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Abstract Image denoising presents a significant challenge in computer vision, aiming to
eliminate unwanted noise from images and restore their original quality. Cauchy noise, char-
acterized by its heavy-tailed distribution, poses a unique hurdle among various types of noise.
While several denoising models have been proposed, Total Variation (TV)-based methods,
such as the Remove Cauchy Noise model, are widely used for their effectiveness. However,
these approaches often suffer from issues such as oversmoothing, staircase artifacts, and the
introduction of false details. To address these limitations, recent research has explored the
combination of high-order TV with Overlapping Group Sparsity (OGS), showing promising
results in noise removal. Inspired by this, our article introduces a novel Cauchy denoising
model. Our approach leverages OGS and directional higher-order TV to effectively remove
Cauchy noise while preserving image details and minimizing aliasing and smoothing arti-
facts. The Chambolle-Pock algorithm efficiently solves the underlying optimization problem.
Through qualitative and quantitative evaluations, including visualization and parameter mea-
surements, we demonstrate the competitiveness of our model compared to existing methods.
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1 Introduction

Image noise or degradation, a ubiquitous phenomenon, results from various unwanted
factors affecting signal acquisition and processing [1]. Because noise contamination is
inherently irreversible, image denoising and deblurring remain fundamental challenges
in computer vision. The impact of image noise spans diverse disciplines such as digital
photography, medical imaging, remote sensing, and wireless communication. Its man-
ifestations are equally diverse, encompassing Gaussian, Poisson, salt-and-pepper, and
multiplicative noise, among others [2, 3]. This work specifically addresses Cauchy noise,
which is a non-Gaussian additive variant characterized by its heavy-tailed distribution.
Such noise is encountered in real-world applications such as low-frequency atmospheric
signals [4, 5], underwater acoustic engineering [6], sonar and radar applications [7, 8],
wireless communication systems [9, 10]. For instance, in multi-access networks, inter-
ference tends to be non-Gaussian and heavy-tailed [9], and sonar signal processing in
shallow water often grapples with highly impulsive ambient noise [7]. These exam-
ples underscore the close correspondence between these real-world scenarios and the
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characteristics of the Cauchy distribution. Now, let’s consider an image corrupted by
additive Cauchy noise, which can be modeled as follows:

f = Hu+ v,

where f ∈ Rm×n represents the observed noisy image degraded from the original true
image u ∈ Rm×n, H denotes the blur matrix, and v is the additive noise captured by
the Cauchy distribution [11, 12]:

g(v) =
1

π

γ

γ2 + (v − σ)2
,

where γ is the scale parameter, and σ is the localization parameter, controlling the
spread and median of the distribution, respectively. Without loss of generality, in
the following discussions, we assume σ = 0, indicating independent and identically
distributed noise. Cauchy noise exhibits several notable characteristics. It possesses
heavier tails compared to Gaussian and Laplacian distributions, implying a higher
probability of rare events. This feature results in its impulsive behavior, akin to genuine
impulse noise. However, a crucial distinction lies in the impact: Cauchy noise affects
all pixels in an image, while some pixels in impulse-corrupted images remain noise-
free. The data fidelity term for the Cauchy noise removal model has the following form
[13]:

∫
Ω

log(γ2 + (Hu− f)2)dx. The data fidelity term is non-convex, posing challenges
in finding the optimum solution. In recent years, researchers have proposed various
solutions for the Cauchy noise removal problem. Authors in [14] introduced a TV-based
variational method with convexity guaranteed by adding a quadratic penalty term:

ũ = argmin
u

λ

2

(∫
Ω

log(γ2 + (u− f)2)dx+ ν||u− u0||22
)
+ TV (u), (1)

where u0 is the image obtained by applying the median filter to the noisy image f. The
authors employed a median filter to partially remove Cauchy noise, preserving image
details and maintaining convexity. The above model (1) can be readily generalized for
restoring a blurred and corrupted image by incorporating the linear blur matrix H:

ũ = argmin
u

λ

2

(∫
Ω

log(γ2 + (Hu− f)2)dx+ ν||Hu− u0||22
)
+ TV (u). (2)

While the TV-based method has demonstrated significant effectiveness in remov-
ing Cauchy noise and preserving edges, it occasionally produces staircase artifacts or
oversmoothing. The model (2) incorporates a regularization parameter λ to address
this issue, controlling the trade-off between TV regularization and fitting to f and u0,
with ν serving as a positive penalty parameter. It is worth noting that if 8γ2ν ≥ 1,
the objective function becomes strictly convex [14, 15]. To overcome the TV-based
method’s limitations, some proposed solutions include replacing the original TV reg-
ularization with total generalized variation (TGV) regularization [16], combining TV
and high-order TV [17, 18], using shearlet along with TGV regularization [19], and ap-
plying overlapping group sparsity with total variation (OGS-TV) [20, 21]. OGS-based
methods have proven remarkably effective in various models, particularly in alleviating
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undesirable artifacts and accurately reconstructing details [21]. In [22], the authors
replaced the TV regularization in (2) with OGSTV, proposing a convex model based
on total variation with OGS for recovering blurred images corrupted by Cauchy noise.
This approach significantly enhances the Total Variation (TV) characteristics while
mitigating the staircase effect, making it widely applicable for solving various types of
image degradation. However, one challenge is that over-preserving details may dimin-
ish the effectiveness of noise reduction, potentially leading to the misidentification of
thick noise ripples as false details. In [23], the authors introduced a variational model
to remove Cauchy noise using the weighted nuclear norm (WNNM). Additionally, in
[24], a Cauchy noise removal model based on the weighted hyper-Laplacian prior with
OGS was proposed. Recently, a tensor recovery model with composite regularization
was presented for Cauchy noise removal [25]. Moreover, in the pursuit of enhancing
the restoration quality of directional images, researchers have explored Directional TV
(DTV) regularization. DTV, in this context, offers increased and adjustable sensitiv-
ity to variations in a specified direction [26]. Various strategies have been employed
for image noise removal using DTV [27, 28]. However, these directional regularization
techniques have been primarily introduced for discretized problems, leaving the cor-
responding continuous problems unexplored. Additionally, it remains unclear in these
previous works whether directional information can be incorporated into higher-order
derivatives, such as through the use of a TGV regularizer. To address these gaps,
authors in [29, 30] proposed a model based on directional total generalized variation
(DTGV) functional to incorporate directional information. The DTGV-based models
effectively remove noise and preserve edges based on the image’s main direction, though
the drawback of TV-based smoothing somewhat affects noise reduction. Recent studies
have shown the promise of OGS-TV and DTGV methods, yet each has its limitations.

In this paper, we present an effective method for restoring images corrupted by
Cauchy noise. The proposed model, named D-OGSTV, combines DTGV and OGSTV
to leverage their strengths and address their drawbacks in the context of Cauchy noise
removal. Successfully applied to images affected by Cauchy noise, our proposed model
is mathematically formulated as D-OGSTV with a guaranteed convex objective func-
tion, ensuring the existence of an optimal solution. We employ a primal-dual algorithm
to solve the minimization problem in our restoration model. Numerical results demon-
strate that the proposed algorithm outperforms the compared methods for Cauchy
noise removal. The rest of the paper is organized as follows: Section (2) lays out rele-
vant preliminaries. Section (3) presents the proposed method. In Section (4), we show
some numerical results of our proposed method and compare them with the results
obtained using other existing methods. Finally, some conclusions are drawn in Section
(5).

2 Preliminaries

This section provides an overview of the notations frequently used within the follow-
ing discussion. Firstly, when applying total variation and higher-order total variation
methods, the use of first and second-order finite differential matrices is essential. Let
image be denoted as u ∈ Rm×n with periodic boundary conditions, i.e., u is periodically
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extended [1]. The first-order difference operator is then defined as: ∇u =
(
∇+

x u,∇+
y u

)
,

where ∇+
x u and ∇+

y u represent the first-order forward differences of u along the x-axis
and y-axis, respectively, defined as follows:

∇+
x ui,j =

{
ui,j+1 − ui,j if 1 ≤ i ≤ m, 1 ≤ j < n,

ui,1 − ui,n if 1 ≤ i ≤ m, j = n,
and

∇+
y ui,j =

{
ui+1,j − ui,j if 1 ≤ i < m, 1 ≤ j ≤ n,

u1,j − um,j if i = m, 1 ≤ j ≤ n.

Respectively, the first-order backward differences ∇−
x u and ∇−

y u are given by:

∇−
x ui,j =

{
ui,j − ui,j+1 if 1 ≤ i ≤ m, 1 ≤ j < n,

ui,1 − ui,n if 1 ≤ i ≤ m, j = n,
and

∇−
y ui,j =

{
ui,j − ui+1,j if 1 ≤ i < m, 1 ≤ j ≤ n,

u1,j − um,j if i = m, 1 ≤ j ≤ n.

Building upon the previously defined first-order forward and backward differences,
we construct the following second-order difference operator:

∇2u =

(
∇−

x (∇+
x ui,j), ∇+

y (∇+
x ui,j)

∇+
x (∇+

y ui,j), ∇−
y (∇+

y ui,j)

)
.

Overlapping group sparsity. For a one-dimensional signal, such as an audio
signal u ∈ Rn, a K-point group of the signal is defined as follows [31]: ui,K =
[u(i), ..., u(i +K − 1)] ∈ RK , where ui,K can be viewed as a window of size K, where
any element with an index higher than n is set to 0 [20]. In [21], the authors explored
the following group sparse regularization function:

ϕ(∇u) =
n−1∑
i=0

[
K∑
k=0

|∇ui+k|2
]
=

n−1∑
i=0

||∇u||2, (3)

where ∇ ∈ R(n−1)×n represents the first-order differential matrix or gradient of the
column signal u ∈ Rn. Note that the above function applies the overlapping sparsity
method in conjunction with total variation for one-dimensional signal denoising, with
the ϕ(·) regularization taking ∇u as the input parameter. Additionally, if the group
size K is chosen to be K = 1, the regularization function above becomes the well-
known l1-norm regularizer, i.e., ϕ(∇u) = ||∇u||1. For a two-dimensional signal, such
as an image u ∈ Rm×n with entries u(i, j), the K ×K sized group is defined as follows
[32]:

ũi,j,K =


ui−m1,j−m1 ui−m1,j−m1+1 ... ui−m1,j+m2

ui−m1+1,j−m1 ui−m1+1,j−m1+1 ... ui−m1+1,j+m2

... ... ... ...
ui+m2,j−m1 ui+m2,j−m1+1 ... ui+m2,j+m2

 ,

with m1 = ⌊K − 1

2
⌋ and m2 = ⌊K

2
⌋, where ⌊u⌋ denotes the largest integer smaller than

u. To apply the above group sparse regularization function ϕ(·), we flatten the K ×K
sized group into a vector of size K2, i.e., ũi,j,K(:) = ui,j,K , and we can express the group
sparse regularizer as follows [20]: ϕ(∇u) =

∑n−1
i=0 ||∇u||2. Note that, considering the
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input signal is two-dimensional, the gradient ∇ must consist of ∇x and ∇y, representing
both x-axis and y-axis differentiation. As denoted in 2.1, the first-order differential
matrix of u is ∇u = (∇xu,∇yu).

Directional total generalized variation method. Given an image u ∈ RN×N ,
the second-order DTGV for u is defined as follows [29]:

DTGV 2(u) = min
w

α0∥∇̃u−w∥2,1|R2n + α1∥Ẽw∥2,1|R4n , (4)

where w ∈ R2N×N , ∇̃ ∈ R2N×N is the discrete gradient operator, and ε̃ is the direc-
tional symmetrized derivative of the tensor w, with α0, α1 ∈ (0,+∞). For any vector

v ∈ R2N , we define: ∥v∥2,1|R2n =
n∑

j=1

√
v2j + v2n+j, for any vector y ∈ R4N , we define:

∥y∥2,1|R4n =
n∑

j=1

√
y2j + y2n+j + y22n+j + y23n+j. Given θ ∈ [−π, π] and a scaling parame-

ter a > 0, the discrete gradient operator is defined as: ∇u =

[
∇+

x u
∇+

y u

]
, where θ and

θ⊥ = θ + π
2
. The operators ∇+

x u and ∇+
y u ∈ RN×N can be obtained by applying a

forward finite difference scheme along each axis of the image.

(∇+
x u)i,j =

{
ui+1,j − ui,j if i < N,

0 if i = N,
and (∇+

y u)i,j =

{
ui,j+1 − ui,j if i < N,

0 if i = N.

The divergence operator is defined as div = −∇ = (∇−
x ,∇−

y ) where ∇−
x and ∇−

y

represent the backward finite difference schemes. Moreover, according to [30], the
directional divergence for tensor v can be obtained by:(d̃ivv) = divṽ, where ṽ =
ΛaRθv. The associated directional gradient operator is ∇̃u = ΛaR−θ(∇u). Here, Rθ

represents the rotation matrix Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, and Λa is the translation matrix:

Λa =

[
1 0
0 a

]
. The directional symmetrized derivative of the tensor w can be defined

as:

(Ẽw)i,j =
1

2

[
ΛaRθ

[
(∇−

xw
1)i,j (∇−

xw
2)i,j

(∇−
y w

1)i,j (∇−
y w

2)i,j

]
+

[
(∇−

xw
1)i,j (∇−

y w
1)i,j

(∇−
xw

2)i,j (∇−
y w

2)i,j

]
RT

θ Λa

]
.

with d̃iv = −Ẽ .

3 Proposed method

Based on (3) and (4), we propose the regularizer as follows:

D-OGSTV(u) = min
w

α0∥ΛaR−θϕ(∇u)−w∥2,1|R2n + α1∥Ẽw∥2,1|R4n . (5)

In this paper, we combine our regularization model D-OGSTV(u) (5) with the data
fidelity term for Cauchy noise in (2). The combined model is given as follows:

ũ = argmin
u

λ

2

(∫
Ω

log(γ2 + (Hu− f)2)dx+ ν||Hu− u0||22
)
+ D-OGSTV(u). (6)
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To solve the optimization problem for the proposed model (6), we can use many
different algorithms, typically the Nesterov method [33], ADMM [34], FISTA algorithm
[35], primal-dual (TV-L1) [36]. In this article, we decide to employ the Chambolle-Pock
dual algorithm to optimize the model. Based on [36, 37], our proposed regularizer (5)
can be transformed to the dual form as follows:

min
u∈Rn,w∈R2n

max
p∈P,v∈W

⟨ΛaRθϕ(∇u)−w,p⟩+ ⟨Ẽw,v⟩,

where P = {p : Ω → R2 | ||pi,j||2 ≤ λ1 ∀(i, j) ∈ Ω}, and W = {v : Ω →
Sym2(R2)| ||vi,j||F ≤ λ0 ∀(i, j) ∈ Ω}. This is a saddle point problem, and we can
use the Chambolle-Pock algorithm to solve it. In this algorithm, we break down the
entire problem into subproblems for resolution. We define the set-projection operator
as follows [36, 37]: [Sλ (x)]i,j =

xi,j

max(1,
xi,j
λ )

. Here, if x ∈ P , then |xi,j| is the l2 norm. If

x ∈ W , then |xi,j| is the Frobenius norm. In each subproblem, we use set-projection
to solve them, which aligns with the essence of the Chambolle-Pock algorithm. First,
we construct the duality problem:

min
u,w

max
p,q,v

⟨log(γ2 + (Hu− f)2) + ν ||Hu− u0||22 ,q⟩+ λ1⟨(ΛaRθϕ (∇u)−w),p⟩+ λ0⟨Ẽw,v⟩.

(7)

The Chambolle-Pock algorithm is employed alongside the set-projection operator to
address the regularization problem (7) by dividing it into smaller subproblems:

pk+1 = argmax
p

λ1⟨ΛaR−θϕ(∇uk)− w̄k,p⟩ − 1
2η
∥p− pk∥22,

vk+1 = argmax
v

λ0⟨Ẽw̄k,v⟩ − 1
2η
∥v − vk∥22,

qk+1 = argmax
q

⟨log(γ2 + (Hūk − f)2) + ν||Hūk

−u0||2F ,q⟩ − 1
2η
∥q− qk∥22,

uk+1 = argmin
u

⟨log(γ2 + (Hu− f)2) + ν||Hu− u0||22,qk+1⟩

+⟨ΛaR−θϕ(∇u),pk+1⟩+ 1
2τ
∥u− uk∥22,

wk+1 = argmin
w

− ⟨w,pk+1⟩+ ⟨Ẽwk,vk+1⟩+ 1
2τ
∥w −wk∥22.

(8)

Our algorithm needs to go through many loops for the result to converge. We define
ū and w̄ as the previous loop’s u and w, respectively. In the first loop, we initialize
w̄ = w and ū = u. Next, we are going to solve the subproblems in (8).

For the subproblems involving p, the set-projection operator is employed to find
the root of these problems:

pk+1 = Sλ1

(
pk + η

(
ΛaR−θϕ(∇ūk)− w̄k

))
=

∥pk + η
(
ΛaR−θϕ(∇ūk)− w̄k

)
∥

max

(
1,

∥pk+η(ΛaR−θϕ(∇ūk)−w̄k)∥
λ1

) . (9)
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Similar to v, q, we have:

vk+1 = Sλ0

(
vk + ηẼw̄k

)
=

∥vk + ηẼw̄k∥

max
(
(1, ∥v

k+ηẼw̄k∥
λ0

) , (10)

qk+1 =
∥qk + η

(
log(γ2 + (Hūk − f)2) + ν||Hūk − u0||2F

)
max

(
1, ∥qk + η

(
log(γ2 + (Hūk − f)2) + ν||Hūk − u0||22

)) . (11)

The minimization can be solved by applying the Gradient Descent method to update
the variables u iteratively:

uk+1 = uk + τ

(
d̃ivpk+1 −

(
2H⊤(Huk − f)

γ2 + (Huk − f)2
− 2νH⊤∥Huk − u0∥

)
qk+1

)
, (12)

where d̃iv is the directional divergence operator, calculated as ΛaR−θdiv.
The same procedure applies to w:

wk+1 = wk + τ
(
d̃ivvk+1 + pk+1

)
. (13)

In summary, the algorithm for our model D-OGSTV for cauchy noise is given in
Algorithm 1.

Algorithm 1: Algorithm for solving the model D-OGSTV (6)

1. Initialize: p = 0,q = 0,v = 0,u = ū = 0,w = w̄ = 0, τ , η, H;
2. While Stopping condition is not satisfied do
3. -Compute vk+1 using (10).
4. -Compute qk+1 using (11).
5. -Compute uk+1 using (12).
6. -Compute wk+1 using (13).
7. -Update ūk+1 = 2uk+1 − uk.
8. -Update w̄k+1 = 2wk+1 −wk.
9. -k = k + 1.
10. End while
11. Return u.

The stopping condition of the algorithm can be determined based on the maximum
number of allowed outer iterations N has been carried out (to guarantee an upper
bound on running time) or the following condition is satisfied for some prescribed
tolerance ς:

∥uk − uk−1∥2
∥uk∥2

< ς,

where ς is a small positive parameter. For our experiments, we set tolerance ς = 0.0001
and N = 300.
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4 Experimental results

In this section, we will experimentally verify the effectiveness of the proposed model
on 10 sample images, as shown in Figure (1). The sample images used are in grayscale
with a size of 256 × 256. To test the denoising procedure, we simulate Cauchy noise
with noise levels γ = 0.02 and γ = 0.05. A larger γ value indicates denser noise.
Specifically, we simulate Cauchy noise of level γ using the following formula:

f = u + γ
ζ1
ζ2
, (14)

where u is our free-noise sample image, ζ1, ζ2 are random matrices following normal
distribution N (0, 1). For the denoising problem, blur operator H is identity matrix I.
Experimental results are evaluated using visual methods along with standard PSNR
and SSIM scales [38]. The PSNR value determines the quality of the restored image
compared to the original image, higher PSNR value means the result image is more
closely resemble the original image. The mathematical representation of the PSNR is
as below:

PSNR = 20 log10

(
maxpx√

MSE

)
,

where maxpx is the maximum pixel value; the MSE (Mean Squared Error) is calculated
as:

MSE =
1

mn

m−1∑
0

n−1∑
0

||ui,j − fi,j||2.

Figure 1: Test images

Besides, the SSIM scale determines the structural similarity between the restored
image and the original image, which has its value in the range [0,1]. The closer the
SSIM value of two images is to 1, means the more similar the two images are. The
SSIM index is calculated on various windows of the image pair. The measurement
between two images A and B is:

SSIM(A,B) = (2µAµB + c1)(2σAB + c2)

(µ2
A + µ2

B + c1)(σ2
A + σ2

B + c2)
, (15)

where µA, µB, σA, σB are the means and standard deviations of A and A respectively,
σAB is the cross-covariance for A and B, and c1, c2 are parameters that depends on the
pixels value range of the image.
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Parameter analysis
Through experimental methods, we investigate the influence of the parameters in-

cluded in the aforementioned proposed algorithm on denoising results, considering re-
sulting image quality, execution time (number of iterations), and convergence speed.
We conducted tests on the same noisy image (Figure (1)-(1) Bird with γ = 0.02) using
different parameter sets, and present the following graphs: PSNR value gain graph, ob-
jective function graph, and relative error graph after each iteration step. Consequently,
the best set of parameters can be chosen for conducting further experiments.

(a) (b)

Figure 2: Influence of the parameters: (a) λ0 = 0.6 (red), λ0 = 0.8 (green), λ0 = 1.0
(blue); (b) λ1 = 5 (red), λ1 = 15 (green), λ1 = 25 (dotted blue)

Figure (2)(a) illustrates that variations in λ0 have a limited impact on the number of
iterations and convergence speed of the objective function and solution. Nevertheless,
it does affect the PSNR (Peak Signal-to-Noise Ratio) of the output, with the highest
PSNR result (red line) observed at λ0 = 0.6. Figure (2)(b) reveals that, with a λ1

value of 5, the objective function converges more slowly, but the PSNR growth is
slightly faster, reaching a good solution earlier. Similarly, the green line with λ1 = 15
demonstrates faster convergence of the objective function and a high PSNR, achieving
early results. However, the blue line representing λ1 = 25, despite the fastest initial
convergence, experiences slower convergence in later stages, leading to the highest
number of iterations. Figure (3)(a) illustrates the impact of the parameter a on the
model. Comparing the red and green lines, which correspond to a = 0.7 and a = 1
respectively, the red line shows a higher PSNR value result, while maintaining the same
number of iterations. Regarding the blue line, where a = 1.3, the model becomes non-
convex, and no optimum solution can be found. Through further experimentation, we
determined that the safe threshold for the parameter a is around 1.2. When a > 1.2,
the non-convex problem emerges. Next, we consider the parameter K as the window
size of the OGS method. From Figure (3)(b), it is evident that with a window size of
K = 1 or in other words, without applying OGS, the number of iterations increases,
and the convergence of the objective function appears unstable. Thus, utilizing the
OGS method helps accelerate mathematical convergence. For K = 3 and K = 5, the
convergence speed improves significantly. However, at K = 5, we observe a decrease
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(a) (b)

Figure 3: Influence of the parameters: (a) a = 0.7 (red), a = 1 (green), a = 1.3 (dotted
blue); (b) K = 1 (red), K = 3 (green), K = 5 (dotted blue)

in PSNR even though the number of iterations is quite low. Therefore, to ensure good
results in a short computational time, we consider choosing K = 3. In the following
tests, we set the group size K to 3, the regularization parameters to λ0 = 0.6 and
λ1 = 15, and the translation parameter a = 0.6. As mentioned in the proposed
algorithm, we can use either the differentiation of the solution after each iteration or
the objective function itself as the stopping criteria. The latter option is applied in the
test.

To further evaluate the proposed model’s efficacy, we compare it with two estab-
lished methods: the TV-L1 model and the WNNM model for Cauchy noise removal.
We implemented a demo program using MATLAB on a Windows 11 system equipped
with an Intel Core i5 CPU and 16GB RAM. We compare our approach with the afore-
mentioned models based on PSNR, SSIM, and computational time, providing valuable
insights into its performance and advantages.

Image denoising
To visually assess the performance of the three methods, we present original, noisy,

and denoised images from each in Figures (4), (5), (6), (7). While TV-L1 effectively
eliminates Cauchy noise, it often results in over-smoothed images with compromised
details, uniform color blocks, and pronounced staircase effects.

Figure 4: Denoising result of different methods on test images with noise level γ = 0.02
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Figure 5: Zoom-in denoising results in Figure (4)

Figure 6: Denoising result of different methods on test images with noise level γ = 0.05

Figure 7: Zoom-in denoising results in Figure (6)

Table (1) provides a comparison of the average execution time required for each
method, both for a single test image and a patch of 10 images, with a noise level
of γ = 0.05. As anticipated, the TV-L1 method excels in terms of speed, requiring
only 0.15 seconds per image and a mere 1.38 seconds for the entire set. In contrast,
WNNM emerges as the slowest, demanding a substantial 30 seconds per image and 5.5
minutes for the full patch. This prolonged runtime is attributed to WNNM’s necessity
to calculate singular value decompositions (SVDs) for every patch in each iteration.
Our proposed method falls between these extremes. While the use of iterative OGS
calculations on small windows results in a higher execution time than TV-L1, it remains
significantly lower than that of WNNM. Importantly, this relatively modest increase
in complexity does not compromise the model’s ability to deliver impressive denoising
results.

In Tables (2) and (3), we present the PSNR and SSIM values of noisy images,
as well as the result images obtained using the three methods: TV-L1, WNNM, and
our proposed method, D-OGSTV. The best PSNR and SSIM values for each image
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Table 1: Table of computational time comparison (s)
Time TV-L1 WNNM D-OGSTV

For single image (1) 0.1500 30.6219 5.8559
For entire set 1.3842 334.3625 62.1075

are marked in bold. Based on the measurement results, it can be seen that the noise
reduction model we proposed has demonstrated competitive performance against the
other two models at both noise levels. Even at a higher noise level of γ = 0.05, our
method maintains its stability in removing Cauchy noise.

Table 2: PSNR and SSIM of noisy and restored images by compared methods with
γ = 0.02

Image Noisy TV_L1 WNNM D-OGSTV
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bird 19.105 0.2346 33.178 0.9037 34.025 0.9166 35.130 0.9277
Lena 19.028 0.3631 28.076 0.8235 28.554 0.8468 29.486 0.8702

Peppers 19.033 0.3479 29.990 0.8792 30.720 0.9087 31.593 0.9197
Balloon 19.134 0.2308 33.135 0.9000 32.469 0.8917 32.903 0.9008
Zelda 19.189 0.3199 31.220 0.8811 31.575 0.8797 32.603 0.9055

Babyface 19.251 0.3127 29.667 0.8524 30.260 0.8902 31.616 0.9096
Plane 19.054 0.2522 28.022 0.7965 27.728 0.8722 28.758 0.8924

Baboon 19.104 0.4026 26.876 0.6681 26.263 0.6249 27.110 0.7026
House 19.066 0.3328 28.933 0.7930 29.448 0.8144 30.111 0.8376
Crowd 19.144 0.4678 25.168 0.7402 26.907 0.8280 28.256 0.8706

Table 3: PSNR and SSIM of noisy and restored images by compared methods with
γ = 0.05

Image Noisy TV_L1 WNNM D-OGSTV
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bird 15.267 0.1159 30.195 0.8818 31.581 0.8788 32.118 0.8819
Lena 15.355 0.2129 27.098 0.8116 26.963 0.7914 27.497 0.8140

Peppers 15.314 0.2035 26.939 0.8417 28.225 0.8531 28.910 0.8767
Balloon 15.359 0.1133 30.753 0.8723 30.716 0.8510 30.915 0.8589
Zelda 15.385 0.1557 28.524 0.8268 29.273 0.8127 30.436 0.8593

Babyface 15.301 0.1622 27.570 0.8533 28.435 0.8318 29.399 0.8686
Plane 15.388 0.2201 26.546 0.8375 26.106 0.8210 26.980 0.8369

Baboon 15.328 0.2138 25.405 0.5710 25.371 0.5585 26.000 0.6324
House 15.315 0.1950 28.286 0.7935 27.856 0.7794 28.098 0.7813
Crowd 15.372 0.2843 24.583 0.7406 25.176 0.7564 26.340 0.7906

The WNNM method demonstrates a degree of inconsistency in its results. While it
excels in noise removal and detail preservation in some test cases, it exhibits incomplete
denoising with residual Cauchy noise artifacts in others, even under identical noise lev-
els and parameters. This inconsistency extends to different images within a batch, with
highly detailed images being more susceptible to incomplete noise reduction. Attempts
to mitigate this by increasing the σ parameter often result in over-smoothing of other
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images. This suggests that, while WNNM can achieve impressive results, its sensitivity
to image structure and noise distribution necessitates individualized parameter tun-
ing, hindering its practical application in batch processing scenarios. Our D-OGSTV
method emerges as a compelling alternative, outperforming TV-L1 by preserving de-
tails and avoiding staircase artifacts. Additionally, it achieves PSNR and SSIM values
on par with or superior to WNNM, while offering significantly faster execution and
remarkable stability compared to its WNNM counterpart.

Image denoising and deblurring
In real-world image acquisition, environmental factors and signal imperfections of-

ten lead to the simultaneous presence of noise and blur. This section addresses this
challenge by proposing a model that performs joint image denoising and deblurring.
During image degradation simulation, we apply a Gaussian blur filter with a window
size of 5x5 and a standard deviation of 1. Subsequently, Cauchy noise with a level of
γ = 0.02 is added to the blurred image. For evaluating the effectiveness of our model in
the combined task of denoising and deblurring, we compare the results with the three
models TV-L1, WNNM, and our model D-OGSTV, similar to the above experiment.
Figures (8), (9) showcase the original images, noisy-and-blurred images, and the re-
constructions obtained by our method and two baseline approaches (WNNM, TV-L1,
and D-OGSTV).

Figure 8: Denoising and deblurring result of different methods on test images with blur
and noise level γ = 0.02

Figure 9: Zoom-in denoising and deblurring results in Figure (8)

These figures facilitate visual comparison. As observed, WNNM cannot effectively
address the deblurring problem, resulting in blurry reconstructions. While both TV-
L1 and D-OGSTV performed well on blurred images, our model consistently delivers
superior results in most cases. In Tables (4), we present the PSNR and SSIM values of
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noisy-and-blurred images, along with the recovered result images using the compared
methods TV-L1, WNNM, and D-OGSTV. The best PSNR and SSIM values for each
image are marked in bold. The table reveals that blurring significantly impacts the
process, reducing the overall PSNR values of the result images. Despite this challenge,
our proposed model achieves better results in most test images.

Table 4: PSNR and SSIM of noisy-and-blurred images and restored images by different
methods, γ = 0.02

Image Noisy TV_L1 WNNM D-OGSTV
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bird 19.063 0.2141 32.266 0.8980 30.994 0.8747 32.728 0.8925
Lena 18.730 0.3002 27.213 0.8093 26.612 0.7877 27.728 0.8273

Peppers 18.814 0.3173 28.407 0.8732 27.483 0.8501 29.056 0.8849
Balloon 18.996 0.1982 31.433 0.8718 30.864 0.8586 31.689 0.8688
Zelda 19.023 0.2804 30.508 0.8514 29.807 0.8477 31.221 0.8740

Babyface 18.973 0.2737 29.091 0.8622 28.076 0.8193 29.948 0.8791
Plane 18.738 0.3087 26.240 0.8332 25.159 0.7885 26.966 0.8475

Baboons 18.674 0.2670 25.842 0.5854 25.104 0.6183 26.525 0.6457
House 18.925 0.2791 27.687 0.7840 27.193 0.7581 28.107 0.7984
Crowd 18.770 0.3879 25.529 0.7757 24.142 0.7008 26.312 0.8133

5 Conclusion

In this paper, we have successfully combined Directional Total Generalized Variation
(DGTV) with Overlapping Group Sparsity and Total Variation (OGSTV) to develop
the D-OGSTV Cauchy denoising model. This novel model exhibits exceptional noise
removal capabilities, even at relatively high noise levels, while preserving fine details
and realistic edges in restored images. Experimental results confirm that D-OGSTV
significantly outperforms traditional Total Variation (TV) and high-order TV methods,
both visually and quantitatively. Implementing this model has the potential to greatly
enhance the quality of images acquired in various information systems. Moving forward,
we will continue to refine the D-OGSTV model to tackle denoising tasks with even
higher noise levels. Additionally, we plan to investigate methods for predicting the
noise level parameter γ directly from noisy images. This advancement would enable
the training of machine learning models that can automatically adapt and remove noise
across a series of images, streamlining the noise removal process.
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