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A MULTISCALE MODEL REDUCTION PROCEDURE
FOR NEUTRON TRANSPORT PROBLEMS
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Abstract For neuron transport modeling, the neutron transport SP3 approximation is sig-
nificantly more advantageous than using neutron diffusion. The SP3 approximation is very
efficient approach, because we can find some balance between accuracy and computational
cost. The SP3 model is fast and gives good level of accuracy. The SP3 has a similar structure
that a common approaches, like diffusion methods in SN or PN models. In this study we
show a new strategy of solving a neutron transport problem for two group of neutrons. Our
approach is based on generalized finite element method(GMsFEM). This approach involves
constructing a special multiscale space on a coarse grid and projecting the original system
onto a new space. This space is defined by special spectral basis functions. We construct
an offline multiscale basis functions for each group of neutrons. The main problem has a
multiscale nature and the multiscale bases can desctribe each heterogeneity of computational
domain at micro-scale level. To show the applicability of the proposed approach, we compare
the results with the exact solution obtained using the finite element method on a very fine
mesh.
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1 Introduction

One of the most important physical forms occurring inside a nuclear reactor is the
movement of neutrons [1]. Complex integro-differential conditions are included to
predict the propagation of neutrons. The condition of neutron flux depends on many
features of physical process: for exmaple, heterogeneity of computational domain, inner
energy of neutrons and the accuracy of computations [2]. Common sense calculations
for nuclear reactors typically employ several types of approximations to neutron transit
parameters. For example, most neutron codes rely on multigroup diffusion equations. A
computational illustration may be the creation of a connected second-order parabolic
equation, followed by the creation of standard differential conditions that need the
addition of delayed neutrons.

A nuclear reactor usually has a critical equilibrium state in which the balance of
absorption and production of neutrons is maintained; such a state is called steady
state. Such a special state is described using a lambda spectral problem, assuming
that the desired eigenvalue is maximum, that called the k-effective nucleus, is equal
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to one [3, 4, 5]. In this case, the steady neutron field is assigned a corresponding
eigenfunction. The calculation of a reactor with efficiency using the lambda mode
problem is important for the design of the reactor.

To calculate a real application problem when modeling a nuclear reactor, it is
usually necessary to construct very detailed fine grids, especially if the process lasts
for a long time, then we are faced with the problem of a very large number of time
layers. And since the processes in the reactor occur very quickly, we have to take a
very small time step in order not to miss any critical jumps in the state. Therefore,
such complex application problems require very powerful computers, which are not
available to everyone. Numerical averaging methods or various multiscale methods
are usually used to solve such problems. This technique allows us to significantly
reduce the size of the original problem and makes it possible to solve the problem even
on low-performance systems that everyone has. Also, for the non-stationary problem
of neuron diffusion, various methods for space and time factorization are often used,
also with the aim of reducing the computational cost [6, 7]. In the following work
[8] the authors develop a general strategy for obtaining approximate solutions to non-
stationary neutron transfer problems with an emphasis on fast calculations using state-
change methods.

Homogenization methods allow to save computational resources by solving the prob-
lem on a very coarse grid. These methods imply solving local problems in order to find
special macroscopic properties of the medium by solving local problems at the micro
level. As a result, we obtain a set of macroscopic parameters, based on which we can
build an approximation on a coarse grid [9, 10, 11, 12]. In this approach, only a one-
way connection between the micro- and macro- scales is defined. Multiscale methods
provide a mutual connection between the micro- and macro- scales. This approach is
possible due to special basis functions that are linked in a global coarse-grid formula-
tion to form a new multiscale space on which the entire approximation is built. There
are many variations of this method, and everything depends on the type of multiscale
basis functions. Some of the types of multiscale functions are presented in the following
paper [13].

The current study utilizes multiscale modeling techniques to minimize the com-
putational demands associated with the high dimensionality of the initial problem
[14, 15, 16]. One of the most recognized and widely employed techniques is the multi-
scale finite element method (MsFEM) [13, 17, 16]. In problems with complex geometry
of the domain, where very high jumps of values occur, the usual MsFEM has very poor
accuracy. For this, it is necessary to describe the microscale properties of the medium
at the macro level in more detail, for this, the Generalized Multiscale Finite Element
Method is well suited, which can use several multiscale bases to describe one local
region. By solving the spectral problem, one local basis can be constructed for each
microscale characteristic [18, 19, 20, 21, 22]. By adapting the finite volume method,
researchers developed the multiscale finite volume method (MsFVM) [23, 24, 25]. An
effective approach for solving fluid flow challenges in porous media is the mixed multi-
scale finite element method (Mixed-MsFEM) [26, 27].

For problems with complex heterogeneity such as cracks and channels, it is recom-
mended to use multiscale methods with domain oversampling. One of such methods
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is the Constrainted Energy Minimizing Generalized Finite Multiscale Element Method
(CEM-GMsFEM) which builds special basic functions that contain information about
the process in neighboring local areas, local areas in this method are built with ex-
pansion [28, 29, 30, 31]. Also, in applications, multicontinuum problems with a high
value of flows between continua are often encountered; for such problems, coupled mul-
tiscale basis functions are suitable. These bases store information about all continua
and provide a more accurate approximation [32, 22, 33].

We present a new algorithm of the multiscale method, which is built on the basis of
the generalized multiscale finite element method [34, 35]. We will apply this algorithm
to solve the problem of neuron transport in a heterogeneous medium (the active zone
of a nuclear reactor). This algorithm includes only two stages. We start building
the algorithm from the offline stage. This stage is preparatory, here we define the
multiscale space. The multiscale space is a linear shell of the basis functions that
are built in each local subdomain. To identify multiscale basis functions, we first
develop local spectral problems, which allow us to express local micro-characteristics
by employing a collection of bases. The second stage is the online stage, at which we
solve a low-dimensional system on a predetermined multiscale space.

The paper organized as follows, in Section 2, we show a problem formulation and
approximation on the fine grid by finite element method for 2D small PWR test with
two group of neutrons. In Section 3, we present and algorith of GMsFEM, where
we demonstrate an offline bases construction for each group on neutrons. Finally, in
Section 4, we depict a numerical results for test with one group of neutrons and for test
with two group of neutrons. We compare solution and integral power that obtained
with GMsFEM with reference fine grid solution.

2 Problem statement
We discuss neutron transport, which is characterized by symmetric neutron flux equa-
tions in the SP3 form. We analyze the problem in a two-dimensional or three-dimensional
symmetric domain Ω (x = {x1, ..., xd} ∈ Ω, d = 2, 3) with a boundary ∂Ω. The neutron
transport model is presented below:
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where
Sn =

G∑
g′=1

νΣf,g′ϕg′ , Ss,g =
G∑

g ̸=g′=1

Σs,g′→gϕg′ , Sd =
M∑

m=1

λmcm,

ϕ0,g = ϕg + 2ϕ2,g, D0,g = 1/3Σtr,g, D2,g = 9/7Σt,g, g = 1, 2, . . . , G.

Here G – number of energy groups, M – number of types of delayed neutrons, Σt,g(x, t)
– total cross-section, Σtr,g(x, t) – transport cross-section, ϕ0,g(x, t) – pseudo 0th mo-
ment of angular flux, ϕg(x, t) – scalar flux, ϕ2,g(x, t) – second moment of angular flux,
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Σr,g(x, t) – removal cross-section, Σs,g′→g(x, t) – scattering cross-section, νΣf,g(x, t)
– generation cross-section, χg – spectra of neutrons, λm – decay constant of delayed
neutron sources. cm(x, t) – density of sources of delayed neutrons.

The equations that presented below, define the density of sources of delayed neu-
trons.

∂cm
∂t

+ λmcm = βmSn, m = 1, 2, . . . ,M, (2)

where β =
M∑

m=1

βm is the fraction of delayed neutrons of m-type.At the boundary ∂Ω

of the computational domain we define vacuum Marshak-type boundary conditions[
J0,g(x)
J2,g(x)

]
=

[
1/2 −3/8

−3/8 21/8

] [
ϕ0,g(x)
ϕ2,g(x)

]
, Ji,g(x) = −Di,g∇ϕi,g(x), i = 0, 2. (3)

As an initial condition, we take the equilibrium state of the reactor

ϕg(x, 0) = ϕ0
g(x), g = 1, 2, . . . , G, cm(x, 0) = c0m(x), m = 1, 2, . . . ,M. (4)

Discretization. Let’s discretize the boundary problem (1)-(4). We generate a
uniform unstructured grid

ω = {tn = nτ, n = 0, 1, . . . , N, τN = T}

and make use of the following notations Let cnm = cm(x, t
n) and ϕn

g = ϕg(x, t
n). Using

a finite-difference technique, we discretize the time derivatives of equation (1). For
the time approximation, we employ a fully implicit method with a time step of τ .
We establish time approximations for the delayed neutron source equation using a
numerical-analytical approach. The equivalent form of the equation (2)

∂eλmtcm
∂t

= βme
λmt

G∑
g=1

νΣfgϕg, m = 1, 2, . . . ,M.

In the time interval [tn, tn+1] we have the following integration

cn+1
m = e−λmτcnm + βm

∫ tn+1

tn

eλm(t−tn+1)

G∑
g=1

νΣfgϕgdt, m = 1, 2, . . . ,M. (5)

We take the integrand on the right side of (5) at t = tn+1 when employing the fully
implicit technique.

For the spatial approximation, we employ the finite element approach. In the
Sobolev space H1(Ω), q ∈ H1: q2 and |∇q|2 have a finite integral in Ω. The following
variational formulation is obtained by applying the integration by parts: In V G, let’s
identify ϕn+1

g such that
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Figure 1: Coarse grid and local domain ωi with Kj∫
Ω
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(6)

where V G = [H1(Ω)]G.
Additionally, a transition from the continuous variational problem (6) to the discrete

problem is required. We formulate a discrete variational issue and introduce a finite-
dimensional space with finite elements V G

h ⊂ V G. The problem on the fine grid is
solved using ordinary linear basis functions as basis functions. We get a set of linear
algebraic equations, presented below.

Afϕ = bf , (7)

where the vector bf represents the linear form of equation (6), and the operator Af

represents the bilinear form of the equation. Note that we employ the scheme of two
groups of neutrons G = 2 in our implementation.

3 Model reduction algorithm
We employ GMsFEM for coarse grid discretization. We create two grids (see Fig. 1):
fine (Th) and coarse (TH). To generate multiscale basis, we build local domains ωi,
where i = 1, ..., Nv and Nv indicates the number of coarse grid nodes. Given a refine-
ment of TH , h and H denote fine and coarse grid sizes, respectively. The coarse grid TH

contains numerous fine-scale characteristics, but we presume that the fine-scale grid
Th is fine enough to properly resolve the domain’s small-scale information. The coarse
cells around one vertex of the coarse grid are linked to form a local domain ωi.

The multiscale function spaces are constructed in the following form
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Voff = span{yig}, i = 1..Nc, g = 1, 2.

The number of coarse basis functions is represented by Nc. Each local domain wi

contains a collection of bases yig.
The purpose of basis functions is to represent the solution’s multiscale character-

istics. Localized basis functions, which include information about scales smaller (and
larger) than the local numerical scale specified by the basis functions, capture impor-
tant multiscale characteristics of the solution.

Multiscale space. Local spectral problems are used to compute basis functions
by reducing the dimension of the local problem. We introduce a basic building for the
two-neutron situation. Two kinds of multiscale basis functions must be constructed:
one for the pseudo 0th moment and one for the second. The following spectral problem
must be resolved in each local domain ωi in order to obtain the set of multiscale basis
functions

A1φ
i
1 = λS1φ

i
1, A2φ

i
2 = λS2φ

i
2, (8)

where A1 = {a1ij} and A2 = {a2ij} are the matrices elements, and S1 = {s1ij}, and
S2 = {s2ij} are described as follows:

a1ij =

∫
ωi

D0,1∇φ0,1∇q1dx+

∫
ωi

(Σr,1φ0,1 − 2Σr,1φ2,1)q1dx+

+

∫
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D2,1∇φ2,1∇q1dx+

∫
ωi

((5Σt,1 + 4Σr,1)φ2,1 − 2Σr,1φ0,1)q1dx

s1ij =

∫
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D0,1∇φ0,1∇q1dx+

∫
ωi

D2,1∇φ2,1∇q1dx

a2ij =

∫
ωi

D0,2∇φ0,2∇q2dx+

∫
ωi

(Σr,2φ0,2 − 2Σr,2φ2,2)q2dx+

+

∫
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D2,2∇φ2,2∇q2dx+

∫
ωi

((5Σt,2 + 4Σr,2)φ2,2 − 2Σr,2φ0,2)q2dx

s2ij =

∫
ωi

D0,2∇φ0,2∇q2dx+

∫
ωi

D2,2∇φ2,2∇q2dx

(9)

Next, we generate the multiscale basis functions using the eigenvectors that correspond
to the dominating Mi eigenvalues from (8). We can see that we are computing multi-
scale basis functions for every group of neutrons separately from the equations (8)-(9).
However, the multiscale bases are connected at the pseudo 0th and second moments
for each distinct set of neutrons.

To generate conforming basis functions, we multiply eigenvectors associated with
dominating eigenvalues by the partition of unity functions. In each domain ωi, we
employ linear functions to partition unity functions χi. In the domain Kj, partitions of
unity are computed as a linear function from Γ to vertex A. The segment Γ is assigned
the value 0, while point A is allocated the value 1. This results in a linear function
from 0 to 1 that spans the entire domain Kj. Figure 2 displays partitions of unity.
Domain Kj represents a single element from a coarse grid.

The linear shell of yi1 = φi
1χi, y

i
2 = φi

2χi, where χi is the typical nodal basis function
for the node i (linear partition of unity functions), is recognized as the multiscale space.
Additionally, each multiscale basis function has two components: yi1 = (yi0,1, y

i
2,1), y

i
2 =
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Figure 2: Partition of unity functions on the ωi (right) and Kj (left)

(yi0,2, y
i
2,2) for the pseudo 0th moment and yi1 = (yi0,1, y

i
2,1) for the second moment.

The number of bases can vary, and increasing the number of bases can improve the
solution’s accuracy.

Coarse-scale approximation. The following matrix is then produced for every
domain ωi

Ri
g = [y1g , . . . , y

Mi−1
g , yMi

g ], g = 1, 2, i = 1...Nv,

thus in order to lower the problem’s dimension, we define the transition matrix R
between the fine and coarse grids

R =

(
R1 0
0 R2

)
, R1 = [R1

1, R
2
1, . . . , R

Nv
1 ], R2 = [R1

2, R
2
2, . . . , R

Nv
2 ],

where the first and second groups of neutrons’ multiscale basis functions are included
in matrices R1 and R2, respectively, and Nv is the number of local domains ωi.

Next, we build the coarse grid approximation using the fine grid system (7) and
the transition matrix R, Acϕc = bc, Ac = RAfR

T and bc = Rbf , and using the coarse-
scale solution ϕc = (ϕc0,1 , ϕc2,1 , ϕc0,2 , ϕc2,2), we can reconstruct the fine grid solution
ϕms = RTϕc, where ϕms = (ϕms0,1 , ϕms2,1 , ϕms0,2 , ϕms2,2).

4 Numerical results

Non-stationary tests are numerically modeled in the transport SP3 approximation. The
generalized multiscale finite element method and the finite element method’s numerical
results are examined and contrasted. The FEniCS scientific library was used to develop
the software. Asymmetric matrix spectrum problems have been resolved using the
SLEPc package.

We compute the integrated power at each time step using the formula P (t) =

a

∫
Ω

G∑
g=1

Σf,gϕgdx, where a is the normalization coefficient that correlates to a certain

integrated power value.

4.1 One group test

Let’s look at the little PWR reactor (Ω – reactor core area) 2D testing challenge. Figure
3 depicts the geometrical model of a small PWR reactor core. The fuel rod’s diameter
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is 0.82 cm, and the cell width is 1.26 cm. Tab. 1 displays the standard notation for
neutronics constants. Fuels for cassettes come in two varieties: 1% UO2 and 2% UO2.
β = 6.5 · 10−3, λ = 0.08 s−1, and v = 5 · 105 cm/s are the parameters for delayed
neutrons that are employed. At the domain’s edge, the reflective boundary condition
is established.

We have 49 vertices in the coarse grid and 115891 vertices in the fine grid. The
computation continues until T = 0.4 seconds. For both grids, the time step is τ = 0.001.
A fine-grid solution is what we consider to be an exact solution. 1.18398 is Keff ’s
starting value.

Figure 3: Geometrical
model of the small
PWR-2D reactor core

Let’s determine the process’s next scenario:

• Solve the λ-spectral problem;
• As the initial condition, take the solution of the λ-

spectral problem;
• At time t = 0.1 sec, change the removal cross-section Σr

for fuel in zone 1 by +2% (simulation of immersion of
control rods);

• At time t = 0.3 sec, change the removal cross-section Σr

for fuel in zone 1 by -3% (simulation of withdrawal of
control rods).

Fig. 4 displays the integral power for the fine grid as well as the relative errors (%)
of the integral powers. The error is more than 10% when using four or fewer multiscale
basis functions, while it is less than 1% when using 16 or more.

Figures show a comparison of the multiscale solution’s relative L2 and H1 errors
over time for a variety of multiscale basis functions. 5, 6. As long as we use a sufficient
number of multiscale basis functions, the numerical results show good convergence.

Tab. 2 displays the relative L2 and H1 errors at the final time for various multiscale
basis functions. For instance, we get 0.71% for the L2 error and 4.34% for the H1 error
for the pseudo 0th moment of angular flux when we apply 16 multiscale basis functions.
Furthermore, the relative errors for the second instant of angular flux for L2 and H1

are 0.81% and 2.56%, respectively. According to calculations, at least 16 multiscale
basis functions must be used. Fig. 7 displays the multiscale and fine-grid solutions for
varying numbers of bases (on each local domain ωi) for pseudo 0th moment of angular
flux at the final time.

4.2 Two group test

The TWIGL two-dimensional transport test is taken into account. A fourth of the
reactor core, measuring 160 by 160 cm, is modeled. The geometrical model of the core,
which displays different kinds of fuel assemblies, is displayed in Fig. 8. The vacuum
boundary condition is established at the reactor core’s outer edge. Tab. 3 contains the
neutronics constants in the standard notations. The entire medium and χ1=1, χ2=0
have the same fission spectra for prompt and delayed neutrons. One set of delayed
neutrons with an effective percentage of β=0.0075 and a decay constant of λ=0.08 s−1

are employed. v1=107 cm/s and v2=2·105 cm/s are the neutron velocities.
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Table 1: Neutronics constants for small PWR-2D.

Material 1 2
coolant fuel coolant fuel

D 0.34474 0.77002 0.31679 0.80236
Σt 0.96691 0.43288 1.05221 0.41543
Σr 0.00538 0.08933 0.00606 0.06627
Σf 0.0 0.05473 0.0 0.03337
ν 0.0 2.44844 0.0 2.45482762

Table 2: Relative L2 and H1 errors (%) at final time.

Bases DOF Pseudo 0th moment Second moment Calc time
L2 error H1 error L2 error H1 error

1 49 99.97 99.99 99.97 99.99 0.03
2 98 99.83 99.90 99.84 99.90 0.05
4 196 25.61 34.38 26.65 27.64 0.10
8 392 2.64 8.99 2.80 4.65 0.35
16 784 0.71 4.34 0.81 2.56 1.15
32 1568 0.07 1.28 0.14 1.17 6.66
fine 115891 – – – – 815.00

Table 3: Neutronics constants for TWIGL-2D.
Material 1 2 3

Σt,1 0.2481 0.2481 0.2644
Σt,2 0.9833 0.9833 0.7167
Σr,1 0.01 0.01 0.008
Σr,2 0.15 0.15 0.05

Σs,1→2 0.01 0.01 0.01
Σs,1→1 0.2281 0.2281 0.2464
Σs,2→2 0.8333 0.8333 0.6667
ν1Σf,1 0.007 0.007 0.003
ν2Σf,2 0.2 0.2 0.06

Table 4: Relative L2 errors (%) at final time.

Bases DOF L2 error Calc time
ϕms0,1 ϕms2,1 ϕms0,2 ϕms2,2

1 121 54.64 54.88 54.70 64.23 1.70
2 242 21.55 21.69 21.55 26.80 4.15
4 484 12.93 12.88 12.96 16.39 12.61
8 968 2.97 3.14 2.96 4.44 45.12
16 1936 0.09 0.11 0.09 0.06 165.36
32 3872 0.01 0.01 0.01 0.05 690.30
fine 25921 – – – – 6590.00
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Figure 4: Integral power of fine frid solution and relative errors (%) of the integral
power of multiscale solution with different number of basis functions.

Figure 5: Relative L2 errors (%) of the multiscale angular flux

Figure 6: Relative H1 errors (%) of the multiscale angular flux

Figure 7: Fine-grid and multiscale solutions at final
time for pseudo 0th moment of angular flux

Figure 8: Geometrical model of
1/4 reactor core TWIGL-2D.
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Figure 9: Integral power (fine grid) and relative errors (%) of the multiscale solution
power.

Figure 10: Relative L2 errors (%) of the multiscale solution

Figure 11: Relative H1 errors (%) of the multiscale solution
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Figure 12: Fine-grid and multiscale solutions at final time for pseudo 0th moment of
angular flux

We have 121 vertices in the coarse grid and 25921 vertices in the fine grid. The
computation continues until T = 0.5 seconds. For both grids, the time step is τ =
0.0001. We use the fine-grid solution as an exact solution. Keff has an initial value of
0.916075.

The test case of dynamic process:

• Solve the λ-spectral problem;
• As the initial condition, take the solution of the λ-spectral problem;
• At time t = 0 sec, change the removal cross-section Σr,2 for region 1 by 0.0035

cm−1 (simulation of withdrawal of control rods).

Figure 9 shows the integral power for the fine grid and the relative errors (%) of
integral powers. Using four or more multiscale basis functions results in an inaccuracy
of less than 3Figures 10 and 11 depict the relative L2 and H1 errors of the multiscale
solution with time for varied numbers of multiscale basis functions. For multiscale
solutions, we now employ the following notation: ϕms0,1– pseudo 0th moment of fast
(group 1) energy group’s angular flux; ϕms2,1 – fast energy group’s second instant of
angular flux; ϕms0,2– pseudo 0th moment of thermal (group 2) energy group’s angular
flux; ϕms2,2 – the thermal energy group’s second instant of angular flux. The numerical
findings show good convergence behavior if a large number of multiscale basis functions
are taken.

The relative L2 errors at final time for a variety of multiscale basis functions are
shown in Table. 4. For instance, we get 0.71% for the L2 error and 4.34% for the H1

error for the pseudo 0th moment of angular flux when we apply 16 multiscale basis
functions. Furthermore, the relative errors for the second instant of angular flux for
L2 and H1 are 0.81% and 2.56%, respectively. According to calculations, at least 16
multiscale basis functions must be used. Fig. 12 displays the multiscale and fine-grid
solutions for varying numbers of bases (on each local domain ωi) for pseudo 0th moment
of angular flux at the final time.

5 Conclusions
In this research we developed a model reduction procedure for neutron transport model
based on Generalized Multiscale Finite Element method. We presented a GMsFEM
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technique that uses coupled multiscale basis functions for each neutron group. The
results showed that GMsFEM performed well in all circumstances. In this study, we
looked at a popular and simple form of the neutron transport equation. Even with
modern computers, computational costs remain a concern.
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[11] Antoni Vidal-Ferràndiz, S González-Pintor, Damián Ginestar, Christophe Demazière, and
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