) the parameters ξ1, ξ2, ξ3 present the degree of influence of the corresponding
restriction on the process under study. This substitution results in the formulation
of an optimal control problem, which involves minimizing the functional (11) subject
to the constraints represented by the system of differential equations (1) and (2). To



PLANNER MODEL FOR ESTIMATING THE DYNAMIC OF EPIDEMIC SPREAD 95

solve the problem, let us obtain the conjugate system by the following way. Introduce
smooth functions ϕi(t) : [0, T ] → R and multiply ϕi(t) for all i ∈ S,E, I, R,H,C,D
with the corresponding equations in (1). Subsequently, vary the resultant Lagrangian
with respect to the functions µi, where i ∈ S,E, I, R,H,C,D.

dϕS

dt
= (1− a/5)(ϕS − ϕE)(βI(t)µI + βE(t)µE)− 2Ct

∂Ct

∂µS

− 2
P3

ξ3

∂P3

∂µS

,

dϕE

dt
= (1− a/5)βE(t)µS(ϕS − ϕE) + winc(ϕE − ϕI)− 2Ct

∂Ct

∂µE

− 2
P3

ξ3

∂P3

∂µE

,

dϕI

dt
= (1− a/5)βI(t)µS(ϕS − ϕE) + winf (ϕI − ϕH)+

+ θwinf (ϕH − ϕR)− 2Ct
∂Ct

∂µI

− 2
P3

ξ3

∂P3

∂µI

,

dϕR

dt
= wimm (ϕR − ϕS)− 2Ct

∂Ct

∂µR

− 2
P3

ξ3

∂P3

∂µR

,

dϕH

dt
= whosp (ϕH − ϕR) + εHCwhosp (ϕR − ϕC) 2Ct

∂Ct

∂µH

− 2
P3

ξ3

∂P3

∂µH

,

dϕC

dt
= wcrit (ϕC − ϕH) + µwcrit (ϕH − ϕD)− 2Ct

∂Ct

∂µC

− 2
P3

ξ3

∂P3

∂µC

,

dϕD

dt
= 0.

(12)

By varying the Lagrangian with respect to the control variable, we derive optimality
conditions expressed in the form of

2Ct
∂Ct

∂u
+ 2

P1

ξ1

∂P1

∂u
+ 2

P2

ξ2

∂P2

∂u
+ 2

P3

ξ1

∂P3

∂u
+

+ (1− a/5)µS(ϕE − ϕS)
(
(βmax

I − βmin
I )µI + (βmax

E − βmin
E )µE

)
= 0.

(13)

Finally, formulate an algorithm for solving the problem.

1. Put the parameters ξ1, ξ2, ξ3 the large enough to neutralize the impact of penalty
functions. For example, we can take ξ1 = ξ2 = ξ3 = 1000 if the maximum of module of
all penalty functions is less then tens.
2. Solve system (1),(2) with u = 0 to get µi functions corresponding to zero control.
3. Solve system (12) to get ϕi functions corresponding to obtained µi.
4. Solve (13) to get new control function u(t).
5. Get new µi functions corresponding to obtained control.
6. Check the restrictions (8)-(10) perfoming. If ∃t for which the i−th inequality (8)-
(10) doesn’t perform then ξi := ξi

/
2. Go to step 3 for new iteration.

7. When the inequalities (8)-(10) are performed, put current µi, u as the solution of
the optimization problem.

Note that the presented algorithm is not exhaustive for all possible formulations
and restrictions. Thus, if two or more chosen constraints are opposite, i.e. execution of
one leads to automatic non-execution of the other, then the algorithm will obviously go
in cycles. Countermeasures should be chosen based on the desired objectives. Perhaps
the social planner will decide that one of the restrictions is insignificant or will relax it.
Another solution is to consider a stopping criterion that analyzes the parameters ξi.
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4 Numerical experiment

The performance of the algorithm will now be illustrated through the following ex-
ample. This example utilizes actual data on the incidence of Covid-19 in the city of
Novosibirsk over a 10-day period starting from July 12, 2020. Relevant statistics for
the specified epidemiological groups can be accessed via an open resource [14]. The
parameter values for model (1), as shown in Table 1, have been determined as averages
over the designated time period, obtained through the solution of the inverse problem
for model (1). The methodology for parameter estimation is detailed in [15]. The out-
comes from solving the inverse problem can be found in a file available at the following
link [16].

The size of the city’s population, as well as the number of beds and ventila-
tors available for the treatment are also known for the period under consideration:
N = 2780288, Hmax = 800, Cmax = 86. Unfortunately, it isn’t possible to compare
the results obtained from modeling with actually collected statistics on morbidity for
the same period, since the used measures and resources aimed at combating the epi-
demic are not known for sure. Thus, real data were used only to set the initial condi-
tions and observe how the situation could develop under some scenarios. Assume that
r = 0.2, pp = 0.1, pi = 55, ph = 110, pc = 175, βmax

I = 4βI , βmax
E = 4βE, βmin

I = 0.25βI ,
βmin
E =0.25βE.

The parameters are chosen in such a way to describe a common situation. Pre-
vention of disease costs orders of magnitude less than treatment. Moreover, when the
disease progresses to a more severe form, the cost of treating such a patient increases
several times. At the same time, the error in determining the rate of spread of the
virus among different epidemiological groups can vary over a fairly wide range. Note
that such an error in determining the contagiousness parameter is typical for the initial
stages of a pandemic, when the incidence is just beginning to appear and it is not pos-
sible to make a qualitative assessment due to insufficient data. The rate r determines
what proportion of the population’s efforts is aimed at combating the epidemic.

Figs. 2-4 show the results of the computational experiment. Fig. 2 shows a com-
parison of the final control functions obtained in the absence of restrictions (8)-(10)
and with them. In the absence of restrictions, the isolation strategy reflects the tran-
sition from compliance with anti-epidemiological measures to their absence, since the
compliance leads to large expenses. At the same time, even with a very low cost of
prevention (the population losses are lower), due to the large part of the population for
which this prevention needs to be carried out, the costs of implementing anti-epidemic
measures exceed the limits. Fulfillment of (8)-(9) leads to the shift of the paradigm
of compliance with anti-viral restrictions, since even with the high cost of treatment,
treating a small number of people becomes more profitable than spending resources on
prevention for the majority of the population. This leads to a significant increase in
morbidity (see Fig. 4).

Note that if we remove the limitation on expenses (10), but increase the cost of
prevention (cost paid by the population for compliance with anti-viral measurements)
as pp = 1, then compliance with isolation and other antiviral measures becomes un-
profitable even in the initial time period (u(t) ≡ 1 regardless of the presence or absence
of restrictions in the form (8),(9)), which leads to the spread of the virus at maximum
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Figure 3: Expenses obtained at the fi-
nal iterations of the algorithm with and
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speed.

Conclusion and discussion

The paper proposes a mathematical model for optimal control of the spread of the epi-
demic, taking into account restrictions on resources aimed at combating the virus. Note
that the presented model reflects a general approach that can be used to solve similar
problems with various constraints. The chosen SEIR-HCD epidemic propagation law
can be changed to one that is suitable for describing the epidemiological situation (for
example, with less detailed information on the distribution of the population among
epidemiological groups, a simpler model can be used).

In the optimal control model, the behavior of the population is determined mainly
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by the choice of the cost functional and the restrictions imposed. Here we believe that
the amount of funds allocated to combat the epidemic directly depends on decisions to
comply with restrictive measures at previous points in time. There is also an assump-
tion made here about the “anarchy” of the population - that is, the need to prevent the
disease is caused not only by the need to reduce morbidity, but also by the reluctance
of the population to comply with antiviral restrictions, since this increases their costs,
both economic and social. In this case, model experiments have shown that investment
in prevention of the population that has not yet been infected (or considers itself so)
is a key factor in combating the spread of the disease. And the cost of prevention in
fact determines the entire cost of fighting the epidemic. The results show that in the
absence of strict restrictions (that is, when the population itself determines whether it
should comply with antiviral restrictions), the optimal strategy is non-compliance with
isolation. Note that the result obtained may turn out to be specific to the situation
we have chosen, since the parameters chosen here corresponded to the beginning of
the development of the epidemic, when only a small number of cases were recorded,
and most of the population was not yet infected. Also, a change in paradigm leads to
formulations with different functionals and restrictions, but the sequence of solving the
problem remains the same.
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