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Abstract We consider the problem of interpolation of a convex function by tension splines
with inheritance of the convexity condition. Previously, we developed the near-optimal algo-
rithm for automatically selecting tension parameters when interpolating a convex function;
now we propose to use it in the problem of piecewise convex interpolation. Using numeri-
cal examples, we show that tension parameters determined on subdomains when constructing
separate splines can be used in a global tension spline construction over all data, which ensures
the required convexity on subdomains.
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1 Introduction

The paper is devoted to the process of representing a given data set by a smooth
function that exactly reproduces the given values and preserves such geometric property
of the data as convexity. The problem of convex interpolation is very relevant in a wide
range of applications in science, engineering and computer graphics. Other geometric
properties such as positivity or monotonicity may also be of interest. The problem
with inheritance such properties are commonly referred to as the problem of shape
preserving interpolation.

The shape preserving interpolation problem refers to the requirement that the inter-
polant S or some of its derivative S(k) be nonnegative if the interpolated function f or,
respectively, its derivative f (k) is nonnegative. The nonnegativity of the kth derivative
is traditionally called k-monotonicity or monotonicity of order k (sometimes the term
k-convexity is used alternatively). For small values of k, there are special names for
k-monotonicity: nonnegativity (positivity) or sign-constancy for k = 0, monotonicity
for k = 1 and convexity for k = 2.

In this paper, we limit ourselves to consider only problems reduced to convex inter-
polation problems, i.e., the requirement that the second derivative of the interpolant
S be nonnegative if the derivative f ′′ of the interpolated function f is nonnegative.
In addition, the problem of piecewise convex interpolation is considered, i.e., if the
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interpolated function has different signs of convexity in different subdomains, it is nec-
essary to provide the interpolant with the required sign of the second derivative in
these domains.

Although classical methods of interpolation by Lagrange and Hermite polynomials
are still used today, spline methods prevail in practical problems. Polynomial inter-
polation often leads to sharp oscillations (see Runge’s example [1, p.11]), but this is
particularly undesirable in most applied problems, such as design, when practical con-
siderations require that the data have some geometric properties, such as a constant
sign of some derivative of the function representing the original data. Interpolation
using Lagrange polynomials can often lead to quite acceptable results, but in some
cases the behavior will be very different from what is expected. In most practical
applications, oscillations are not acceptable at all.

Practical interest in splines arose after Holladay’s paper [2] with the established
property of minimum curvature of interpolating cubic splines∫ b

a

|σ′′(x)|2 dx. (1)

The most attractive property of the cubic spline is that the function is represented
by a particular cubic polynomial at each point and has smoothness C2 at the original
data points, so due to the discontinuities of the third derivatives at the junctions of
the polynomials, the flexibility of the interpolant increases.

Although spline methods have now become the main tools for solving most prob-
lems of function approximation, cubic splines are not ideal; it is in the problems of
shape preserving interpolation that we often have to abandon their use, because in the
general case of interpolation cubic spline does not provide inheritance of the neces-
sary geometric properties of the original function. Undesirable oscillations may occur
if the original data are not “dense” enough even in the problem of approximation of
arbitrarily smooth functions.

Since interpolation by ordinary cubic splines may not preserve the shape, Schweik-
ert [3] in 1966 modified the scheme by replacing cubic polynomial splines s(x) by
functions minimising the integral∫ b

a

[
|σ′′(x)|2 + |ρ σ′(x)|2

]
dx. (2)

At ρ = 0 the function s(x) is again a cubic spline; at ρ → ∞ the spline s(x) tends to a
linear spline. It is thus ρ a tension parameter, and by choosing it large enough, one can
always achieve preservation of the desired shape, such as monotonicity or convexity,
everywhere or locally.

Many papers have been published on Schweikert tension splines, in which methods
for selecting values of the tension parameters are proposed. However, the fact that
the method uses exponential functions can be seen as a drawback. Therefore, in 1974,
Späth [4] proposed the idea of using rational functions in tension interpolation methods.

Later, other types of tension splines were also introduced. All these constructions
are based on the idea of generalizing the construction of a conventional cubic spline by
introducing so-called shape (tension) parameters. These parameters allow to provide
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sufficient tension of the spline links in critical regions, which allows to control the shape
of the spline. The appropriate choice of parameters leads to suppression of unwanted
waves at a small deviation from the classical spline.

Previously, we have shown [5] that most of the constructions of cubic tension splines
known in the literature can be represented in a unified form. We proposed a general
algorithm for automatic selection of control parameters close to the optimal ones.

The selection is close to optimal because even a small decrease in them leads to
violation of the convexity of the interpolant, and an increase leads to excessive tension.

It is known that cubic splines of class C2 and their generalizations possess the prop-
erty of locality, despite their global character. Changing any value of the interpolated
function changes the interpolation spline over the entire solution interval. However,
noticeable changes in the interpolant occur only in the neighborhood of the changed
value, and at a distance the changes are quite insignificant.

In this paper, we show how this locality property can be used in the problem of
piecewise convex interpolation with convexity sign inheritance in subdomains with data
of the same convexity sign. We give numerical examples demonstrating the applicability
of our algorithm to achieve local convexity.

2 Cubic Tension Splines

Let the values fi = f(xi), i = 0, . . . , n, of some function f(x) be known at the knots
of the mesh

∆ : a = x0 < x1 < . . . < xn = b.

In addition, let the values of the first derivative f ′(a) = f ′
a, f ′(b) = f ′

b at the ends of the
interval [a, b] be known also. For convenience, we expand the mesh ∆ with additional
multiple knots x−1 = x0 and xn+1 = xn. Denote the second divided differences of this
function with respect to the knots xi−1, xi, xi+1 by δi = [xi−1, xi, xi+1]f , i = 0, . . . , n.

We call data convex if following conditions hold

δi ≥ 0, i = 0, . . . , n. (3)

It is evident that for any convex function f(x) the conditions (3) hold.
Consider a problem of construction of C2-spline S(x) that is convex at the interval

[a, b] and interpolates some convex data at the knots of ∆. Certainly we require S ′(x)
takes given values at the endpoints:

S ′(a) = f ′
a, S ′(b) = f ′

b. (4)

The cubic spline on every interval [xi, xi+1] is a polynomial, it can be represented
by its values and the values of the second derivative at the endpoints:

S(x) = σ(x) + ϕ(1− t)h2
iMi + ϕ(t)h2

iMi+1, (5)

where

σ(x) = (1− t)fi + tfi+1, ϕ(t) =
t3 − t

6
, t =

x− xi

hi

, hi = xi+1 − xi, Mi = S ′′(xi).
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The continuity conditions of C2-spline’s derivatives at the knots of the mesh lead
to a linear system of equations for finding the unknown values of moments Mi. The
term σ(x) ensures linear interpolation therefore it is evident, that possible “troubles”
in behavior of ordinary cubic spline appear only due to behavior of summands with ϕ
in (5).

Schweikert [3] modified the scheme by replacing cubic polynomials on each interval
by minimization of (2) i.e. by the elements of the space span{1;x; sinh px; cosh px}
instead of the space span{1;x;x2;x3}. Späth [6] offered to differ the tension parameters
pi on each interval [xi, xi+1].

Such a spline, which we refer to as hyperbolic spline, can be represented in the form

S(x) = σ(x) + ϕ(pi, 1− t)h2
iMi + ϕ(pi, t)h

2
iMi+1, (6)

where the function
ϕ(p, t) =

1

p2

(
sinh pt

sinh p
− t

)
, (7)

as a function of t, replaces the function ϕ(t) = (t3 − t)/6 in (5) and has an additional
parameter p to control the tension of the spline. When pi = 0, the spline reduces to a
cubic spline, whereas if pi → ∞, the spline approaches a linear polynomial.

Following [5, 7] we consider the generalized cubic spline of the form

S(x) = σ(x) + ϕ(qi, 1− t)h2
iMi + ϕ(pi+1, t)h

2
iMi+1, (8)

with ϕ(p, t) ∈ C2[0, 1] and two control parameters on each interval. Parameters qi
and pi+1 control the tension near the knots xi and xi+1 to the right and to the left
correspondingly. The expressions for derivatives of generalized spline on the interval
[xi, xi+1] have form

S ′(x) = f [xi, xi+1]− ϕ′(qi, 1− t)hiMi + ϕ′(pi+1, t)hiMi+1, (9)

S ′′(x) = ϕ′′(qi, 1− t)Mi + ϕ′′(pi+1, t)Mi+1. (10)

The moments Mi and Mi+1 are the second derivatives of spline S(x) in the corre-
sponding interval endpoints. Certainly the interpolation conditions and a sense of Mi

and Mi+1 give the constraints for all values of the parameter p:

ϕ(p, 0) = ϕ(p, 1) = ϕ′′(p, 0) = 0, ϕ′′(p, 1) = 1, (11)

where differentiation is done with respect to t. Besides we should require that

lim
p→0

ϕ(p, t) = (t3 − t)/6, lim
p→∞

ϕ(p, t) ≡ 0. (12)

The conditions (12) just determine the possibility to obtain the interpolation spline of
desirable shape, intermediate between linear and cubic, in assumption of monotonicity
via parameter p: ϕ(p, t) ≤ ϕ(p̄, t) if p̄ ≥ p ≥ 0.

Note that various known generalizations of cubic splines besides hyperbolic
splines are suited to described construction (8), for example,

– exponential spline [8, p.100]
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ϕ(p, t) =
t3e−p(1−t) − t

p2 + 6p+ 6
;

– rational spline due to Späth [9, 8]

ϕ(p, t) =
1

2p2 + 6p+ 6

(
t3

1 + p(1− t)
− t

)
;

– rational spline due to Gregory [10, 11]

ϕ(p, t) =
1

2p2 + 8p+ 6

(
t3

1 + pt(1− t)
− t

)
;

– spline with additional knots [12]

ϕ(p, t) =
(t− p(1− t))3+ − t

6(p+ 1)2
;

– variable power spline (VP -spline) [13, 14]

ϕ(p, t) =
t3+p − t

p2 + 5p+ 6
.

The formula (8) and the constraints (11) ensure continuity of both S(x) and S ′′(x)
on [a, b]. Then the requirement of continuity of the derivative S ′(xi + 0) = S ′(xi − 0)
implies

−ϕ′(qi−1, 0)µiMi−1 + [ϕ′(pi, 1)µi + ϕ′(qi, 1)λi]Mi − ϕ′(pi+1, 0)λiMi+1 = δi, (13)

i = 1, . . . , n − 1, where λi = hi/(hi−1 + hi), µi = 1 − λi. It is necessary to add two
equations following from the boundary conditions (4) to complete the system respect
to the unknowns {Mi}; these equations are

ϕ′(q0, 1)M0 − ϕ′(p1, 0)M1 = δ0, −ϕ′(qn−1, 0)Mn−1 + ϕ′(pn, 1)Mn = δn. (14)

Rewrite the system of equations (13), (14) in the form
ϕ′(q0, 1)h0M0 − ϕ′(p1, 0)h0M1 = h0δ0 ,

−ϕ′(qi−1, 0)hi−1Mi−1 + [ϕ′(pi, 1)hi−1 + ϕ′(qi, 1)hi]Mi − ϕ′(pi+1, 0)hiMi+1

= (hi−1 + hi)δi, i = 1, . . . , n− 1,

−ϕ′(qn−1, 0)hn−1Mn−1 + ϕ′(pn, 1)hn−1Mn = hn−1δn .

(15)

3 Convexity Conditions for the Tension Splines

For the convexity of the spline of form (8), the nonnegativity of the solution of the
system of equations (15) is necessary. However, nonnegative values of the second
derivative at the points of mesh Mi does not guarantee its nonnegativity between
knots, while the second derivative of an ordinary classic cubic spline is a piecewise linear
function. It is clear from the form of the second derivative of generalized spline (10)
that for ensuring the spline convexity it is necessary to set the constraint

ϕ′′(p, t) ≥ 0, t ∈ [0, 1], where p ≥ 0. (16)
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It is known [15, 16, 17] that the diagonal dominance in the system of linear equations
makes it possible to write out sufficient conditions for the nonnegativity of its solution.
The system (15) has diagonal dominance in columns if conditions

ϕ′(p, 0) < 0, ϕ′(p, 0) + ϕ′(p, 1) > 0 with p ≥ 0. (17)

hold.

Theorem 3.1 ([5]). Let the generalized cubic spline (8) interpolate convex data, and
let relations (11), (16) and (17) be fulfilled. Then the spline S(x) is convex if

δ0 +
δ1ϕ

′(p1, 0)

µ1ϕ′(p1, 1) + λ1ϕ′(q1, 1)
≥ 0,

δi +
δi−1µiϕ

′(qi−1, 0)

µi−1ϕ′(pi−1, 1) + λi−1ϕ′(qi−1, 1)
+

δi+1λiϕ
′(pi+1, 0)

µi+1ϕ′(pi+1, 1) + λi+1ϕ′(qi+1, 1)
≥ 0,

i = 1, . . . , n− 1,
δn +

δn−1ϕ
′(qn−1, 0)

µn−1ϕ′(pn−1, 1) + λn−1ϕ′(qn−1, 1)
≥ 0.

(18)

There are the well-known sufficient conditions [15, 16] for the convexity of classic
cubic splines

δ0 − δ1/2 ≥ 0, (19)
δi − δi−1µi/2− δi+1λi/2 ≥ 0, i = 1, . . . , n− 1, (20)
δn − δn−1/2 ≥ 0. (21)

Clearly, if the inequalities (19)–(21) are satisfied then conventional cubic spline is suit-
able for solving a convex interpolation problem, i.e. all tension parameters can be
chosen zero and the inequalities (18) will be coincide with the inequalities (19)–(21).
And so only in violation of any of these inequalities we have to introduce the func-
tions ϕ(p, t) on correspondent intervals. Naturally, it is desirable to choose the design
parameters which are minimal among those that ensure the inequalities (18).

If, for example, the ratio of neighboring δi less or equal to 2 then evidently the
inequalities hold. Violation of any inequality in (19)–(21) indicates the fact that some
value δi is significantly less than one or both its nearest-neighbors δi−1 and δi+1. Ap-
plication of the tension spline just should correct the situation. The coefficients for
the corresponding values δi−1 or δi+1 in the i-th inequality of (18) are intended to de-
crease the influence of the corresponding terms. We formulate a general scheme of a
choice of control parameters pi and qi and then, we describe algorithms for some special
functions ϕ(p, t).

At the first step we check the conditions (19)–(21). If the conditions are fulfilled then
the problem can be solved by the classical cubic spline. To construct a tension cubic
spline, we must set the control parameters p1, . . . , pn and q0, . . . , qn−1. The parameter
pi determines the tension to the left of the knot xi, and parameter qi determines the
tension to the right of it. If conditions (19)–(21) are violated, we proceed to the second
step. So we identify those “bad” knots in whose neighborhood it is required to increase
a tension. Next, we denote two sets of their indices by P for parameters pi and Q for
parameters qi. As already noted, violation of any of these inequalities for some i can
be caused by a significant excess of δi−1 and/or δi+1 over δi therefore a number i− 1 is
added to the set Q and/or a number i+ 1 is added to the set P .
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4 Determining the Tension Parameters

Let’s give here the algorithm for determining the tension parameters proposed in [5].
1. Check the conditions (19)–(21). If all inequalities are fulfilled then we set all

tension parameters equal to zeros and the problem can be solved by the classical cubic
spline.

2. If some of these conditions are violated, we define two sets of knot numbers P
and Q with nonzero tension. If inequality (19) is wrong, then we put the index 1 in
the set P . Similarly, if inequality (21) is violated, then we put the index n− 1 in the
set Q. We look through the values i from 1 to n − 1. If the inequality (20) does not
hold, then at least one of inequalities

δi − δi−1/2 ≥ 0, (22)
δi − δi+1/2 ≥ 0, (23)

or both will not hold. We add the number i − 1 in the set Q if inequality (22) is not
satisfied, and/or the number i+ 1 in the set P if the inequality (23) is violated.

3. The set P consists of indices of knots in which it is required to set nonzero
parameters pi and the set Q consists of indices of knots in which it is required to set
nonzero parameters qi. To all other parameters we assign the value 0. For all indices
i ∈ P , using formulas

ξi =

{
(δi−1 − δi−2µi−1/2) /δiλi−1, for i− 2 ̸∈ P,

δi−1/δi, for i− 2 ∈ P ∪Q or i = 1,
(24)

we calculate the quantities ξi and the quantities ηi by formulas

ηi =

{
(δi+1 − δi+2λi+1/2) /δiµi+1, for i+ 2 ̸∈ Q,

δi+1/δi, for i+ 2 ∈ P ∪Q or i = n− 1,
(25)

for all indices i ∈ Q.
4. If 0 ∈ Q and/or n ∈ P , then we solve the equations

−ϕ′(q0, 0)/ϕ
′(q0, 1) = η0, −ϕ′(pn, 0)/ϕ

′(pn, 1) = ξn (26)

with respect to q0 and/or pn. We look through the values i from 1 to n− 1.
4.1. Case i ∈ P and i ̸∈ Q. We solve the equation

−ϕ′(pi, 0)

µiϕ′(pi, 1) + λi/3
= ξi (27)

with respect to pi and verify the inequality

δi+1 +
δiµi+1ϕ

′(qi, 0)

µiϕ′(pi, 1) + λiϕ′(qi, 1)
+

δi+2λi+1ϕ
′(pi+2, 0)

µi+2ϕ′(pi+2, 1) + λi+2ϕ′(qi+2, 1)
≥ 0

with i+ 2 ̸∈ Q, i < n− 1 or
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δi+1 +
δiϕ

′(qi, 0)

µiϕ′(pi, 1) + λiϕ′(qi, 1)
≥ 0 (28)

with i = n− 1 or i+ 2 ∈ Q for this pi and qi = 0. In the case of violation we set i ∈ Q
and we calculate the quantities ηi by formulas (25). Go to 4.3.

4.2. Case i ̸∈ P and i ∈ Q. We solve the equation

−ϕ′(qi, 0)

µi/3 + λiϕ′(qi, 1)
= ηi (29)

with respect to qi and verify the inequality

δi−1 +
δi−2µi−1ϕ

′(qi−2, 0)

µi−2ϕ′(pi−2, 1) + λi−2ϕ′(qi−2, 1)
+

δiλi−1ϕ
′(pi, 0)

µiϕ′(pi, 1) + λiϕ′(qi, 1)
≥ 0

with i− 2 ̸∈ P , i > 1 or

δi−1 +
δiϕ

′(pi, 0)

µiϕ′(pi, 1) + λiϕ′(qi, 1)
≥ 0 (30)

with i = 1 or i− 2 ∈ P for pi = 0 and this qi. In the case of violation we set i ∈ P and
we calculate the quantities ξi by formulas (24). Go to 4.3.

4.3. Case i ∈ P and i ∈ Q. We solve the system of equations{
ξi/ϕ

′(pi, 0)− ηi/ϕ
′(qi, 0) = 0,

ξiµiϕ
′(pi, 1)/ϕ

′(pi, 0) + ηiλiϕ
′(qi, 1)/ϕ

′(qi, 0) + 1 = 0
(31)

with respect to pi and qi.

5 Piecewise Convex Interpolation by Tension Splines

We propose to adapt the algorithm described above for data interpolation if it is nec-
essary to preserve convexity in subintervals where the data are convex.

Usually, local splines are used to solve such a problem. However, in most problems
related to data interpolation, the main and most universal tool is still the classical cubic
spline of class C2. The tension splines we consider are a generalization of the classical
cubic spline. Moreover, our algorithm works in such a way that if for some specific data
the classical cubic interpolation spline gives acceptable results, our algorithm gives zero
control parameters, i.e. the tension spline becomes a conventional cubic spline. Note
that we can correctly apply our algorithm only for fully convex data.

The tension splines considered here have smoothness C2 and are not local. Generally
speaking, such tension splines avoid undesirable oscillations if the control parameters
are chosen correctly, because the spline approaches piecewise linear interpolation when
the control parameters are significantly increased. It is shown that increasing several
parameters has a significant effect locally. For example, an increase in parameter pi
causes the spline link to tension to the left of knot xi, and parameter qi to the right
of xi in the corresponding mesh interval adjacent to the knot. As we move away from
knot xi, the influence of parameters pi and qi weakens and is almost imperceptible
outside these intervals. The latter fact gives us the opportunity to choose the control
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parameters not over the entire data domain, but locally, on the subdomain of the data
where the direction of convexity does not change.

Since our algorithm does not allow us to directly and automatically obtain the
values of the control parameters that ensure the fulfilment of the desired conditions for
different signs of convexity, we propose to divide the original data into sections with
the same signs of convexity, and any three points of the section should have the same
sign of the second divided difference.

It is clear that it makes sense to talk about preserving the sign of convexity by
an interpolation function if such sections consist of more than three points. Thus,
dividing the initial data into sections of the same convexity, we have several sections
with positive or negative convexity, but it may also turn out that some of the source
data will not be included in the resulting sections (sections of only three points).

Now the task is as follows. For each convexity segment of the same sign, separately
construct a tension spline using our algorithm (see Section 4). Thus, for each data
segment we obtain a set of tension parameters. We can now proceed to construct a
global tension spline over the entire set of original data. At each mesh interval, we take
as control parameters exactly those parameters that were obtained by our algorithm
when interpolating in regions with the same convexity. There may be areas where
we did not build a tension spline locally, where we do not have calculated tension
parameters. But these are areas where the signs of second divided differences are
alternating, and it makes no sense to talk about any inheritance.

Therefore, we propose to set the control parameters in these regions equal to zero. In
fact, in a particular practical problem, the parameters in these regions can be adjusted
for some additional reasons.

Example 1. The referee of [5] suggested us to consider the famous Akima data
[18]. The Akima data set consists of 11 points, but the data are not convex. We will
only consider the first 9 points (n = 8) since this data is convex. The first 6 points lie
on the same straight line and hence the second divided differences δ1, . . . , δ4 are equal
to 0. Our algorithm is applicable only for strictly convex data. To make the data
strictly convex, we slightly modify the function values for only the first 6 points so that
these modified points lie on a parabola. This modification is shown in Tab. 1.

Table 1: Modified Akima data.
x 0 1 2 3 4 5 6 7 8 9 10

f(x) 10 10.0004 10.0016 10.0036 10.0064 10.01 10.5 15 50 60 85

To construct a classical cubic spline or generalized spline, we need two end condi-
tions — the derivatives of f(x) at the ends. We define the derivatives as the values of
the derivative of the parabola passing through the 3 points at the ends.

The classical cubic spline C2 for the modified original full Akima data is shown in
Fig. 1 (dashed line). Note that the changes made to the Akima data are so slight that
they do not visually change the spline. The curves in Fig. 1 have unwanted waves. We
apply our algorithm to the shortened Akima data. We find violations of inequalities
(20) at i = 4, 5, 6. Then we find the sets P = {5, 6, 7}, Q = ∅ and ξ5 = 0.002,
ξ6 = 0.242, ξ7 = 0.248.
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Figure 1: The cubic spline for complete
Akima data (dashed line) and the Späth
rational spline for modified trimmed data.

Figure 2: The Späth rational spline for
complete Akima data.

Figure 3: The cubic spline for data of two
quarter circles.

Figure 4: The cubic spline from quarter
circle data.

Figure 5: The cubic spline for Späth data. Figure 6: The Späth rational spline for
Späth data.
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For the rational Späth spline, we find the parameters p5 = 32.6, p6 = 1.13, p7 = 1.09
from equation (27). For these parameters, the inequalities (28) are fulfilled. The bold
line in Fig. 1 shows the convex tension spline graph for the modified shortened Akima
data.

The rational Späth spline for the full Akima data with the same tension parameters
is also convex on the interval [0,8] (see Fig. 2).

For other types of tension splines, the results and graphs are similar.

Example 2. The second data set consists of points uniformly spaced at 15 intervals
on two quarters of a circle of radius equal to one, with zero derivatives as end conditions.
This example is taken from the paper [19]. The classical cubic spline interpolating the
data on a quarter circle is not convex, the spline has inflection points at each interval
of the partition (Fig. 3).

The complete data set can be divided into two groups of 7 points each (there are 13
points in total) with the same convexity direction. The first group of data consists of
points numbered 0 to 6, here the second divided differences are positive. The second
group contains points 6 to 12, here the second divided differences are negative.

We will construct two separate tension splines, preserving the sign of the convexity
of the data. Since the example is symmetric, we will limit our consideration to the
interval [x0, x6] = [−1, 0]. The condition for the right end of the derivative will be
+50, replacing the infinite gradient (see [11, 20]). The classical cubic spline is shown
in Fig. 4. Let us check our sufficient conditions for convexity in the first region [−1, 0].
There are violations of inequalities (20) at i = 4, 5.

Applying our algorithm for selecting tension parameters for generalized cubic
splines, we find the sets P = {5, 6}, Q = ∅.

For 5 ∈ P we have only one tension parameter p5,which is determined from the
first equation (26) at ξ5 = 0.257. For 6 ∈ P , we determine the parameters p6 from
equation (29) for the value ξ6 = 0.117. For the rational Späth spline we have p5 = 1.28,
p6 = 6.54.

The rational Späth spline for the full data has these nonzero tension parameters:
p5 = 1.28, p6 = 6.54, q6 = 6.54, q7 = 1.28.

A similar situation occurs with other types of generalized splines.

Example 3. These data are often used as examples in Späth’s monographs [8, 4],
and are summarised in Tab. 2. To construct the C2 spline, we need to add boundary
conditions. At the left end we assume that f ′(0) = 0, and at the right end it is natural
to assume that the derivative is equal to the divided difference from the data at that
end.

Table 2: Späth data.
i 0 1 2 3 4 5 6 7 8
xi 0 2 2.5 3.5 5.5 6 7 8.5 10
fi 2 2.5 4.5 5 4.5 1.5 1 0.5 0

Conventional cubic interpolation spline for the Späth data shown in Fig. 5. If we
apply our reasoning from the beginning of the section, the full data set of 9 points
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(n = 8) can be divided into 3 subsets with the following point numbers: J1 = {0, 1, 2},
J2 = {1, 2, 3, 4, 5} and J3 = {4, 5, 6, 7, 8}. The first set contains only 3 points and the
others contain 5 points each, for each set the task of constructing interpolation tension
splines that ensure inheritance of the convexity of the corresponding data sets is set.

Having constructed a tension spline on the set J2, we see that inequality (20) is
not satisfied at i = 3, so 2 ∈ Q and 4 ∈ P . We find η2 = 0.107, ξ4 = 0.109. For the
rational Späth spline, we find the parameters q2 = 3.48 and p4 = 4.12 from equations
(29) and (27), respectively. We then set the other control parameters to zero. With
these control parameters, all sufficient conditions are fulfilled and the tension spline
will be convex.

Checking inequality (20) for the interpolation data from the third set J3 shows a
violation for i = 6, 7, so that 5, 6 ∈ Q. Here, as in Example 1, we have slightly changed
the value of f8 so that the last points do not lie on the same straight line. From
equations (27) we find η5 = 0.045, η6 = 0.008 and the control parameters q5 = 6.95,
q6 = 19.58 for the rational Späth spline. But it turns out that with these parameters
p5 = 0 and q5 = 6.95, the inequality (30) is not fulfilled, which means that the param-
eter p5 must be nonzero, and we proceed to point 4.3 of the parameter determination
algorithm. In this case, the parameters p5 and q5 must be found from the system of
equations (31). We obtain p5 = 0.16, q5 = 7.25. Now all necessary conditions are
fulfilled and the tension spline for the data set should be convex.

Let’s construct the interpolation tension spline over the full data set, taking the
control parameters of the splines on J2 set and on J3 set. The resulting spline is shown
in Fig. 6 (dashed line).

In this example, it seems appropriate for us to achieve convexity on the set J1,
consisting of only three data points. Checking the inequalities (19)–(21) when con-
structing an interpolating cubic spline reveals the failure of the inequality (19), 1 ∈ P .
We calculate ξ1 = 0.083. If we assume q1 = 0, then from the equation (27) we find
p1 = 5.26, but in this case the inequality (28) does not hold, i.e. parameter q1 must
not be zero. Then p1 and q1 are found from the system of equations (31) — p1 = 5.74,
q1 = 0.42.

If in the final tension spline we additionally set the parameters p1 and q1 with the
found values, then the shape of the interpolant will be corrected at the first mesh
interval. This spline is shown in Fig. 6 (thick line).
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[8] H. Späth, Spline-Algorithmen zur Konstruktion glatter Kurven und Flächen [in German], R.
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