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BEST APPROXIMATION OF FUNCTIONS IN THE
HARDY SPACE Hq,ρ (1 ≤ q ≤ ∞, 0 < ρ < R)

Shabozov M.Sh., Raimzoda Ch.

Abstract. We solve extremal problems of best polynomial approximation of functions which
lie the Hardy spaceHq,R :=Hq(UR),1≤q≤∞ and are analytic in the disk UR :={z∈C : |z|<R}.

Let H(r)
q,R :=

{
f ∈ Hq,R : ‖f (r)‖q,R < ∞

}
and W

(r)
q,R :=

{
f ∈ H

(r)
q,R : ‖f (r)‖q,R ≤ 1

}
(r ∈ Z+, 1 ≤ q ≤ ∞, R > 0). We obtain sharp inequalities between the best polynomial
approximation of a function f ∈ Hq,ρ (1 ≤ q ≤ ∞, 0 < ρ < R) analytic in the disk UR and the
averaged modulus of smoothness of boundary values of the rth derivatives f (r) ∈ Hq,R. For
the class W (r)

q,R, we find exact values of the supremum of the approximation. In addition, we
find exact values of various n-widths in the norm of the space Hq,ρ (1 ≤ q ≤ ∞, 0 < ρ ≤ R).

for the classW (r)
q,R(Φ), which consists of all functions f ∈ H(r)

q,R such that, for all k ∈ N, r ∈ Z+,

k > r, the averaged moduli of smoothness of the boundary values of the rth derivative f (r)

which are majorized, at a given system of points {π/(2k)}k∈N, by a given majorant Φ, satisfy
the condition

k

π − 2

∫ π/(2k)

0
ω2

(
f (r), 2t

)
q,R

dt ≤ Φ
( π

2k

)
, k ∈ N.

Key words: best polynomial approximation, Hardy space, modulus of smoothness, majorant,
n-width.

AMS Mathematics Subject Classification: 30:10, 30E10.

DOI: 10.32523/2306-6172-2024-12-4-121-131

1 Introduction and main results

The problem of evaluation of exact values of n-widths of classes if functions analytic
in the unit disk has been extensively studied (see, e.g., [1]– [20]). Tikhomirov [1] (the
case (q = ∞)) and Taikov [2] (the case (1 ≤ q < ∞)) were the first to evaluate
the Kolmogorov n-widths in the Hardy space Hq (1 ≤ q ≤ ∞). Earlier, Babenko [3]
obtained a linear method for approximation of one class of functions which are analytic
in the unit disk. This method, which can be also used for delivering upper estimates
of widths, was employed in [1] and [2], and also in many other studies. Later, this
approach was developed by Taikov [4–6] and others (see, e.g., [7–14,16–20]).

The purpose of the present paper is to obtain new exact values of n-widths of classes
of functions analytic in the disk of radius R ≥ 1.

Let us introduce the necessary notation and definitions. Let N, Z+, R+, R, and C
be, respectively, the sets of natural numbers, nonnegative integer numbers, nonngative
numbers, positive numbers, and complex numbers; UR :=

{
z ∈ C : |z| < R

}
be the
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disk of radius R in the complex plane C, A(UR) be the set of functions analytic in the
disk UR. For an arbitrary function f ∈ A(UR), and 0 < ρ < R, we set

Mq(f, ρ) =


(

1

2π

∫ 2π

0

∣∣f(ρeit)∣∣qdt)1/q

if 1 ≤ q <∞;

max
0≤t<2π

∣∣f(ρeit)∣∣ if q =∞,

where the integral is understood in the Lebesgue sense.
Let Hq,R (1 ≤ q ≤ ∞, R ∈ R+) be the Banach Hardy space consisting of the

functions f ∈ A(UR) with finite norm ‖f‖q,R := ‖f‖Hq,R
= lim

ρ→R−0
Mq(f, ρ).

It is well known (see [21, p. 279]) that the angular values f(Reit) ∈ Lq[0, 2π]
(1 ≤ q ≤ ∞) exist almost everywhere on the circle |ζ| = R. The norm in Hq,R is
defined by ∥∥f∥∥

q,R
=


(

1

2π

∫ 2π

0

∣∣f(Reit)∣∣qdt)1/q

, 1 ≤ q <∞;

ess sup
{∣∣f(Reit)∣∣ : 0 ≤ t < 2π

}
, q =∞.

In the case R = 1, we set U := U1, Hq = Hq,1, and define ‖f‖q := ‖f‖q,1.
For r∈Z+, we define H

(r)
q,R :={f ∈ A(UR) :f (r)∈Hq,R} (H

(0)
q,R≡Hq,R), f (r)(z)= drf(z)

dzr
.

In what follows, we set αn,r :=n(n− 1)· · ·(n−r+1), n>r, n∈N, r∈Z+, αn,0 =1. Let

Pn :=

{
pn(z) : pn(z) =

n∑
k=0

akz
k, ak ∈ C

}

be the set of all complex algebraic polynomials of degree ≤ n.
The best approximation of a function f ∈Hq,ρ in the metric of the space Hq,ρ

(1≤q ≤∞, 0<ρ<R). is defined by En−1(f)q,ρ :=inf
{
‖f−pn−1‖q,ρ :pn−1∈Pn−1

}
.

Theorem 1.1. For n ∈ N, r ∈ Z+, n > r, 0 < ρ < R, 1 ≤ q ≤ ∞,

En−1(f)q,ρ ≤ Rr
( ρ
R

)n 1

αn,r
En−r−1

(
f (r)
)
q,R

; (1)

this inequality becomes an equality for the function f0(z) = azn, a ∈ C.

Proof. Consider f ∈ H(r)
q,R. Let pn−r−1

(
f (r), z

)
be a polynomial of best Hq,R-approxi-

mation of the derivative f (r),
En−r−1

(
f (r)
)
q,R

=
∥∥f (r) − pn−r−1

(
f (r)
)∥∥

q,R
. (2)

Let Q
(
Reit

)
be the angular boundary values of the function

Q(z) := Q
(
f (r), z

)
= f (r)(z)− pn−r−1

(
f (r), z

)
, |z| ≤ R,

on the circle |ζ| = R. It is easily checked that (see [22], formula (2.2), the case s = 0):

f(z)− pn−1(z) =
zr

2πi

∫
|ζ|=R

(
z

ζ

)n−r
Q(ζ)

{
1

αn,r
+ 2Re

∞∑
k=1

1

αn+k, r

(z
ζ

)k} dζ

ζ
, (3)
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where pn−1(z) := pn−1(f, z) is some polynomial from Pn−1 depending on a function
f ∈H(r)

q,R. Putting z= ρeit, ζ =Reiθ, 0 <ρ<R, 0≤ t, θ≤ 2π in (3), we can write this
equality as

f
(
ρeit)− pn−1

(
ρeit
)

= Rr
( ρ
R

)n eirt
2π

∫ 2π

0

ei(n−r)(t−θ)Q
(
Reiθ

){ 1

αn,r
+ 2

∞∑
k=1

(ρ/R)k

αn+k,r
cos k(t− θ)

}
dθ

= Rr
( ρ
R

)n eirt
2π

∫ 2π

0

ei(n−r)τQ
(
Rei(t−τ)

){ 1

αn,r
+ 2

∞∑
k=1

(ρ/R)k

αn+k,r
cos kτ

}
dτ. (4)

Applying the Abel transformation two times, we see that, for all n ∈ N, r ∈ Z+,
n > r and ρ ∈ (0, R), the function

Φn,r(τ) := Φn,r(ρ/R, τ) =
1

αn,r
+
∞∑
k=1

(ρ/R)k

αn+k,r
cos kτ

is nonnegative and integrable on the interval [0, 2π] (see, e.g., [12, p. 231]), and
1

2π

∫ 2π

0

Φn,r(τ)dτ =
1

αn,r
. (5)

From (4) we have

En−1(f)q,ρ ≤
{

1

2π

∫ 2π

0

∣∣f(ρeit)− pn−1(ρeit)∣∣qdt}1/q

= Rr
( ρ
R

)n{ 1

2π

∫ 2π

0

∣∣∣∣eirt2π

∫ 2π

0

ei(n−r)τQ
(
Rei(t−τ)

)
Φn,r (τ) dτ

∣∣∣∣qdt}1/q

. (6)

Applying the generalized Minkowski inequality [23, p. 299] to the right-hand side
of inequality (6) and using (5), we obtain

En−1(f)q,ρ ≤ Rr
( ρ
R

)n{ 1

2π

∫ 2π

0

(
1

2π

∫ 2π

0

∣∣Q(Rei(t−τ))∣∣∣∣Φn,r(τ)
∣∣dτ)qdt}1/q

≤ Rr
( ρ
R

)n( 1

2π

∫ 2π

0

∣∣Q(Reit)∣∣qdt)1/q (
1

2π

∫ 2π

0

∣∣Φn,r(τ)
∣∣dτ)

= Rr
( ρ
R

)n
‖Q‖q,R

(
1

2π

∫ 2π

0

∣∣Φn,r(τ)
∣∣dτ) = Rr

( ρ
R

)n
‖Q‖q,R

1

αn,r
. (7)

Next, ‖Q‖q,R = En−r−1
(
f (r)
)
q,R

by (2), and now from (7) we finally have

En−1(f)q,ρ ≤ Rr
( ρ
R

)n ∥∥Q∥∥
q,R
· 1

αn,r
≤ Rr

( ρ
R

)n 1

αn,r
En−r−1

(
f (r)
)
q,R
,

which proves inequality (1).
Let us show that inequality (1) becomes an equality for the function
f0(z) = azn ∈ H(r)

q,ρ (1 ≤ q ≤ ∞, 0 < ρ < R), a ∈ C, n ∈ N, r ∈ Z+, n > r, (8)

For this function and its rth derivative, we have
En−1(f0)q,ρ = |a|ρn, En−r−1

(
f
(r)
0

)
q,R

= |a|αn,rRn−r. (9)

Hence Rr
( ρ
R

)n 1

αn,r
En−r−1

(
f
(r)
0

)
q,R

= |a|ρn = En−1(f0)q,ρ.

This proves Theorem 1.1.
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Let W (r)Hq,R :=
{
f ∈ H(r)

q,R : ‖f (r)‖q,R ≤ 1
}

(1 ≤ q <∞, R ∈ R+).

Theorem 1.2. For all n ∈ N, r ∈ Z+, n > r and for all 1 ≤ q ≤ ∞, 0 < ρ < R,

En−1
(
W (r)Hq,R

)
q,ρ

:= sup
{
En−1(f)q,ρ : f ∈ W (r)Hq,R

}
= Rr

( ρ
R

)n 1

αn,r
. (10)

Proof. For each function f ∈ W (r)Hq,R, the best approximation of its derivative f (r)

satisfies En−r−1
(
f (r)
)
q,R
≤
∥∥f (r)

∥∥
q,R
≤ 1, and hence from inequality (1) we have the

following upper bound for the quantity on the left of (10):

En−1
(
W (r)Hq,R

)
q,ρ
≤ Rr

( ρ
R

)n 1

αn,r
. (11)

To obtain a similar lower estimate, we will use the function f1(z) = zn/(Rn−rαn,r)

from the classW (r)Hq,R. We have En−1(f1)q,ρ = Rr
( ρ
R

)n 1

αn,r
, and hence the following

lower estimate holds:

En−1
(
W (r)Hq,R

)
q,ρ
≥ En−1(f1)q,ρ = Rr

( ρ
R

)n 1

αn,r
. (12)

Combining inequalities (11) and (12), we get the required equality (10). This
completes the proof of Theorem 1.2.

2 Estimate of the best approximation En−1(f)q,ρ
in terms of the averaged modulus of smoothness ω2

(
f (r), t

)
q,R

For an arbitrary function f ∈ H(r)
q,R, the modulus of smoothness of the derivative f (r)

is defined by
ω2

(
f (r), 2t

)
q,R

:= sup
|h|≤t

∥∥f (r)
(
Rei(·+h)

)
− 2f (r)

(
Rei(·) + f

(
Rei(·−h)

)∥∥
q,R
.

We have the following result:

Theorem 2.1. Let n ∈ N, r ∈ Z+, n > r, 1 ≤ q ≤ ∞, 0 < ρ < R. Then, for an
arbitrary function f ∈ H(r)

q,R,

En−1(f)q,ρ ≤ Rr
( ρ
R

)n 1

αn,r

n− r
π − 2

∫ π/2(n−r)

0

ω2

(
f (r), 2t

)
q,R
dt; (13)

this inequality becomes an equality for the function f0(z) = azn, a ∈ C, n ∈ N.

Proof. From Theorem 1 of [4] it follows that, for an arbitrary function f ∈ H(r)
q,R,

En−1(f)q,R ≤
n

π − 2

∫ π/(2n)

0

ω2

(
f, 2t

)
q,R
dt, n ∈ N; (14)

moreover, this inequality becomes an equality for the function f0(z) = azn, a ∈ C,
n ∈ N. If in inequality(14) we replace n by n − r and replace the function f by the
derivative f (r), we have
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En−r−1
(
f (r)
)
q,R
≤ n− r
π − 2

∫ π/2(n−r)

0

ω2

(
f (r), 2t

)
q,R
dt, n ∈ N, r ∈ Z+, n > r. (15)

Using inequality (15), and employing (1), we have

En−1(f)q,ρ≤Rr
( ρ
R

)n 1

αn,r
En−r−1

(
f (r)
)
q,R
≤Rr

( ρ
R

)n 1

αn,r

n−r
π−2

∫ π/2(n−r)

0

ω2

(
f (r), 2t

)
q,R
dt,

which proves inequality (13).
Let us prove that (13) becomes an equality for the function f0(z) = azn, a ∈ C,

n ∈ N. We have
f
(r)
0 (z) = aαn,rz

n−r, ω2

(
f
(r)
0 , 2t

)
q,R

= |a|αn,rRn−r2(1− cos 2(n− r)t),

En−1(f0)q,ρ = |a|ρn,
∫ π/2(n−r)

0

ω2

(
f
(r)
0 , 2t

)
q,R
dt = |a|αn,rRn−rπ − 2

n− r
,

and hence,

Rr
( ρ
R

)n 1

αn,r

n− r
π − 2

∫ π/2(n−r)

0

ω2

(
f
(r)
0 , 2t

)
q,R
dt = |a|ρn = En−1(f0)q,ρ,

which completes the proof of Theorem 2.1

3 Exact values of the n-width of the class
W

(r)
q,R(Φ) (r ∈ Z+, 1 ≤ q <∞, R ≥ 1) in the space

Hq,ρ (1 ≤ q <∞, 0 < ρ ≤ R, R ≥ 1)

Let S be the unit ball in Hq,ρ, let M be some convex centrally symmetric subset
of Hq,ρ, let Ln ⊂ Hq,ρ be an n-dimensional linear subspace, L n ⊂ Hq,ρ be a subspace
of codimension n, and let A : Hqρ → Ln be a linear continuous operator which maps
Hq,ρ into Ln.

The one-sided approximation of a set M ⊂ Hq,ρ by a subspace Ln of the space Hq,ρ

is defined by En(M)q,ρ := E(M,Ln)q,ρ = sup
{

inf
{
‖f − ϕ‖q,ρ : ϕ ∈ Ln

}
: f ∈M

}
.

The quantity

En(M)q,ρ := E (M,Ln)q,ρ = inf
{

sup
{
‖f − A(f)‖q,ρ : f ∈M

}
: AHq,ρ ⊂ Ln

}
(16)

characterizes the best linear approximation of a set M by elements of the subspace
Ln ⊂ Hq,ρ. A linear operator A∗, A∗Hq,ρ ⊂ Ln (if exists) for which the infimum
in (16) is attained, i.e., E (M,Ln)q,ρ = sup

{∥∥f − A∗(f)
∥∥
q,ρ

: f ∈M
}
, is a best linear

approximation method for M. The quantities

bn(M, Hq,ρ) = sup
{

sup
{
ε > 0 : εS ∩Ln+1 ⊂M

}
: Ln+1 ⊂ Hq,ρ

}
,

dn(M, Hq,ρ) = inf
{
E(M,Ln)q,ρ : Ln ⊂ Hq,ρ

}
,

dn(M, Hq,ρ) = inf
{

sup
{
‖f‖q,ρ : f ∈M ∩L n

}
: L n ⊂ Hq,ρ

}
,

δn(M, Hq,ρ) = inf
{
E (M,Ln)q,ρ : Ln ⊂ Hq,ρ

}
are, respectively, the Bernstein, Kolmogorov, Gelfand, and linear n-widths (see, e.g. [12,
Ch. II, §1–4], [24, Ch. III, §1], and [23, Ch. I, §1.3]).
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Let us recall that the above n-widths satisfy the following relations (see [12,24]):

bn(M, Hq,ρ) ≤
dn(M, Hq,ρ)

dn(M, Hq,ρ)
≤ δn(M, Hq,ρ) (17)

In what follows, we assume that Φ(t), t ≥ 0 is an arbitrary continuous increasing
function such that Φ(0) = 0. Using Φ as a majorant, consider the following classes of
Taikov functions [4]:

W
(r)
q,R(Φ) :=

{
f ∈ H(r)

q,R :
k

π − 2

∫ π/(2k)

0

ω2

(
f (r), 2t

)
dt ≤ Φ

( π
2k

)
, k ∈ N

}
,

where r ∈ Z+, 1 ≤ q ≤ ∞, R ≥ 1. In the case R = 1, we set W (r)
q (Φ) := W

(r)
q,1 (Φ).

In [4], it was shown that if the majorant Φ(t) for 0 < t ≤ π/2 satisfies the constraint

Φ(λt)

Φ(t)
≥ π

π − 2


1− 2

λπ
sin

λπ

2
if 0 < λ ≤ 2,

2

(
1− 1

λ

)
if λ ≥ 2,

(18)

then, for all n ∈ N, r ∈ Z+, n > r for 1 ≤ q ≤ ∞,

dn
(
W (r)
q (Φ), Hq

)
=

1

αn,r
Φ

(
π

2(n− r)

)
. (19)

Taikov [4] also proved that constraint (18) is satisfied, e.g., by the function
Φ∗(t) = t2/(π−2).

Following [4,20], it would be interesting to find sharp values of the above n-widths
of the classes W (r)

q,R(Φ), r∈Z+, 1≤q<∞, R≥1 in the space Hq,ρ, 1≤q <∞, 0<ρ≤R.
We have the following result:

Theorem 3.1. Let r ∈ Z+, 1 ≤ q ≤ ∞, R ≥ 1 and let a majorant Φ satisfy constraint
(18). Then, for each n ∈ N, n > r,

λn
(
W

(r)
q,R(Φ),Hq,ρ

)
=En−1

(
W

(r)
q,R(Φ)

)
q,ρ

=En−1
(
W

(r)
q,R(Φ)

)
q,R

=Rr
( ρ
R

)n 1

αn,r
Φ

(
π

2(n−r)

)
, (20)

where λn(·) is any of the n-widths bn(·), dn(·), dn(·), δn(·).

Proof. By the definition of the class W (r)
q,R(Φ), from inequality (13) and (17), we have

bn
(
W

(r)
q,R(Φ), Hq,ρ

)
≤ dn

(
W

(r)
a,R(Φ), Hq,ρ

)
≤ En

(
W

(r)
q,R(Φ)

)
q,ρ

= sup
{
En−1(f)q,ρ : f ∈ W (r)

q,R(Φ)
}
≤ Rr

( ρ
R

)n 1

αn,r
Φ

(
π

2(n−r)

)
, (21)

which gives the required upper estimate for the Bernstein and Kolmogorov n-width.
To obtain a lower estimate, we use the subspace of complex algebraic polynomials of
degree ≤ n. It is known that, for an arbitrary polynomial pn ∈ Pn, we have the
inequality (see [12, Ch. III, §2])∥∥p(r)n ∥∥q,R ≤ Rn−rαn,r‖pn‖q, (22)
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where r ∈ Z+, n ∈ N, n > r, 1 ≤ q ≤ ∞, 0 < ρ ≤ R, R ≥ 1. Using the inequality
‖pn‖q≤ρ−n‖pn‖q,ρ, which was proved by E. Hill., G. Szegő, and Ya.D. Tamarkin (see,
e.g., [26]) from (22), we find that∥∥p(r)n ∥∥q,R ≤ 1

Rr

(
R

ρ

)n
αn,r

∥∥pn∥∥q,ρ. (23)

Consider the ball Sn+1 :=

{
pn ∈Pn : ‖pn‖q,ρ ≤ Rr

( ρ
R

)n 1

αn,r
Φ

(
π

2(n− r)

)}
. We set

∆n(t) :=
{

2(1− cosnt) if 0 ≤ t ≤ π/n; 4 if t ≥ π/n
}
. From the inequality∥∥pn(zeit)− 2pn(z) + pn(ze−it)

∥∥
q,R
≤ ∆n(t)‖pn‖q,R,

which follows from one result of [4], for an arbitrary polynomial pn ∈Pn, we have

ω2(pn, 2t)q,R ≤ ∆n(t)‖pn‖q,R, t ≥ 0. (24)

We claim that the ball Sn+1 lies in the class W (r)
q,R(Φ). There are two cases to

consider: 2k ≥ n− r and 2k ≤ n− r.
Let first 2k ≥ n − r. Then, for an arbitrary polynomial pn ∈ Sn+1, from (24) and

(23) we have
k

π − 2

∫ π/(2k)

0

ω2

(
p(r)n , 2t

)
q,R
dt ≤

∥∥p(r)n ∥∥q,R 2k

π − 2

∫ π/(2k)

0

(
1− cos(n− r)t

)
dt

≤ 1

Rr

(
R

ρ

)n
αn,r‖pn‖q,ρ

π

π − 2

(
1− 2k

π(n− r)
sin

π(n− r)
2k

)
≤ π

π − 2

(
1− 2k

π(n− r)
sin

π(n− r)
2k

)
Φ

(
π

2(n− r)

)
. (25)

Using the first inequality from constraint (18) and putting

x =
π

2(n− r)
, λ =

n− r
k

, λx =
π

2k
(26)

in (25), we get
k

π − 2

∫ π/(2k)

0

ω2

(
p(r)n , 2t

)
q,R
dt ≤ Φ

( π
2k

)
. (27)

Now let 2k ≤ n−r. In this case, invoking again inequalities (24) and (23), we have,
for each pn ∈ Sn+1,

k

π − 2

∫ π/(2k)

0

ω2

(
p(r)n , 2t

)
q,R
dt

≤ Φ

(
π

2(n− r)

)
2k

π − 2

(∫ π/(2k)

0

(
1− cos(n− r)

)
tdt+

∫ π/(2k)

π/(n−r)
2dt

)

=
2π

π − 2

(
1− k

n− r

)
Φ

(
π

2(n− r)

)
. (28)

Using notation (26) and the second inequality from (18), we get (27) from (28). This
proves the inclusion Sn+1 ∈ W (r)

q,R(Φ). Now, by the definition of the Bernstein n-width,
we have
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bn
(
W

(r)
q,R(Φ), Hq,ρ

)
≥ bn

(
Sn+1, Hq,ρ

)
= Rr

( ρ
R

)n 1

αn,r
Φ

(
π

2(n− r)

)
. (29)

Combining inequalities (21) and (29), we find that

bn
(
W

(r)
q,R(Φ),Hq,ρ

)
=dn

(
W

(r)
q,R(Φ),Hq,ρ

)
=En

(
W

(r)
q,R(Φ)

)
q,ρ

=Rr
( ρ
R

)n 1

αn,r
Φ

(
π

2(n−r)

)
. (30)

The next lemma is required for a similar upper bound for the linear n-width.

Lemma 3.1. For an arbitrary function f(z)=
∞∑
k=0

ck(f)zk from the class W (r)
q,R(Φ), for

all r ∈ Z+, 1 ≤ q ≤ ∞, R ≥ 1, n ∈ N, n > r,

‖f − Λn−1,r(f)‖q,ρ ≤ Rr
( ρ
R

)n 1

αn,r
Φ

(
π

2(n− r)

)
, (31)

where the linear polynomial operator Λn−1,r(f) has the form

Λn−1,r(f, z)=
r−1∑
k=0

ck(f)zk+
n−1∑
k=r

{
1+

αn,r
α2n−1,r

[
σk,r

(
1−
( k−r

2n−r−k

)2)
−1

](
|z|
R

)2(n−k)}
ckz

k, (32)

σk,r :=
2(n− r)
π − 2

∫ π/2(n−r)

0

(
1− sin(n− r)x

)
cos(k − r)xdx, k ≥ r, k ∈ N.

If the majorant Φ(t) for 0 < t ≤ π/2 satisfies constraint (18), then estimate (31) is
sharp in the sense that there exists a function g ∈ W (r)

q,R(Φ), for which inequality (31)
becomes an equality.

Proof. In [20, formula (22)], it was shown that, for any function f ∈ H
(r)
q,R

(r ∈ Z+, 1 ≤ q ≤ ∞, 0 < ρ < R, R ≥ 1),

f
(
ρeit
)
−Λn−1,r

(
f, ρeit

)
=

1

2π

∫ 2π

0

[
f (r)
(
Riθ
)
−Vn−r−1,2

(
F (r), Riθ

)]
eirθGR(ρ, t−θ)dθ, (33)

where

F
(
f (r), z

)
=
n−r
π−2

∫ π/2(n−r)

0

[
f (r)
(
zeix
)
+f (r)

(
ze−ix

)]
(1−sin(n−r))xdx=

∞∑
k=r

δk,rαk,rck(f)zk−r, (34)

Vn−r−1,2
(
F (r), z

)
=

n−r−1∑
k=0

δk+r,rαk+r,rck+r(f)

(
1−
( k

2(n−r)−k

)2)
zk,

GR(ρ, t) = Rr
( ρ
R

)n
eirtΦn,r(t). (35)

By the definition of the norm in the space Hq,ρ, we have from (33)∥∥f − Λn−1,r(f)
∥∥
q,ρ

=

(
1

2π

∫ 2π

0

∣∣∣∣ 1

2π

∫ 2π

0

[
f (r)
(
Reiθ

)
−Vn−r−1,2

(
F
(
f (r)
)
, Reiθ

)]
eirθGR(ρ, t−θ)dθ

∣∣∣∣q dt)1/q. (36)



Best approximation of functions 129

Applying the generalized Minkowski inequality to the right-hand side of (36) and using
the equality

1

2π

∫ 2π

0

∣∣∣GR(ρ, t)
∣∣∣dt = Rr

( ρ
R

)n 1

αn,r
,

which follows from (35) and (5), we get∥∥f − Λn−1,r(f)
∥∥
q,ρ

≤
(

1

2π

∫ 2π

0

∣∣∣f (r)
(
Reiθ

)
− Vn−r−1,2

(
F
(
f (r)
)
, Reiθ

)∣∣∣qdt)1/q (
1

2π

∫ 2π

0

|GR(ρ, t)|dt
)

= Rr
( ρ
R

)n 1

αn,r

∥∥f (r) − Vn−r−1,2
(
F (f (r))

)∥∥
q,R
. (37)

Next, we have∥∥f (r)−Vn−r−1,2
(
F (f (r))

)∥∥
q,R
≤
∥∥f (r)−F (f (r))

∥∥
q,R

+
∥∥F(f (r)

)
−Vn−r−1,2

(
F (f (r))

)∥∥
q,R
, (38)

and hence, by inequalities (28) and (29) in [20, p.12],∥∥f (r) −F (f (r))
∥∥
q,R
≤ n− r
π − 2

∫ π/2(n−r)

0

ω2

(
f (r), 2x

)
q,R

(
1− sin(n− r)x

)
dx, (39)

∥∥F(f (r)
)
−Vn−r−1

(
F (f (r))

)∥∥
q,R
≤ n− r
π − 2

∫ π/2(n−r)

0

ω2

(
f (r), 2x

)
q,R

sin(n−r)xdx, (40)

Now by (37)–(40), for an arbitrary function f ∈ W (r)
q,R(Φ), we have

∥∥f−Λn−1,r(f)
∥∥
q,ρ
≤Rr

(ρ
R

)n 1

αn,r

n−r
π−2

π/2(n−r)∫
0

ω2

(
f (r), 2x

)
q,R
dx≤Rr

(ρ
R

)n 1

αn,r
Φ

(
π

2(n−r)

)

which proves inequality (31).
We claim that if the majorant Φ satisfies constraint (18), then the class W (r)

q,R(Φ),
contains a function for which inequality (31) becomes an equality. To this end, consider
the function f2(z) = 1

Rn−rαn,r
Φ
(

π
2(n−r)

)
zn. We have ‖f2‖q,ρ =Rr

(
ρ
R

)n 1
αn,r

Φ
(

π
2(n−r)

)
, and

hence the function f2 lies in the ball Sn+1.

Therefore, f2 ∈ W (r)
q,R(Φ), and further, since Λn−1,r(f2) ≡ 0 by (32), we have∥∥f2 − Λn−1,r(f2)

∥∥
q,ρ

=
∥∥f2∥∥q,ρ = Rr

( ρ
R

)n 1

αn,r
Φ

(
π

2(n− r)

)
. (41)

Equality (41) means that the linear polynomial operator (32) is a best linear approxi-
mation method of the class W (r)

q,R(Φ) in the space Hq,ρ (1 ≤ q <∞, 0 < ρ < R, R ≥ 1).
From (31) and (41) it follows that if the majorant Φ satisfies (18), then

δn
(
W

(r)
q,R(Φ), Hq,ρ

)
≤ E

(
W

(r)
q,R(Φ) : Λn−1,r

)
= Rr

( ρ
R

)n 1

αn,r
Φ

(
π

2(n− r)

)
. (42)

By inequalities (17) for n-widths, from (30) and (42) we get the required equality
(20). This completes the proof of Theorem 3.1.
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