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Abstract The conical Radon transform, particularly relevant for Compton camera applica-
tions, maps a given function to its surface integral over a set of cones. This study focuses on
the weighted conical Radon transform, obtained by incorporating a weight effect into the con-
ical Radon transform detailed in [20]. The n-dimensional weighted conical Radon transform
is first defined, following which its inversion formula is derived by expressing its projection as
a convolution.
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1 Introduction

The conical Radon transform is a mathematical operator frequently employed in vari-
ous imaging techniques, particularly in Compton cameras designed for Single Photon
Emission Computed tomography (SPECT). This transform maps a function to its sur-
face integrals over a set of cones and is defined, as follows:

Cf(u,β, ω)=sinω

∫
S2

∞∫
0

f(u+rα)δ(α · β−cosω) rdr dS(α),

where u = (u1, u2, u3) ∈ R3 represents the vertex of a cone from the set, r denotes the
slant height extending from u along the cone, ω ∈ [0, π] represents the opening angle of
the cone, β ∈ S2 denotes the central axis of the cone, and ααα corresponds to a direction
vector on the surface of the cone (see Figure 1 (a)). Furthermore, S2 represents the
unit sphere in a 3-dimensional space.

SPECT is a medical imaging technique that creates 3-dimensional images by detect-
ing gamma rays emitted from radiopharmaceuticals injected into the body. However,
during SPECT, low photon counts and high noise levels typically hinder the spatial in-
formation regarding emitted gamma photons. Compton cameras help overcome these
challenges [19]. In a Compton camera, emitted gamma photons first interact with
a scatter detector, where they collide with electrons and undergo scattering. These
scattered gamma photons then travel toward an absorption detector, where they are
ultimately absorbed [1]. By analyzing the data recorded by both detectors, the energies
and scattering angles of the gamma photons are determined, facilitating precise track-
ing of their point of emission. Importantly, in a Compton camera, all emission points of
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Figure 1: Cone of integration: (a) position of vertex u ∈ R3; (b) opening angle ω ∈
[0, π] and the central axis βββ.

the radioactive source located on a cone-shaped surface lie along the line connecting the
scattering and detextion positions. Projection data collected along such conical paths
in a 3-dimensional space can be modeled using the conical Radon transform [18,21].

The conical Radon transform can assume varying forms based on the parameters of
the cones. For instance, conical Radon transforms exist for subsets of cones satisfying
u ∈ R2 × {0}, β = {0, 0, 1}, and ω ∈ (0, π

2
) [4, 15, 17]; u ∈ S2, β aligned orthogonal

to S2, and ω ∈ (0, π
2
) [18]; u ∈ R2 × {0}, β ∈ S2, and ω ∈ [0, π] [1, 13, 14]; or u ∈ R3,

β = {0, 0, 1}, and ω ∈ (0, π
2
) [7]. For a brief review, readers are directed to [2, 21].

Among these transforms, this study particularly focuses on the conical Radon trans-
form recently introduced in [20], where the integration of cones satisfies β = u/|u| (see
Fig. 1(b)), i.e.,

Cf(u, ω) = sinω

∫
S2

∞∫
0

f(u + rα) δ

(
α · u

|u|
− cosw

)
r dr dS(α). (1)

Notably, the inversion formula for the conical Radon transform presents a challenge as
it assumes that the vertices of the cone and the object being imaged lie in the same
position, a scenario that is impractical in tomography, as noted in [20]. Hence, we
consider the application of Compton camera technology in radiation exposure testing.
For instance, when a nuclear power plant is damaged, radiation, including gamma rays,
is released into the atmosphere. Because such radiation is invisible, using Compton
cameras to detect gamma rays can facilitate flexible data collection without requiring
precise alignment with the radioactive source, unlike conventional radiation detectors.
Thus, in real-world scenarios, such Compton-camera-based radiation detectors can be
moved and appropriately positioned.

In the context of SPECT, some gamma rays are absorbed as they pass through
the patient’s body, thus deteriorating the accuracy of the reconstructed image [10].
To compensate for this absorption effect, studies have investigated methods such as
the attenuated conical Radon transform or weighted conical Radon transform [5,9,11,
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12, 22]. Herein, the weighted conical Radon transform in n-dimensions is defined by
applying a weight to the transform represented by (1) and extending it to n-dimensions.

A key contribution of this paper is that it demonstrates that the projection of
the weighted conical Radon transform can be expressed as a convolution, resulting in
a simplified derivation of the inversion formula. Furthermore, Section 3 presents a
derivation of the inversion formula for the attenuated conical Radon transform as a
special case of the weighted conical Radon transform. Moreover, subsequent sections
define the weighted conical Radon transform in n-dimensions and derive its inversion
formula.

2 Inversion formula for the weighted conical Radon transform

In this section, we derive the inversion formula for the n-dimensional weighted conical
Radon transform, which is defined, as follows:

Definition 1. Let U : [0,∞]→R denote a continuous function. For u∈Rn, ω∈ [0, π]
and f ∈ C∞(Rn) with compact support, we define the n-dimensional weighted conical
Radon transform CU , as follows:

CUf(u, ω) = sinω

∫
Sn−1

∞∫
0

f(u + rα) δ

(
α · u

|u|
− cosω

)
U(r) dr dS(α).

To derive the inversion formula, we first express the projections of CUf in the form
of a convolution using the following theorem.

Theorem 2. For f∈C∞(Rn) with compact support, we have
∫ π

0

CUf(u, ω)dω=f∗gU(u),

where gU(x) =U(|x|)/|x|n−1, and x 6= 0. Furthermore, f ∗ gU denotes the convolution

of f and gU and is defined as f ∗ gU(u) =

∫
Rn

f(u− y)gU(y)dy.

Proof. To prove this, we begin with
π∫

0

CUf(u, ω) dω =

∫
Sn−1

∞∫
0

f(u + rα)

π∫
0

sinω δ

(
α · u

|u|
− cosw

)
dω U(r) dr dS(α)

=

∫
Sn−1

∞∫
0

f(u + rα)U(r) dr dS(α) =

∫
Rn

f(u + x)
U(|x|)
|x|n−1

dx,

where we used the change of variables x→ rα. Considering that gU is a radial function,
we have

π∫
0

CUf(u, ω) dω =

∫
Rn

f(u− (−x))gU(−x) dx = f ∗ gU(u).
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Taking the n-dimensional Fourier transform of the equation in Theorem 2, we obtain

F

 π∫
0

CUf(·, ω) dω

(ξξξ) = F(f ∗ gU)(ξξξ) = Ff(ξξξ)FgU(ξξξ), (2)

where the Fourier transform of function f is defined as

Ff(ξξξ) =

∫
Rn

f(x)e−iξξξ·x dx.

The inverse Fourier transform of this result yields the inversion formula for the weighted
conical Radon transform CUf , as follows:

Corollary 3. If gU ∈ L2(Rn) and f ∈ C∞(Rn) with compact support, we have

f(x) = F−1
 1

FgU
F

 π∫
0

CUf(·, ω) dω

 (x). (3)

For α < n, we define the Riesz potential Iα as Iαf(x) = F−1 (| · |−αFf(·)) (x).

Remark 1. From (2), we have F
(∫ π

0

IαCUf(·, ω)dω

)
(ξξξ)=F(Iαf) (ξξξ)FgU(ξξξ) and

f(x) = I−αF−1
 1

FgU
F

 π∫
0

IαCUf(·, ω) dω

 (x).

3 The attenuated conical Radon transform

This section deals with cases where U(r) = rke−µr, with µ ≥ 0 and k=0, 1 . . . , n-
1. Notably, such cases are related to the conical Radon transform considering the
attenuation effect. From Theorem 2 and Corollary 3, we derive the inversion formula
(3) and further compute the value of FgU based on the value of k. First, we define the
attenuated conical Radon transform Ck,µ, as follows:

Ck,µf(u, ω) = sinω

∫
Sn−1

∞∫
0

f(u + rα) δ

(
α · u

|u|
− cosω

)
rke−µr dr dS(α).

Subsequently, using Theorem 2 and Corollary 3, we obtain
π∫

0

Ck,µf(u, ω) dω = f ∗ gk,µ(u) and f(x) = F−1
 1

Fgk,µ
F

 π∫
0

Ck,µf(·, ω) dω

 (x),

where f ∈ C∞(Rn) with compact support and gk,µ(x) = e−µ|x|/|x|n−k−1, x 6= 0. We
then compute Fgk,µ, as follows: [6, eq. (7.38) on page 247]

Fgk,µ(ξξξ) = (2π)n/2
∞∫
0

e−µrr1−n+k(r|ξξξ|)1−(n/2)J(n/2)−1(r|ξξξ|)rn−1 dr.
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3.1 k = n− 2

The attenuated conical Radon transform is defined as

Cn−2,µf(u, ω) = sinω

∫
Sn−1

∞∫
0

f(u + rα) δ

(
α · u

|u|
− cosω

)
rn−2e−µr dr dS(α).

Using this definition, we obtain

Fgn−2,µ(ξξξ) = (2π)n/2
∞∫
0

r−1e−µr(r|ξξξ|)1−(n/2)J(n/2)−1(r|ξξξ|)rn−1 dr

= (2π)n/2|ξξξ|(1−n)/2
∞∫
0

r(n−3)/2e−µrJ(n/2)−1(r|ξξξ|)(r|ξξξ|)1/2 dr

= (2π)n/2|ξξξ|(1−n)/2
{

2(n/2)−1π−1/2Γ((n−1)/2)|ξξξ|(n−1)/2(µ2+|ξξξ|2)(1−n)/2
}
,

where the final step uses the following equation [3, eq. (5) on page 29]:
∞∫
0

rν−1/2e−µrJν(r|ξξξ|)(r|ξξξ|)1/2 dr = 2νπ−1/2Γ(ν + 1/2)|ξξξ|ν+1/2(µ2 + |ξξξ|2)−ν−1/2.

Thus, we have
Fgn−2,µ(ξξξ) = 2n−1π(n−1)/2Γ((n− 1)/2))(µ2 + |ξξξ|2)(1−n)/2. (4)

3.2 k = n− 1 and k = 0

Similar to the approach detailed in Section 3.1, we obtain Fgn−1,µ, as follows:

Fgn−1,µ(ξξξ) = (2π)n/2
∞∫
0

e−µr(r|ξξξ|)1−(n/2)J(n/2)−1(r|ξξξ|)rn−1 dr

= (2π)n/2|ξξξ|(1−n)/2
∞∫
0

r(n−1)/2e−µrJ(n/2)−1(r|ξξξ|)(r|ξξξ|)1/2 dr

= 2nπ(n−1)/2Γ((n+ 1)/2))µ(µ2 + |ξξξ|2)(−1−n)/2,

where the final step uses the following equation [3, eq. (4) on page 29]:
∞∫
0

rν+1/2e−µrJν(r|ξξξ|)(r|ξξξ|)1/2 dr = 2ν+1π−1/2Γ(ν + 3/2)µ|ξξξ|ν+1/2(µ2 + |ξξξ|2)−ν−3/2.

We also derive Fg0,µ for case k = 0, as follows:

Fg0,µ(ξξξ) = (2π)n/2
∞∫
0

e−µr(r|ξξξ|)1−(n/2)J(n/2)−1(r|ξξξ|) dr

= (2π)n/2|ξξξ|(1−n)/2
∞∫
0

r(1−n)/2e−µrJ(n/2)−1(r|ξξξ|)(r|ξξξ|)1/2 dr

= (2π)n/2|ξξξ|1−n/2(µ2 + |ξξξ|2)n/4−1P1−n/2
1−n/2

[
µ(µ2 + |ξξξ|2)−1/2

]
,
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where Pλν denotes the Legendre function of the first kind and the final step uses the
following equation [3, eq.(6) on p. 29]:
∞∫
0

ra−3/2e−µrJν(r|ξξξ|)(r|ξξξ|)1/2 dr = |ξξξ|1/2(µ2 + |ξξξ|2)−a/2Γ(a+ ν)P−νa−1
[
µ(µ2 + |ξξξ|2)−1/2

]
.

3.3 n = 2 and 3 with µ = 0 and k = n− 2

This subsection deals with the inversion formula for the 2-and 3-dimensional conical
Radon transforms (i.e., µ = 0). Based on Corollary 3, we have

f(x) = F−1
 1

Fgn−2,0
F

 π∫
0

Cn−2,0f(·, ω) dω

 (x),

where Fgn−2,0(ξξξ) = 2n−1π(n−1)/2Γ((n − 1)/2))|ξξξ|(1−n) (see [8, p. 363] or substituting
µ = 0 in (4)). Thus, the inversion formulas for n = 2 and n = 3 are respectively
expressed as,

f(x) =
1

2π
F−1

|·| F
 π∫

0

C0,0f(·, ω) dω

 (x)

(which is the same as (4) in [20]) and

f(x) =
1

4π
F−1

| ··· |2F
 π∫

0

C1,0f(·, ω) dω

 (x) =
1

4π

π∫
0

∆uC1,0f(u, ω) |u=x dω.

3 Conclusion

This paper extends the n-dimensional conical Radon transform detailed in [20] by
incorporating a weight effect. Specifically, the projection of the weighted conical Radon
transform is expressed as a convolution with a specific radial function. Based on this
result, the corresponding inversion formula is derived. Developing and implementing
simulations based on this inversion formula present significant challenges and important
topics for our future research.
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