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MATHEMATICAL ANALYSIS OF MONKEYPOX VIRUS
USING THE DAFTARDAR-JAFARI ITERATIVE APPROACH
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Abstract Monkeypox is an emerging zoonotic disease, similar to smallpox, causing fever,
rash, and swollen lymph nodes, transmitted through contact with infected animals, humans,
or materials. In this paper, we focus on the new mathematical model of the monkeypox
virus, which builds upon the epidemiological framework that categorized as susceptible S(t),
asymptomatic infected cases E(t), infected I(t), infected individuals who are hospitalizedQ(t),
and recovered R(t) populations. To deal with the system of nonlinear differential equations
and to produce a semi-analytical solution for the monkeypox virus model, Daftardar-Jafari
method (DJM) was used. The DJM approach provided highly accurate approximate solutions
compared to numerical simulations, demonstrating its efficiency and accuracy. The DJM’s
iterative approach allows for the continuous development of solutions to differential equations
that capture disease dynamics, offering insights into the complex interactions among indi-
viduals in a population and the progression of infectious diseases. Furthermore, by varying
model parameters, we explored their impact on the various compartments, gaining valuable
insights into the behavior of the model under different conditions. This analysis is essential for
understanding how changes in transmission rates, recovery rates, and other factors influence
the monkeypox virus’s overall dynamics, ultimately informing better public health strategies
and disease management practices.
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1 Introduction

Monkeypox is a zoonotic viral disease caused by the monkeypox virus, part of the Or-
thopoxvirus genus. It shares clinical similarities with smallpox, presenting with fever, vesicular-
pustular rash, and lymphadenopathy, but typically exhibits lower morbidity and mortality
rates. Transmission occurs through direct contact with bodily fluids or lesions of infected ani-
mals or humans, as well as contaminated fomites [8]. The disease is a significant public health
concern due to its potential for human-to-human transmission and sporadic outbreaks outside
endemic regions in Central and West Africa. The rising incidence of monkeypox has led to
its classification as a global emergency, highlighting the need for thorough investigation of its
public health implications and pandemic potential. This underscores the necessity for interna-
tional funding to enhance case detection and surveillance, which are crucial for understanding
the evolving epidemiology of this resurgent disease [3]. Recent outbreaks have revealed com-
plex transmission routes, including zoonotic transmission via contact with infected animals
like rodents and non-human primates, and human-to-human transmission through respiratory



Mathematical analysis of monkeypox virus using the daftardar-jafari iterative approach 55

droplets, bodily fluids, and contaminated fomites. The increase in infections outside endemic
regions indicates changes in virus ecology and human behavior, necessitating updated public
health strategies and international cooperation for effective control [15, 18]. Asymptomatic
infections play a critical role in transmission, complicating containment efforts. Combatting
monkeypox benefits from the cross-protection of existing smallpox vaccines and the develop-
ment of new antiviral therapies and vaccines. Recent outbreaks in Nigeria (2019-2020) and
subsequent cases in the United States and the United Kingdom underscore the urgent need for
global preparedness, enhanced diagnostics, better healthcare infrastructure in endemic areas,
and increased public awareness [19, 23, 28].
Statistical modeling is a fundamental aspect of modern data analysis, allowing us to draw
conclusions about a population using sample data. Essentially, statistical modeling involves
creating mathematical equations that illustrate the relationships between different variables.
These models can range from simple linear regression, which shows a direct relationship
between two variables, to more complex models like generalized nonlinear models and mixed-
effects models that handle various types of data and relationships [6, 14, 16, 29]. Recent
mathematical models of monkeypox virus transmission provide significant insights into un-
derstanding its spread and potential control measures. Usman and Adamu (2017) include
treatment and vaccination strategies, highlighting their impact on virus dynamics. Lasisi et
al. (2020) explore demographic factors and transmission rates, while Somma et al. (2019)
focus on optimal control strategies to reduce infection rates. Additionally, Peter et al. (2023)
present a detailed mathematical approach to understanding transmission dynamics, aiding in
formulating effective interventions [13, 17, 24, 31]. A recent study used a continuous mathe-
matical model with differential equations to investigate the spread of the monkeypox virus,
focusing on the local and global stability of the model’s equilibrium points [9]. Analytical so-
lutions in epidemiology play a crucial role in understanding the behavior of infectious diseases
and developing effective intervention strategies. By solving differential equations that model
disease transmission dynamics, researchers can derive explicit formulas for key quantities such
as infection rates, peak times, and equilibrium states. Several semi-analytical methods have
been utilized to tackle complex mathematical problems. Recent advances in semi-analytical
methods such as the Differential Transform Method (DTM), Adomian Decomposition Method
(ADM), Homotopy Perturbation Method (HPM), Laplace Adomian Decomposition Method
(LADM), Taylor Series Method (TSM), and Variation Iteration Method (VIM) offer deeper
insights into disease dynamics and intervention strategies. These solutions help in predicting
the spread of diseases, evaluating the impact of different control measures like vaccination
and quarantine, and optimizing resource allocation during outbreaks. Analytical solutions
provide a clear understanding of how various parameters influence the disease’s progression
and the population’s response [1, 7, 10, 11, 12, 25, 27, 32]. Over time, numerous analytical
methods have been developed, including the Daftardar-Jafari method, known for its efficiency
in solving complex differential equations accurately. The Daftardar-Jafari method stands out
as a powerful tool for obtaining precise solutions in various mathematical models and systems
[4].

The primary aim of this paper is to address the monkeypox virus model by applying
the Daftardar-Jafari Method (DJM). The study seeks to analyze the model thoroughly and
provide insights into effective prevention measures. By leveraging DJM, the paper aims to
derive accurate solutions and evaluate the model’s stability, ultimately contributing to better
disease control strategies and understanding the dynamics of monkeypox virus transmission.
The paper is structured as follows: Section 2 details the DJM methodology. Section 3 intro-
duces the mathematical model of the monkeypox virus using system of nonlinear differential
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equations. Section 4 presents the semi-analytical solution of the monkeypox virus model using
DJM. Section 5 discusses the findings, and Section 6 provides the conclusion of the paper.

2 Daftardar-Jafari method (DJM)

The Daftardar-Jafari method (DJM) is a powerful iterative technique for solving nonlinear
differential and functional equations. Introduced by Daftardar-Gejji and Jafari in 2006, this
method has proven effective in addressing various mathematical and physical problems. It
is particularly useful for efficiently solving nonlinear issues and provides convergent approx-
imations. The DJM employs a systematic iterative process that separates the problem into
linear and nonlinear operators, facilitating the approximation of solutions without requiring
stringent assumptions. Theoretical analyses of the DJM’s convergence and stability under-
score its value as a tool for accurately solving complex mathematical and physical problems
[2, 22, 26, 30].

Let us examine the nonlinear equation [4, 5]

W = g + L[W] +N [W] (1)

whereW is a function of x, L[W] is linear, and N [W] is a nonlinear term. The series solution
for this equation is provided as follows:

W =
∞∑
n=0

Wn

Since L is a linear operator, we can express

L(

∞∑
n=0

Wn) =

∞∑
n=0

L(Wn)

Now, we will define the nonlinear terms

G0 = N(W0), Gi = N(

n∑
i=0

Wi)−N(

n−1∑
i=0

Wi)

Thus N(w) is decomposed as:

N(

∞∑
i=0

Wi) = N(W0)︸ ︷︷ ︸
G0

+N(W0 +W1)−N(W0)︸ ︷︷ ︸
G1

+N(W0 +W1 +W2)−N(W0 +W1)︸ ︷︷ ︸
G2

+ . . .

The recursive relation for the components of W(x) can be described as follows:

W0 = g,W1 = L(W0) +G0, . . . ,Wi+1 = L(Wi) +Gk (2)

Thus,
∞∑
n=0

Wn = g + L(

∞∑
n=0

Wn) +N(

∞∑
n=0

Wn) (3)

It is evident from the equation that
∑∞

n=0Wn serves as a solution to equation (1), where
Wi, i = 0, 1, 2, . . ., are determined by algorithm (2). The term ni is used to approximate the
solution of (3), which can be expressed as W =

∑n−1
i=0 Wi.
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Figure 1: Flow chart of monkeypox virus transmission model.

The application of DJM is predominantly observed in addressing nonlinear scenarios such as
thin film flow, solving fractional PDEs, and dealing with boundary value problems. There
are limited research papers utilizing DJM for solving system of nonlinear equations in epi-
demiology [20, 21]. This study uniquely employs DJM approach for the monkeypox model,
showcasing its versatility and potential in the system of nonlinear equations of the epidemic
modeling and analysis.

3 Governing system of equations

In this section, we examine the monkeypox virus model developed by Imane Smouni et al [9].
The model classifies the population within the monkeypox virus into five groups: susceptible
individuals at risk of acquiring the monkeypox virus S(t), asymptomatic infected cases E(t),
symptomatic carriers of the virus I(t), infected individuals who are hospitalized Q(t), and
those who have recovered R(t). The sum of all compartments determines the overall size of
the population, N(t): N(t) = S(t) + E(t) + I(t) +Q(t) + R(t). The system of equations for
the monkeypox virus model is represented by equations (4):

dS

dt
= Ω− κSE − ϑS

dE

dt
= κSE − ($ + ϑ)E

dI

dt
= $E − (ξ + ϑ+ χ)I

dQ

dt
= ξI − (τ + ϑ)Q

dR

dt
= τQ− ϑR

(4)

Initial conditions:

S(0) = m1, E(0) = m2, I(0) = m3, Q(0) = m4, R(0) = m5 (5)

The birth rate is represented by Ω. The contact rate with asymptomatic infected individuals
is given by η. Natural mortality is represented by ϑ. Asymptomatic infected individuals
progress to symptomatic cases and become virus carriers at a rate indicated by $. Infected
individuals are hospitalized at a rate of ξ. Disease-related mortality occurs at a rate of χ.
Individuals who have received hospital treatment are considered at a rate of τ . The parameter
κ is determined by κ = η

N , where N is the total number of population. Figure 1 presents
the flow chart of the monkeypox virus model. The numerical values for the parameters are:
Ω = 1500, ϑ = 0.04, η = 0.5, $ = 0.09, ξ = 0.05, χ = 0.5, τ = 0.05, N = 26000.
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4 Semi-analytical solution of monkeypox virus model using DJM

In this section, we will utilize the DJM approach for analyzing the transmission of the mon-
keypox virus. To apply the DJM and derive an approximate solution for the problem, we
perform integration on both sides of equation (4) considering the initial condition (5), leading
to:

S(t) = m1 + Ωt+

∫ t

0
(−κSE − ϑS)ds

E(t) = m2 +

∫ t

0
(κSE − ($ + ϑ)E)ds

I(t) = m3 +

∫ t

0
(ϑE − (ξ + ϑ+ χ)I)ds

Q(t) = m4 +

∫ t

0
(ξI − (τ + ϑ)Q)ds

R(t) = m5 +

∫ t

0
(τQ− ϑR)ds

(6)

The general expression of the nonlinear terms in the system of equation (6) under the DJM
approach can be described as:

Sn+1(t) =

∫ t

0
N1(

n∑
i=0

Si(s))ds−
∫ t

0
N1(

n−1∑
i=0

Si(s))ds

En+1(t) =

∫ t

0
N2(

n∑
i=0

Ei(s))ds−
∫ t

0
N2(

n−1∑
i=0

Ei(s))ds

In+1(t) =

∫ t

0
N3(

n∑
i=0

Ii(s))ds−
∫ t

0
N3(

n−1∑
i=0

Ii(s))ds

Qn+1(t) =

∫ t

0
N4(

n∑
i=0

Qi(s))ds−
∫ t

0
N4(

n−1∑
i=0

Qi(s))ds

Rn+1(t) =

∫ t

0
N5(

n∑
i=0

Ri(s))ds−
∫ t

0
N5(

n−1∑
i=0

Ri(s))ds

(7)

The series solution WDJM =
∑∞

n=0Wn for equation (7) can be determined by aggregating
the individual components Wi obtained through the DJM method.
Thus, by employing this approach, we obtain the initial iteration:

S0 = m1 + Ωt, E0 = m2, I0 = m3, Q0 = m4, R0 = m5 (8)

To simplify and brevity, we provide only the series up to the first iteration, as follows:

S1 = m1 − (κm2m1 + ϑm1 − Ω) t−
(

1

2
κm2Ω +

1

2
ϑΩ

)
t2

E1 = m2 + (κm2m1 − ($ + ϑ)m2) t+
1

2
κm2Ωt

2

I1 = m3 + ($m2 − (ξ + ϑ+ χ)m3)t

Q1 = m4 + (ξm3 − (τ + ϑ)m4)t

R1 = m5 + (τm4 −m5ϑ)t

(9)

The solution presented above corresponds to WDJM1. By utilizing MAPLE, we were able to
calculate a fifth-iteration denoted asWDJM5. Additionally, it is feasible to derive higher-order
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solutions until convergence is achieved.
Thus, the semi-analytical solution for the monkeypox virus up to the sixth order, obtained
using the DJM approach (8), (9), and incorporating the parameter values along with the
initial conditions: S(0) = 10000, E(0) = 8000, I(0) = 5000, Q(0) = 2000, R(0) = 1000, has
been accurately determined as follows:

S(t) = 10000− 438.461538t− 5.43195269t2 + 2.918579878t3 + 0.1205366936t4

−0.01797235373t5 − 0.001707434408t6, (10)
E(t) = 8000 + 498.4615384t− 18.19881654t2 − 2.057538460t3 + 0.05543258262t4

+0.02862180753t5 + 0.002675231404t6, (11)
I(t) = 5000− 2230.00t+ 680.280769t2 − 134.3345157t3 + 19.76804645t4

+0.07839762261t5 + 0.001476523403t6, (12)
Q(t) = 2000 + 70.00t− 58.90000000t2 + 13.10501281t3 − 1.974044235t4

−0.007338154300t5 − 0.00008874544836t6, (13)
R(t) = 1000 + 60.00t+ 0.5500000000t2 − 0.9890000001t3 + 0.1737026601t4

−0.02113006365t5 − 0.00006403590122t6. (14)

5 Discussion of Results

A new approach, Daftardar-Jafari method (DJM), was used to tackle the system of nonlinear
differential equations present in the monkeypox virus model. The semi-analytical solutions
for the populations S, E, I, Q, and R are expressed in equations (10)-(14), representing the
approach’s outcomes. Utilizing the ode45 solver within a MATLAB program, the system
described by equation (4) was numerically solved.

In Fig. 2a, the graph illustrates the comparison between equation (10) and numerical
simulation for the susceptible monkeypox virus population, denoted as S(t), over time. As
susceptible monkeypox virus individuals come into contact with asymptomatic infected cases,
they become exposed to the disease. It is evident from the data that there is a decrease
in the count of susceptible monkeypox virus individuals as they transition to the exposed
state. Fig. 2b depicts the comparison between equation (11) and numerical simulation for
the population of asymptotically infected individuals of the monkeypox virus, represented as
E(t), over time. A substantial increase in the number of asymptotically infected population
is observed. This increase is attributed to the progression of the virus towards symptomatic
cases, transforming individuals into carriers of the virus who may then interact with infected
monkeypox virus individuals.

In Fig. 2c, the graph illustrates the comparison between equation (12) and numerical
simulation for the population of symptomatic carriers or infected individuals of the monkey-
pox virus, denoted as I(t), over time. A decline in the count of the infected monkeypox
virus population is observed, attributed to infected individuals being promptly hospitalized.
Fig. 2d demonstrates the comparison between equation (13) and numerical simulation for the
infected individuals who are hospitalized, represented as Q(t), over time. The population in
the hospital compartment increases as infected individuals undergo the process of quarantine
and treatment. In Fig. 2e, the graph illustrates the comparison between equation (14) and
numerical simulation for the population of recovered individuals of the monkeypox virus, de-
noted as R(t), over time. A noticeable increase in the count of recovered individuals from
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(a) Susceptible individuals S(t). (b) Asymptomatic infected individuals E(t).

(c) Infected individuals I(t). (d) Hospitalized individuals Q(t).

(e) Recovered individuals R(t).

Figure 2: Graphical representation of monkeypox virus using the DJM and numerical
simulations.
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(a) Effects of varying η on S(t). (b) Effects of varying η on E(t).

(c) Effects of varying $ on E(t). (d) Effects of varying τ on Q(t).

(e) Effects of varying ξ on Q(t).

Figure 3: Effects of varying parameters on the susceptible, exposed and hospitalized
compartments.
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(a) Effects of varying $ on I(t). (b) Effects of varying ξ on I(t).

(c) Effects of varying χ on I(t). (d) Effects of varying τ on R(t).

Figure 4: Effects of varying parameters on the infected and recovered compartments.

the monkeypox virus is observed. This increase can be attributed to the infected and ex-
posed populations undergoing treatment and quarantine, potentially resulting in improved
progression rates by reducing the disease’s contact rate.

In Fig. 3a, when fixing other parameters and increasing the contact rate with asymp-
tomatic infected individuals η, the susceptible monkeypox virus population decreases. In
Fig. 3b, when increasing the contact rate η, the asymptomatic infected individuals also in-
creases. In Fig. 3c, when increasing the progress rate of symptomatic cases $, the asymp-
tomatic infected individuals decreases. In Fig. 3d, when increasing the hospitalized or quaran-
tine rate ξ, the infected individuals who are hospitalized increases. In Fig. 3e, when increasing
the treatment rate τ , the infected individuals who are hospitalized decreases. In Fig 4a, when
increasing the progress rate of symptomatic cases $, the infected monkeypox virus popula-
tion increases. Similarly, In Fig. 4b and 4c, when increasing the monkeypox disease related
mortality rate χ and hospitalized or quarantine rate ξ, the infected monkeypox virus popula-
tion decreases. In Fig. 4d, when increasing the treatment rate τ , the recovered population is
increased.

In Fig. 5a, the surface plot depicts the susceptible individuals of the monkeypox virus
against the contact rate η and birth rate Ω at time t = 0.5. In Fig. 5b, the surface plot
illustrates the asymptomatic infected individuals in relation to the progression rate of symp-
tomatic cases $ and the contact rate η at time t = 0.5. Fig 5c shows the surface plot of
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the infected individuals against the progression rate of symptomatic cases $ and the disease-
related mortality rate χ at time t = 0.5. In Fig. 5d, the surface plot presents the infected
individuals against the progression rate of symptomatic cases $ and the hospitalization or
quarantine rate ξ at time t = 0.5. Fig. 5e depicts the surface plot of hospitalized infected
individuals against the treatment rate τ and the hospitalization or quarantine rate ξ at time
t = 0.5. Fig. 5f displays the surface plot of recovered individuals against the treatment rate
τ and the natural mortality rate ϑ at time t = 0.5.

6 Conclusion

In this paper, we developed a semi-analytical expression for a system of nonlinear differential
equations within the monkeypox virus model. We applied the Daftardar-Jafari method (DJM)
method to evaluate the proposed model. DJM efficiently decomposes the original equation
into linear, nonlinear, and functional components, that solves the system of equations iter-
atively, facilitating convergence of the solutions. A comparison of the analytical solutions
with the numerical results showed a strong level of accuracy. The results presented in the
Figs. demonstrate that the DJM approach excels in producing highly accurate computations.
The DJM proves invaluable for analyzing the transmission dynamics of diseases, evaluating
the effects of interventions, forecasting the progression of epidemics, and assessing strategies
for disease control and prevention. Surface plots enhance the discussion by visually demon-
strating the impact of various parameters on the monkeypox virus transmission model. The
analysis highlights that, in addition to managing the contact rate of asymptomatic infected
individuals, enhancing treatment efforts and implementing effective isolation measures are key
strategies for controlling the spread of the monkeypox virus. Since the monkeypox virus does
not have an exact vaccine, early detection and public health awareness campaigns become
even more critical in preventing further outbreaks and mitigating transmission within com-
munities. This method serves as a powerful computational tool in epidemiology, aiding in the
study of disease spread patterns, the optimization of control measures, and the enhancement
of our understanding of how infectious diseases propagate within populations.
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(a) Combined effects of η and Ω on S(t). (b) Combined effects of $ and η on E(t).

(c) Combined effects of χ and $ on I(t). (d) Combined effects of ξ and $ on I(t).

(e) Combined effects of τ and ξ on Q(t). (f) Combined effects of ϑ and τ on R(t).

Figure 5: Surface representation of different parameters in the monkeypox virus trans-
mission model compartments.
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