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Abstract Analyzing wavelets in the time domain provides an alternative perspective for
estimating wavelet parameters and complementing frequency domain analysis. By performing
spectral analysis in the time domain with different wavelets, a thorough understanding of
their application in diverse geophysical data can be achieved through spectral recomposition-
based approaches. Unlike other techniques, our approach does not demand time-frequency
transformation.

In this work, we adopt a process that involves reconstructing the spectral content of
a signal by calculating its spectrum using a mathematical description and fitting it to an
observed spectrum. We implement this approach as an inversion procedure, allowing us to
estimate the amplitude, peak frequency, and phase of Gaussian, Semi-Gaussian, and Ricker
wavelets across various frequency ranges. Through our implementation and comparisons,
we gain valuable insights into the wavelet types that yield optimal results within specific
frequency ranges and have shown an efficient manner to estimate wavelet properties in different
geophysical methods employed for petroleum exploration.
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1 Introduction
Wavelet analysis is a mathematical approach employed in signal processing and data analy-
sis to decompose signals into wavelet functions, capturing localized variations in both time
and frequency domains [9]. It enables efficient representation, feature extraction, and de-
noising of signals, offering valuable insights into complex phenomena across various scientific
disciplines [21, 25].

In geosciences, wavelet analysis is crucial in studying seismic data, gravity and mag-
netic anomalies, petrophysical analysis, electromagnetic waves, and other geophysical sig-
nals [19, 26, 27]. Applying wavelet transform techniques can extract valuable information
about subsurface structures, geological boundaries, and seismic events [27, 20]. Wavelet anal-
ysis facilitates the identification of specific frequency components and their spatial distribu-
tion, aiding in the characterization of subsurface features, mapping geological formations, and
analyzing seismic wave propagation for an enhanced understanding of subsurface features [20].
Recent works also provided interesting findings regarding improving the signal by incorporat-
ing more signal parameters estimation [34, 35], especially in reconstructing the signal [18] and
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additionally, applying spectral approaches improved signal processing for different geological
scenarios [12, 13, 14, 7].

Spectral recomposition is a signal processing technique that involves decomposing a given
signal into its constituent frequency components by estimating their amplitudes, frequencies,
and phases and then recombining them to reconstruct the modified signal, enabling precise
control over its spectral characteristics [28, 17]. Tomasso et al. [32] have developed a mathe-
matical characterization of the Ricker wavelet, which Caio et al. [3] applied as an automatic
spectral recomposition approach.

Recent works aimed to apply the spectral recomposition working on a trace-by-trace ba-
sis to perform automatic picking of seismic reflections [36], estimate the critical angle and
Poisson’s ratio in a data-driven manner [37], and optimize starting points for full-waveform
inversion (FWI) [38]. All these techniques were effective even in random noise with a signal-
to-noise ratio (SNR) of 2. These works showed that performing an inversion procedure to
estimate signal parameters of a Ricker wavelet for seismic data is very enriching. However,
they have yet to be committed to analyzing other types of wavelets, which would allow a
deeper understanding of the application of spectral recomposition approaches for other geo-
physical methods.

The approaches mentioned do not require relatively long offsets [16] or transforming the
data to other domains, such as the τ − p domain, see, e.g., [29]. Data in other domains
(e.g., τ − p domain) are often affected by transform artifacts and require other techniques
to reduce/suppress these artifacts [5]. Methods for estimating the fundamental properties
of a signal can be based on Prony decomposition, which allows for the calculation of the
attenuation coefficient in addition to frequency, amplitude, and phase; see [22, 23, 24, 6].

Analyzing wavelets in the time domain and the frequency spectra in the frequency do-
main allows for estimating wavelet parameters through other perspectives than exploring the
frequency spectrum. Since, in the field data analysis, we have to deal with significant noise,
performing the estimate of signal parameters in the frequency domain is very efficient for
obtaining frequency and amplitude information; however, it also shows some difficulties in
estimating the phase and, therefore, the position of a wavelet in time [37, 38]. For this rea-
son, it is interesting to perform this inversion procedure in the time domain and for different
wavelets (Gaussian, Semi-Gaussian, and Ricker), which are the most commonly used wavelets
for geophysical and petrophysical methods. Employing this approach for other wavelets and
frequency ranges allows us to profoundly comprehend the use of these techniques in other
geophysical methods, such as GPR (ground penetrating radar) and other electromagnetic
methods, or for heat wavefronts and radioactive signals.

In summary, spectral recomposition is indeed a powerful tool in seismic data analysis with
multiple applications:

• enhanced stratigraphic resolution: it can improve the resolution of stratigraphic
features, helping geologists better understand the layering and distribution of rock
types;

• fault detection and analysis: by focusing on specific frequency ranges, geologists
can more clearly delineate fault zones;

• hydrocarbon detection: certain frequency bands can indicate the presence of hydro-
carbons;

• seismic inversion: it assists in seismic inversion processes by providing detailed
frequency-based information.

• reservoir characterization: it helps understand reservoir properties and hetero-
geneities.
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Figure 1: Gaussian, Semi-Gaussian, and Ricker wavelets

In this work, we propose to implement an inversion procedure based on the spectral
recomposition approach to reconstruct the spectrum of a signal by fitting the calculated
spectrum to an observed one, where the calculated curve is the mathematical representation
of each one of the types of wavelets used here (Gaussian, Semi-Gaussian, and Ricker wavelets).
This allows us to estimate amplitude, peak frequency, and phase for different frequency ranges
(5Hz, 15Hz, 30Hz, 100MHz, and 1GHz) in noise-free and noisy data. Our implementation
allows us to identify which frequency range works best with each wavelet type when estimating
their signal parameters in the time domain.

2 Ricker, Semi-Gaussian, and Gaussian wavelets
Ricker, Semi-Gaussian, and Gaussian wavelets are different wave functions commonly used in
signal processing and geophysical data analysis [10]. The Ricker wavelet, also known as the
Mexican hat wavelet, is characterized by its symmetric, bell-shaped waveform. It is widely
employed in seismic exploration as it closely resembles the shape of seismic pulses. Seismic
source signals generally have a phase that approaches zero. This phase usually shifts as it
approaches the critical angle [33].

On the other hand, the semi-Gaussian wavelet is a modified version of the Gaussian
wavelet. It possesses a smoother, more Gaussian-like shape with reduced oscillations. This
wavelet is often used in applications where a smoother signal representation is desired. The
GPR signal, for instance, presents a smooth signal and phase different than zero [15].

The Gaussian wavelet, derived from the Gaussian function, is widely used due to its
mathematical simplicity. It has a symmetric shape and offers good localization in both time
and frequency domains. Gaussian wavelets are commonly employed in various fields, including
image processing, feature extraction, and noise reduction. A Gaussian function can describe
the front of a heat flow.

Each wavelet exhibits different characteristics and is selected based on the specific require-
ments of the analysis or processing task. These characteristics are also related to the difference
in how they shift and how sensitive each of these functions is in shifting their phases [10].

The Ricker wavelet [28] can be described, in the time domain, as

ψ(t) =
2√

3σπ1/4

(
1− t2

σ2

)
exp

{
− t2

2σ2

}
, (1)

where t is the wavelength and σ is the dominant wavelength.
In many cases, where the Ricker wavelet of a seismic signal reaches the critical angle, its

phase gradually shifts between 0◦ and 180◦ as long as it gets close to the critical angle. Another
condition where we can observe a 180◦-shifted wavelet compared to the Ricker wavelet is in
ground-penetrating radar (GPR) and other electromagnetic signals.
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For both cases, we can describe the Semi-Gaussian wavelet as the first derivative of Ricker
wavelet [33]:

ψ(t) =
2t√

3σπ1/4
exp

{
− t2

2σ2

}
, (2)

as the modulus of the derivative in Eq. (1) with respect to t is applied.
Applying the modulus of the derivative to Eq. (2) results in the Gaussian function,

ψ(t) =
2
√
σ3√

3π1/4
exp

{
− t2

2σ2

}
. (3)

Figure 1 shows the three wavelet functions: Ricker, Semi-Gaussian, and Gaussian.

3 Method
3.1 Spectral Recomposition
Tomasso et al. [32] proposed that the amplitude and phase spectrum of a seismic trace can
be expressed as a combination of amplitude and phase spectra of various Ricker wavelets

d(f) ≈
n∑

i=1

aiψi(mi, f), (4)

where d(f) represents the amplitude and phase spectrum of a seismic trace, f is the frequency,
and ai and mi represent, respectively, the amplitude and peak frequency of the i-th Ricker
wavelet spectrum component having the following expression

Ri(f) = aiψ(mi, f) = ai
f2

m2
i

exp

{
− f2

m2
i

}
. (5)

The spectral recomposition approach can estimate peak frequency and amplitude from a
spectrum through its reconstruction, unlike other methods based on spectrum decomposition;
see, e.g., [11].

The mathematical description provided by Eqs. (4) and (5) allows us to treat the problem
as an inversion. In this approach, we can fit a calculated spectrum to the observed one to
obtain estimates of the signal properties of the analyzed wavelet [37, 38]. As Equation (5)
was initially developed to characterize the spectrum in the frequency domain, we can apply
the objective function to the time domain.

The selected frequencies for being tested in this work cover a range of important methods
that can have their utilization represented by these frequency ranges in geosciences. Lower
frequencies (5Hz, 15Hz, and 30Hz) are commonly used in seismic methods, such as for
velocity analysis in reflection seismic or FWI; frequencies in the order of 100MHz are com-
monly used for diverse petrophysics applications; while higher frequencies (around 1GHz)
are used for GPR.

3.2 Objective Function
The model we are working on here is a linear combination of Ricker wavelet spectra. Each
spectrum is a nonlinear function dependent on signal parameters. We need the coefficients a
(amplitude) and m (peak frequency) to estimate the Ricker wavelet spectra. Then, we can
calculate the error using

rj = d(fj)−
n∑

i=1

ai(mi)ψ(mi, fj).

The objective function is then formulated as a least-squares estimation

min
a,m

∥r(a,m)∥22, (6)
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where a=(a1, . . . , an), m=(m1, . . . ,mn), and r is a vector composed of rj elements.
However, in the time domain, Eq. (6) can be written as

min
a,σ

∥r(a,σ)∥22,

to consider the signal parameters in the time domain, i.e., using the dominant wavelength σ
instead of the peak frequency m. This gives us

rj = d(tj)−
n∑

i=1

ai(σi)ψ(σi, tj). (7)

By applying Eq. (7) to Eqs. (1)-(3), we obtain the residual error in the time domain for the
Ricker wavelet

rj = d(tj)−
n∑

i=1

ai(σi)
2√

3σiπ1/4

(
1−

t2j
σ2i

)
exp

{
−
t2j
2σ2i

}
, (8)

and the Semi-Gaussian wavelet,

rj = d(tj)−
n∑

i=1

ai(σi)
2tj√

3σiπ1/4
exp

{
−
t2j
2σ2i

}
, (9)

and for the Gaussian wavelet

rj = d(tj)−
n∑

i=1

ai(σi)
2
√
σ3i√

3π1/4
exp

{
−
t2j
2σ2i

}
, (10)

respectively. This allows us to recover the critical components from the spectrum and analyze
the residual error of each wavelet.

Instead of employing global search optimization algorithms, we can combine a local search
optimization algorithm with the multi-start procedure, as described by [30]. This routine
applies a local search starting from a random initial point n times, which leads to a statistical
distribution dependent on the number of iterations. We, then, perform the least-squares
minimization between the calculated wavelet spectrum in time, i.e., Eqs. (8)–(10), and the
observed wavelet. Each iteration has, as a result, a different minimum value since we are
considering a stochastic process, which allows the comparison among the minima of each
iteration. Then, we can select the lowest value among the minima. The number of iterations
to be set depends on the complexity of the objective function of an analyzed spectrum.

The multi-start procedure can be divided into two steps. The first step involves the
sequential trust region algorithm (Fig. 2), which aims to force convergence to a local minimum
region starting from a distant initial point of a matrix of variables X. The computed optima
do not need to satisfy integrality conditions, which allows for the improvement of local optima.

Terlaky & Sotirov [30] conducted tests on the input parameters (r1, r2, c1, and c2), and we
adopted their proposed parameter values for our use. They also assume that the given matrix
B does not need to be positive. Thus, the gradient ascent approach makes the sequential
trust region return a matrix X̄ for a given initial feasible point. This matrix contains elements
whose absolute values are different than one. The simplified attractor-repeller AR semidefinite
programming relaxation based on the algorithm proposed in [30] is defined as

min
(
−log

[
det (B◦X)

]
−
∑
i ̸=j

log(x2ij)
)
,

under the conditions −1 ≤ xij ≤ 1, ∀i, j : i ̸= j, and where the relaxing constraints for the
element xij are defined. So, in a given point of the matrix X̄=(x̄ij), and hij is the displacement
variable in x̄ij . The stop criterion was when the trust region becomes ≤ 10−6 or > 4∆0, where
∆0 is an initial trust region radius.
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Figure 2: The sequential trust-region al-
gorithm pseudocode (adapted from [30])

Figure 3: The adaptative multi-start proce-
dure algorithm pseudocode (adapted from
[30])

The steepest ascent algorithm proposed in [30] allows us to ensure that the absolute value
of each off-diagonal element does not exceed one, making the current point feasible. Applying
the element-wise steepest ascent method, the current point from the local minimum computed
by the sequential trust-region algorithm is moved away.

The second step is the adaptative multi-start approach (Fig. 3) proposed in [30]. This
algorithm can find the global minimum by restarting the trust-region algorithm from multiple
starting points. The starting point is a random and feasible matrix or a matrix obtained from
a local minimum.

In this case, (B◦X̃) has an eigenvalue considerably close to zero. This condition is necessary
to backtrack from the sequential trust-region algorithm to a point within the semidefinite
region’s interior. The steep ascent method must be applied to the non-integer off-diagonal
matrix elements of X̃. This process must be performed while keeping the fixed integer elements
in place. Finally, the adaptative multi-start procedure algorithm allows for random selection
of new starting points. This occurs when the local minimum is an integer, or no improvements
are found near the non-integral local minimum.

3.3 Inversion Procedure and Analysis
As the mathematical description of the objective function is defined for each wavelet type,
we can fit the calculated spectrum to the observed one by minimizing the difference between
them as a least-squares estimate according to an optimization criterion combining a local-
search optimization algorithm with a multi-start procedure. The amplitude and dominant
wavelength in the time domain and the amplitude and peak frequency in the frequency domain
can be estimated after applying time windowing to the analyzed data. Indeed, when dealing
with field data of any kind, it is necessary to use specific techniques to enhance the data,
enabling more complex approaches. For instance, techniques such as denoising, surface-wave
suppression [1], or the removal of multiples [2, 8] are commonly employed.

The approach described in [37] outlines a workflow that involves cropping a time window
from a seismic trace and then sequentially applying the proposed inversion to any number of
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Figure 4: Flowchart of the proposed algorithm (adapted from [37])

traces. As observed in Fig. 4, we adapted this workflow for our implementation.
In Figure 4, note that the block "Fit calculated wavelet to the observed one" is where

the inversion procedure described in this and the previous sections is performed. The anal-
ysis here focuses on the inversion within the initial sequential loop, as depicted in Fig. 4.
Subsequent workflow sequences involve repeated application to other traces, offsets, angles,
or time windows. For this reason, we must focus on the inversion procedure employed for
the target wavelet since we are interested in knowing how the adapted approach works for
different wavelets.

4 Results and Discussion
We conducted our tests using the Ricker, Semi-Gaussian, and Gaussian wavelets at 5Hz,
15Hz, 30Hz, 100MHz, and 1GHz for noise-free and noisy experimental data. These fre-
quencies were selected to cover the range commonly used in geophysical applications. We
simulated the wavelets using the finite-difference modeling scheme proposed in [31]. We mod-
eled each pulse with 100 points in time divided by the wavelength. The power was normalized,
and the criteria for adding noise employed was applying two of the same wavelets tested with
half of the power, e.g., we simulate the addition of two Ricker wavelets with half of the power
of the Ricker analyzed.

We compared each wavelet type at each frequency to compute and analyze the error in
estimating the signal parameters. This enables us to determine the optimal combination of
frequency and wavelet, providing a list of the most suitable geophysical methods for practical
use with spectral recomposition approaches. During our experiments, we fitted each wavelet
to its respective type. We utilized the multi-start procedure with 100 starting points in each
curve fitting. The results of each fitting represent the average minimum value among the 100
inversions. Even though the most important results for being analyzed in these experiments
are the residual errors, we added the input and output data scheme in the Appendix to clarify
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how the results are obtained.
We observe that the Ricker wavelet performed the best fitting for 5Hz, showing promis-

ing results all along the wavelet; see Fig. 5. The Semi-Gaussian and Gaussian wavelets also
led to promising results but with slightly higher errors, with the Gaussian wavelet showing
a less accurate result than the Semi-Gaussian. In Figure 6, we observe the same accuracy
pattern for 15Hz among the three types of wavelets. However, the error of all of them is
increased compared to the results found in Fig. 5. At 30Hz (Fig. 7), we again observe the
same error pattern across all three wavelets but with an increased error level. The results

(a) Noise-free data (b) Noisy data

Figure 5: Differences of variations of the normalized residual error along the wavelength
related to a frequency of 5Hz for Ricker, Semi-Gaussian, and Gaussian wavelets

(a) Noise-free data (b) Noisy data

Figure 6: Differences of variations of the normalized residual error along the wavelength
related to a frequency of 15Hz for Ricker, Semi-Gaussian, and Gaussian wavelets

(a) Noise-free data (b) Noisy data

Figure 7: Differences of variations of the normalized residual error along the wavelength
related to a frequency of 30Hz for Ricker, Semi-Gaussian, and Gaussian wavelets
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(a) Noise-free data (b) Noisy data

Figure 8: Differences of variations of the normalized residual error along the wavelength
related to a frequency of 100MHz for Ricker, Semi-Gaussian, and Gaussian wavelets

(a) Noise-free data (b) Noisy data

Figure 9: Differences of variations of the normalized residual error along the wavelength
related to a frequency of 1GHz for Ricker, Semi-Gaussian, and Gaussian wavelets

found in Figs. 5–7 show that the mathematical description of the Ricker wavelet fits very
well for lower frequencies (5Hz, 15Hz, and 30Hz). Since the error found when we fit the
Semi-Gaussian wavelet is also low, we can use the mathematical description of Ricker and
Semi-Gaussian wavelets for seismic methods. It can be performed by applying the mathe-
matical description of the Ricker wavelet for reflections far from the critical angle. At the
same time, we can use the mathematical description of the Semi-Gaussian wavelet to make
the reflections closer to the critical angle. The results found for applying the Ricker wavelet
are also corroborated by the results obtained in [36, 37, 38]. While these papers have not
specifically tested the mathematical description of the Semi-Gaussian wavelet, their observa-
tion of significantly higher errors when fitting the Ricker wavelet in Semi-Gaussian wavelets
underscores the critical importance of the mathematical description we propose to employ in
this study. Another noteworthy finding in these three tested frequencies is that the error in
fitting the Ricker wavelet increases along its side lobes with the rising frequency. Note that
the higher increase in the relative error for the Ricker wavelet is because its lobes are closer
to each other at higher frequencies, making it more challenging to perform an accurate fit.

Figures 8 and 9 illustrate low errors for the Gaussian and Semi-Gaussian wavelets, enabling
the application of the mathematical description of the Gaussian wavelet to address petrophys-
ical problems characterized by frequencies on the order of MHz. Similarly, the mathematical
description of the Semi-Gaussian wavelet facilitates applying this approach for GPR or other
electromagnetic methods characterized by frequencies on the order of GHz. As discussed
in this section, the higher error in fitting the side lobes of Ricker wavelets becomes more
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Table 1: Average relative errors for esti-
mating the signal parameters of each fre-
quency and each wavelet with noise-free
data

Table 2: Average relative errors for esti-
mating the signal parameters of each fre-
quency and each wavelet with noisy data

Frequency Ricker Semi- Gaussian
Gaussian

5Hz 2.45% 3.01% 3.29%
15Hz 3.12% 3.46% 3.49%
30Hz 4.91% 5.32% 5.22%

100MHz 12.35% 2.95% 3.42%
1GHz 18.20% 2.83% 3.58%

Frequency Ricker Semi- Gaussian
Gaussian

5Hz 3.34% 3.95% 4.34%
15Hz 3.98% 4.57% 4.41%
30Hz 4.72% 6.86% 7.00%

100MHz 14.71% 3.98% 4.59%
1GHz 21.07% 3.82% 4.73%

pronounced with increasing frequency. This trend is once more observed at 100MHz and
1GHz, but with significantly higher errors, underscoring the formidable challenge of employ-
ing the Ricker wavelet in this approach. While our approach demonstrated the effectiveness of
the Ricker wavelet at 5Hz (e.g., reflecting events from ultra-deep offshore structures), 15Hz
(e.g., FWI), and 30Hz (e.g., FWI and high-definition seismic techniques), the low-quality
results observed at frequencies in the MHz and GHz range limit its application in ultrasound
(MHz range) and other methods requiring very high frequencies. The errors in each experi-
ment, related to the objective function, are visible in Tabs. 1 and 2, where we can see that the
choice of employed method does not significantly impact the results obtained through spectral
recomposition approaches, consistent with the results found in [36, 37]. We also applied our
approach to real data. The first case involves a 25Hz seismic signal (Fig. 10), and the second
pertains to a 450MHz GPR signal (Fig. 11). The experiment involving real seismic data,
whose wavelet resembles a Semi-Gaussian with a peak frequency of 25Hz (Fig. 10), revealed
some challenges when performing the curve fitting at lower frequencies. Figures 10(a) and
11(a) are the real data traces analyzed, while Figs. 10(b) and 11(b) are the residual errors
from this analysis. However, our approach successfully achieved a low average error when
performing this task. Similarly, our approach provided a low average error for estimating the
parameters of the 450MHz GPR signal (Fig. 11). In the real cases, we observed relatively
low errors, with low errors along most of the wavelets. However, there were exceptions at
the wavelet peaks, where error concentrations were higher for amplitude estimates. This sub-
stantial evidence aligns with the results from our synthetic data experiments, demonstrating
the practicality of our approach in estimating signal parameters for these real data types.
Consequently, our approach was able to accurately estimate peak frequency and phase for all
types of wavelets tested in our experiments.

We also performed a test using our approach on the reflection events of a field dataset.
This data was recorded near Rotterdam, The Netherlands; see [8] for more details. The data
were recorded along a 2D line with an S-wave source and horizontal-component receivers
oriented in the crossline direction. The data were processed to suppress the surface waves and
the free-surface multiples [8]. Figure 12(a) shows the common-source gather (CSG), while
Fig. 12(b) illustrates how our approach could fit this CSG. Figure 12 shows that, despite the
difficulty in estimating the phase, our approach can fit accurately concerning the amplitude
and frequency.
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(a) Pulse in a seismic trace (b) Normalized residual error

Figure 10: Estimating the wavelet with the proposed approach, peak frequency is
around 25Hz

(a) Pulse in a seismic trace (b) Normalized residual error

Figure 11: Estimating the wavelet with the proposed approach, peak frequency is
around 450Hz

(a) (b)

Figure 12: Testing our approach using 2D field dataset, (a) – Original common-source
gather, (b) – Common-source gather fitted using our approach.

4 Conclusions
We have proposed an alternative implementation and application for an approach that esti-
mates signal properties of a seismic spectrum by reconstructing it in the frequency domain. In
our implementation, we adapt the approach to recover the signal properties of three wavelets
in the time domain, fitting the calculated wavelet to the observed one. Our proposed approach
provides a data-driven manner for performing the spectral analysis, which is significantly faster
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than other conventional approaches that demand certain pre-processing. However, since our
approach is based on the mathematical description of a wavelet, its employment is required
to be performed on a proper wavelet.

To evaluate the capability of our implementation, we have tested it on numerically mod-
eled data of three wavelets (Ricker, Semi-Gaussian, and Gaussian) across different frequency
ranges. We have examined our application on synthetic data, allowing us to systematically
compare errors without the influence of external factors or peculiarities associated with each
method. Our approach has determined which wavelet works better within specific frequency
ranges for this type of inversion procedure in the time domain. We have also conducted exper-
iments with real data, and the results have corroborated those obtained from the experiments
conducted with synthetic data. Our implementation in the time domain has shown promis-
ing results in estimating signal parameters when applied to lower frequency ranges with the
Ricker wavelet, reinforcing the results obtained in the frequency domain.

Furthermore, we have observed that our application on lower frequencies with Semi-
Gaussian wavelets also yields low errors in estimating signal parameters. This demonstrates
that our implementation can be applied effectively for estimating signal parameters in seismic
reflection and critical refractions, even in the presence of strong phase shifts. Estimating sig-
nal parameters for a high-frequency Semi-Gaussian wavelet (∼ 1GHz) resulted in low errors,
suggesting an effective means of estimating these parameters in GPR pulses. For the Gaus-
sian wavelet with a frequency in the order of MHz, we have found that it provides a reliable
method for estimating signal parameters with low errors, indicating an interesting application
for signal parameter estimation in petrophysics.

Moreover, when estimating the signal parameters of Gaussian wavelets with frequencies
in the order of GHz, we observed low errors, enabling the application of our approach to
estimate signal parameters in the propagation of heat flow. The high errors observed for
the Ricker wavelet at higher frequencies indicate that this approach is not recommended for
ultrasound applications. Our approach demonstrates the capability to accurately estimate
signal parameters, especially the peak frequency and phase, for various wavelets commonly
encountered in geophysical surveys.
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Appendix
We provide an additional visual representation to enhance understanding of the methodologies
employed, as shown in Fig. 13. This flowchart offers a more visible and intuitive depiction of
applying these approaches, using trace data as an example.
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Figure 13: Illustration in the case of time-frequency domain transformation
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