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Abstract We investigate the ill-posed problem of minimizing a convex functional in a Hilbert
space. Previously, in the author’s work, the problem of minimizing a quadratic functional
was considered. The iterative processes that are stable to disturbances of all input data
were constructed and studied. In this paper the developed approach is generalized to the
constrained convex minimization. The proposed methods generate regularizing algorithms
for quadratic and convex minimization problems, in contrast to direct methods that do not
have this property.

Keywords: ill-posed problem, linear and convex constraints, iterative process, convex mini-
mization, regularizing algorithm.

AMS Mathematics Subject Classification: 65J20, 65K05.

DOI: 10.32523/2306-6172-2024-12-4-150-157

1 Problem statement and preliminary information

We study the problem of a constrained convex minimization

inf{f0(u) : u ∈ Q} = F, (1.1)

where f0 is a convex continuous functional, Q is a convex closed subset of the Hilbert space U .
Along with problem (1.1) the main object of our research is the classical convex programming
problem, for which the set Q is specified by a system of convex inequalities, i.e.

Q = {u ∈ U : fi(u) ≤ 0, i = 1, 2, ...,m}, (1.2)

where fi are convex continuous functionals.
Problem (1.1), (1.2) are among the ill-posed problems in which there may be no continuous

dependence of the solution on the input data of the problem. Therefore, under the conditions
of noisy data {f̃i}, direct methods [1] for constructing a stable family of approximate solutions
are not applicable. Corresponding examples of conditional convex minimization are presented
in [2]. It is also outlined there a method for reducing problem (1.1), (1.2) to an ill-posed
problem of non-constraint convex minimization based on Tikhonov regularization and the
method of penalty functions. A similar approach to reducing an ill-posed linear programming
problem was studied in [3]. When solving the problem (1.1) by functional, along with the
method of penalty functions, the method of barrier functions is used in conjunction with the
method of quasi-solutions as a regularization algorithm [4].

A particular version of the problem (1.1) is the problem of minimizing the quadratic
functional

inf{‖Au− f‖2 : u ∈ Q}, (1.3)
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where A is a linear bounded operator acting on a pair of Hilbert spaces U,F. For a set of
constraints Q, specified by systems of linear equalities and inequalities, in the work [1] direct
methods for solving the problem (1.3) are presented. Note that in the general situation these
methods are unstable to input data errors. It should be noted that, on the one hand, the
problem (1.1), (1.3) is an object of study of mathematical programming, which has numerous
applications in various disciplines, and on the other hand, the problem (1.3) can be considered
as a generalization of the formulation of the inverse ill-posed problems in the form of an
operator equation with a priori information [5]

Au = f, u ∈ Q, M ∩Q 6= ∅,

where M is the set of solutions to the operator equation. In the case when the operator
equation does not have a usual solution, we are forced to move on to the minimization problem
in the form 1.3. This class of ill-posed problems is found in all branches of natural science.
In the work [6] for a set of restrictions Q = {u ∈ U : Bu = b, Du ≤ d} an iterative method
was announced that is stable to errors in all input data, in contrast to methods of the work
[1], which do not have this property.

Definition 1. Problem 1.1 is called well-posed according to Hadamard if: 1) a solution
exists; 2) there is only one solution; 3) the solution continuously depends on f0 and Q (in
each specific situation the concept of continuity will be clarified).

Definition 2. Problem (1.1) is called well-posed according to Tikhonov if: 1) a solution exists;
2) there is only one solution; 3) each minimizing sequence un ∈ Q, f0(un)→ F converges to
a unique solution û to problem (1.1).

Definition 3. If at least one of conditions 1-3 in Definitions 1, 2 is violated, then they say
that the problem is formulated ill-posed according to Hadamard (Tikhonov).
In the future, as a rule, we consider problems to be ill-posed in which condition 3 in Definitions
1 and 2 is violated.

Definition 4. The sequence Qn ∈ U converges to the set Q ∈ U in the Hausdorff sense if

lim
n→∞

α(Qn, Q) = lim
n→∞

max{β(Qn, Q), β(Q,Qn)} = 0,

where β(Qn, Q) = supu∈Qn
, infv∈Q ‖u− v‖.

Definition 5. A sequence of sets Qn converges to a set Q in the Mosco sense if :
a) ∀u ∈ Q∃{un} : un ∈ Qn, un → u;
b) ∀{unj} ∈ Qnj , unj ⇁ u⇒ u ∈ Q, where the symbol ” ⇁ ” means weak convergence.

Under the assumption that problem (1.1) has a unique solution, in the work [7] two
statements are formulated and proven that clarify the features of the introduced definitions
of well-posedness in terms of the convergence of admissible sets in the sense of Hausdorff and
Mosco and their relationship is established.
Statement 1 [7]. If the minimization problem 1.1 on convex closed sets Q is well-posed
according to Hadamard with respect to the Hausdorff convergence Qn → Q, then on every
closed convex it is well-posed according to Tikhonov.

Statement 2 [7]. Let the functional f0 be additionally uniformly continuous on each bounded
set. Then well-posednes in the Tikhonov sense on every closed convex set Q implies Hadamard
well-posedness with respect to Mosco convergence Qn → Q.



152 Vasin V.V.

2 Iterative method of convex minimization on a set of linear
constraints

As is well known, (see, for example, Theorems 21.1, 21.2 in [5]) problem 1.1 is equivalent to
the operator equation

u = PQ(u− λ∇f0(u)) ≡ T (u), (2.1)

those the problem of finding a fixed point of the operator T. Here the set Q is defined by a
system of convex sets 1.2, PQ is a metric projection onto the set Q, λ is a positive parameter.
As a method for constructing a set of approximate solutions, we will use the method of
successive approximations with the step operator T , modified using correction factors γk [9]

uk+1 = (1− γk+1)T (uk) + (1− γk+1)v0, (2.2)

where the operator T is defined by the formula 2.1, v0 is an arbitrary element from U, with
the help of which, if necessary, one can take into account a priori (physical) information about
the solution in case of its non-uniqueness. Let us study the convergence of process 2.2 with
exact data.
Theorem 1. Let problem 1.1 be solvable and let û be its v0-normal solution. Let

sup{‖f ′′(u)‖ : u ∈ Q} ≤ N, λ < 2/N (2.3)

and the sequence γk is admissible (see definition in [9]). Then for any u0 the sequence {uk}
constructed by the process 2.2 converges to the v0−normal solution v̂ of problem (1.1).

Proof: According to the work of [8] (see Lemma 4.1), if the condition 2.3 is satisfied, the
operator is nonexpansive (we denote this class by K). In addition, the operator T operator
maps the ball to itself: ‖u− û‖ ≤ r ⇒ ‖T (u)−T (û)‖ ≤ ‖u− û‖ ≤ r. According to the theorem
proven in [9], this implies strong convergence of iterations in the Hilbert space U

lim
k→∞

‖uk − û‖ = 0, û ∈ Fix(T ),

where û is v0−normal solution of problem 1.1, in particular, of problem 1.1, (1.2)
Let’s study the convergence of the process 2.2 with approximate data

ũk+1 = (1− γk+1)[PQ̃(ũk −∇f̃0(ũk))] + (1− γk+1)v0, (2.4)

where ũ0 = u0, the set Q̃ is defined by the system 1.2, in which fi(u) are replaced by noisy
functions f̃i(u). Let us introduce the notation: F (u) = u− λ∇f0(u), F̃ (u) = u− λ∇f̃0(u).
Theorem 2. Let us assume that problem 1.1 is solvable, û− is its v0-normal solution, and
the following conditions are satisfied:

sup{‖f ′′0 (uk)‖, ‖f̃ ′′0 (uk)‖} ≤ N, λ < 2/N ; (2.5)

‖∇f0(uk)−∇f̃0(uk)‖ ≤ c1δ; (2.6)

‖PQF̃ (uk)− PQ̃F̃ (uk)‖ ≤ c2δ. (2.7)

Then, if choosing the number of iterations in accordance with the rule k(δ)δ → 0, δ → 0,
convergence holds

lim
δ→0
‖ũk(δ) − û‖ = 0.

Proof: From the triangle inequality for norms we have

‖û− ũk+1‖ ≤ ‖û− uk+1‖+ ‖uk+1 − ũk+1‖, (2.8)
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where the first term on the right side of the inequality decreases to zero as k →∞ according
to theorem 1.

Taking into account the condition that the condition 2.5 implies belonging of the operators
T = PQF, T̃ = PQ̃F̃ ([8], Lemma 4.1) class K of nonexpanding operators and the inequalities
2.6, 2.7 are satisfied, we obtain an estimate for the second term in 2.8

‖uk+1 − ũk+1‖ ≤ ‖PQ(uk)− λ∇f0(uk))− PQ(uk − λ∇f̃0(uk))‖
+ ‖PQ(uk − λ∇f̃0(uk))− PQ̃(uk − λ∇f̃0(uk))‖

+ ‖PQ̃(uk − λ∇f̃0(uk))− PQ̃(ũk −∇f̃0(ũk))‖

≤ λc1δ + c2δ + ‖uk − ũk‖ ≤ 2(λc1 + c2)δ + ‖uk−1 − ũk−1‖
≤ ... ≤ (λc1 + c2)δ · (k + 1),

which together with Theorem 1, completes the proof of Theorem 2.
Example 2.1. Let us consider the problem of finding a normal solution, i.e. metric projection
of zero, for the simplest system of inequalities

min{‖z‖2 : 0 ≤ z1 ≤ 1, z1 − z2 ≤ 0, −z1 + z2 ≤ 0} = F,

Fopt = 0, zopt = (0, 0)T;

min{‖z‖2 : 0 ≤ z1 ≤ 1, z1 − (1 + ε)z2 + ε ≤ 0,−z1 + (1− ε)z2 + ε ≤ 0}, ε ≥ 0,

F εopt = 2, zεopt = (1, 1)T.

Example 2.1 shows that finding the projection onto a convex closed set Q is, in the
general case, an unstable problem to perturbations of the admissible set Q. Therefore, in
this situation, the estimate 2.7 may not hold; hence, we will not be able to use the general
estimate obtained in Theorem 2 to justify the convergence of the basic method. To form a
regularizing algorithm for the problem 1.1, 1.2 based on the process 2.4 it is necessary to
construct a stable method for calculating the projection onto Q. Note that such a regularizing
algorithm for calculating the projection was constructed and announced in the work [6] for
the set Q, specified in the form of systems of linear equalities and inequalities in the study of
the quadratic minimization problem. Let us show that this is a stable algorithm for finding
the projection for Q in the form of linear constraints under more general conditions to justify
the convergence of the process 2.4, replacing the condition 2.7 by this algorithm calculating
with accuracy δ the projection PQ at every step process 2.4.

Let us briefly outline the iterative method, which generates a stable algorithm for calcu-
lating the metric projection in the case of the set Q, defined by linear constraints

Q = {u : li(u) = 0, i ∈ J1, li(u) ≤ 0, i ∈ J2} 6= ∅. (2.9)

Let us form an operator

T (u) = u− (1/κ)[
∑
J1

li(u)ai +
∑
J2

li(u)ai], (2.10)

where, κ =
∑

J1
⋃
J2
‖ai‖2, which is a convex sum of projections, either a projection onto a

hyperplane or onto a half-space and Fix(T)=Q, and create the iterative process

uk+1 = γk+1T (uk) + (1− γk+1)v0, (2.11)

where γk is an admissible sequence, for example, γ = 1 − k−p, 0 < p < 1. Since T is a non-
expanding operator, then, using the argumentation in the proof of Theorem 1, we conclude
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that the iterative sequence {uk}, generated by process (2.11) converges to the projection
v̄ = PQ of element v0 onto set Q.
Lemma 1. Let the set Q defined by the formula 2.9, may be empty. Let

M̃ = Arg min{∇(
∑
Ji

l2l (u)ai) +
∑
J2

l+2
i (u)ai)} 6= ∅

Then the operator

T̃ (u) = (u− λ/κ)∇(
∑
J1

l2i (u)ai +
∑
J2

i2l (u)ai)

satisfies relations Fix(T̃ ) = M̃ , T̃ ∈ K.
Proof: The first relation follows from the equivalence of the minimization problem and the
problem of finding a fixed point (see (2.1)) , the equality T̃ = T and definition of the operator
T̃ , the second relation is a consequence of the fact that the operator T̃ = T is a convex sum
of projections; here T is defined by (2.10).
Corollary 1. If Q 6= ∅, then process

ũk+1 = uk − γk+1T̃ (ũk) + (1− γk+1)vo (2.12)

converges to the element û ∈ Q closest to v0, i.e. projections v0 onto the set Q. Moreover, if
the vectors {ai, b} when specifying the set Q of linear constraints are specified with an error
‖ãi−ai‖ ≤ δ, ‖b̃−b‖ ≤ δ, then if choosing the number of iterations in accordance with the rule
k(δ)δ → 0, convergence ũk(δ) → û as δ → 0 holds. i.e. method (2.12) generates a regularizing
algorithm.

Combining Corollary 1 with Theorem 2, we obtain
Corollary 2. The iterative process (2.4) with the implementation of the metric projection
PQ by method (2.12) with an accuracy of δ generates an algorithm that is stable to input
data errors.

Note that Lemma 1 and Corollary 1 are a generalization of Theorem 9 from the paper [6]
to the case of inconsistent systems of linear constraints.

3 Iterative method of convex minimization in the general case

Let us consider in more detail the problem (1.1), when the set of constraints has the form
(1.2) in the presence of errors in the form

|fi − f δi | ≤ δ, i = 0, 1, ...,m. (3.1)

As in the case of specifying a set of constraints Q in the form of systems of equalities and
inequalities (2.9), to construct a regularizing algorithm for solving a convex programming
problem based on the method (2.4), we need a stable method for calculating the metric
projection onto a system of convex inequalities (1.2), i.e algorithm for solving the following
problem:

inf{‖u− v0‖2 : u ∈ U, fi(u) ≤ 0, i = 1, 2, ...,m}. (3.2)

When constructing such an algorithm, we use the operator as the step operator of the
basic iterative method

S(u) =
m∑
i=1

αiSi(u), αi > 0,
m∑
i=1

αi = 1, (3.3)
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where
Si(u) = u− λ(f+i (u)∇fi(u))/‖∇fi(u)‖2, (3.4)

if ∇fi(u) 6= 0, and Si(u) = u if ∇f(u) = 0. When constructing such an algorithm, as a
step operator of the basic iterative method, we use the operator proposed by Eremin (see, for
example, [10], Ch.3, Sec.3) for finding a solution of a system of convex inequalities in Rn by
the method of successive approximations uk+1 = S(uk).
Theorem 3. Let the gradients of the functionals fi, i = 1, 2, ...,m be bounded mappings, i.e.
for any bounded B of Hilbert space U

sup{‖∇fi(u)‖; u ∈ B} ≤ c <∞.

Then the operator S, defined by the formulae (3.3), (3.4) is strongly Fejér and generates a
sequence of iterations uk+1 = S(uk) for which the following properties hold:
1) uk ⇁ û, û ∈ Fix(S) = Q, where Q is defined in (1.2)
2) infz{lim ‖uk − z‖ : z ∈Fix(S) }=limk→∞ ‖uk − û‖ = 0.

Proof: By direct verification one can verify that the set of fixed points Fix(Si) coincides
with the set Qi = {u ∈ U : fi(u) ≤ 0}, therefore, Fix(S) = Q, where Q is given by the formula
(1.2). If for u /∈ Qi, z ∈ Qi, we use the well-known inequality < ∇f(u), z − u >≤ f(z)− f(u)
in the equality

‖Si(u)− z‖2 = ‖u = z‖2 − 2λ
fi(u) < ∇fi(u), u− z >

‖∇fi(u)‖2
+ λ2

f2i (u)

‖∇fi(u)‖2
,

then we obtain the following estimate:

‖Si(u)− z‖2 ≤ ‖u− z‖2 − 2λ
fi(u)(fi(u)− fi(z))
‖∇fi(u)‖2

+ λ2
f2i (u)

‖∇fi(u)‖2

≤ ‖u− z‖2 − 2− λ
λ
‖u− Si(u)‖2. (3.5)

This estimate 3.5 means that the operator Si belongs to the class of strongly Fejér oper-
ators PνiQi

for νi = (2− λ)/(λ), which implies ([5], Theorem 17.1) operator S belongs to class
PνQi

for ν = (2− λ)/(λ).
Let us make sure that the following property holds for the operator Si

Si : uk ⇁ ū, uk − Si(uk)→ 0⇒ ū ∈ Fix(Si). (3.6)

Indeed, let the premise be satisfied, then, due to the boundedness of the gradients of the
functionals, we have uk ⇁ ū, f+i (uk)/‖∇fi(uk)‖ → 0. Due to the weak lower semicontinuity
of the convex continuous functional, we obtain

fi(ū) ≤ f+i (ū) ≤ lim inf
k→∞

fi(uk) = 0 ⇒ ū ∈ Qi = Fix(Si) ∀i,

Consequently, the property proved for Si is valid for the operator S if the sequence {uk} is
iterative ([11], Lemma 2.10).

Substituting the iteration point uk into the inequality 3.5, we obtain the following inequal-
ity

‖uk+1 − z‖2 ≤ ‖uk − z‖2 − ν‖S(uk)− uk‖2,

from which it follows for any z ∈Fix(S)

lim
k→∞

‖uk − z‖ = d, lim
k→∞

‖S(uk)− uk)‖ = 0. (3.7)
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From the first relation in 3.7 it follows the existence of a weakly convergent subsequence
uki ⇁ û, which, together with 3.6 and the second relation in 3.7 implies û ∈ Fix(S). The
uniqueness of the weakly limit point and property 1 are proved in a similar way. The proof
of property 2 of the theorem follows from the representation

‖uk = z‖2 = ‖uk − û‖2 + 2 < uk − û, û− z > +‖uk − z‖2,

in which we need to go to the limit as k →∞ and take into account that uk ⇁ û.
Corollary 3. If the process uk+1 = S(uk) converges strongly, then the limit point û has the
smallest norm among all u ∈Fix(S).

Poof: follows from the inequality

‖û‖ ≤ lim
k→∞

inf{‖û− uk‖+ ‖uk − z‖+ ‖z‖ : z}.

and proven properties 2.
Corollary 4. Let U = Rn and fi be differentiable functionals. Then the iterative process
converges to the solution of problem 3.2, i.e. metric projection v0 onto the set Q, defined by
a system of convex inequalities 1.2.

Let us define the set of constraints Qn for problem (3.2) in the case of approximate data
f δni in the form

Qn = {u ∈ Rn : f δni (u)− δn ≤ 0, i = 1, 2, ...,m}, (3.8)

where |fi(u)− f δni (u)| ≤ δn, δn → 0.

Lemma 2. Problem 3.2 is well-posed according to Hadamard with respect to Mosco conver-
gence.

Proof: Indeed, the objective function f0 is a uniformly continuous function on each
bounded set of Rn. In addition, f0 is a strongly convex function, which implies that the
problem is well-posed according to Tikhonov (3.2) on every convex set, in particular, for Q,
given by the formula 1.2. This is a consequence of the well-known inequality

‖u− û‖2 ≤ (2/κ)(f0(u)− f(û)),

where û is the solution to problem 3.2, κ is the constant from the definition of strong convexity.
Due to the continuity and convexity of the functions fi, f δni , the sets Q,Qn are convex and
closed. Let us verify that Qn converges under Mosco to the set Q. Since Q ⊆ Qn, condition a
in Definition 6 is satisfied automatically. Let unj ∈ Qnj and unj → ū. We have the following
relations:

fi(ū) = lim sup
j→∞

fi(unj ) ≤ lim sup
j→∞

[(fi(unj )− f
δnj

i (unj )) + f
δnj

i (unj )] ≤ 0,

i.e. the limit point ū belongs to Q, which means property b.
From Theorem 2, Statement 2 and Lemma 2 it follows

Corollary 5. The iterative method uk+1 = S(uk), where the operator S is defined (3.3),
(3.4) is robust to perturbations of the admissible set Q from (1.2) in the form (3.1),(3.8). This
guarantees the convergence of the underlying iterative process (2.4) if the metric projection
PQ̃ in the process (2.4) is implemented with using the process uk+1 = S(uk). with error
estimate (2.7).
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