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Abstract The paper presents analytical expressions for solving the problem of continuation
of the electromagnetic field in the frequency domain for a horizontally layered medium. The
numerical solution algorithm uses layerwise recalculation of the required quantities, for which
analytical expressions are presented in a form that allows calculations and layerwise recalcu-
lation without the accumulation of rounding errors. The solution to the continuation problem
is obtained as a solution to the cost functional minimization problem. The strong convexity
of the functional is proven, which implies the existence of a unique solution to the problem
posed.
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1 Introduction

The paper presents analytical expressions for solving the problem of continuation of the
electromagnetic field in the frequency domain for a horizontally layered medium. The
numerical algorithm is based on layer-by-layer recalculation. Analytical expressions are
presented in a form that allows calculations and layer-by-layer recalculation without
the accumulation of rounding errors.

The continuation problem to a certain depth is relevant when the electromagnetic
properties of the first few layers are known, and below the electromagnetic properties
of the layered medium are subject to determination. If the continuation problem is
solved, then the inverse problem of determining the unknown medium parameters can
be posed on a smaller domain. This will speed up the solution of the direct problem,
and, consequently, the inverse problem.

As mentioned above, we will use the layer-by-layer recalculation method to obtain
analytical expressions for solving the continuation problem. One of the first techno-
logically advanced layer-by-layer recalculation algorithms for solving a boundary value
problem for second-order differential equation for a horizontally layered medium was
Tikhonov-Shakhsuvarov algorithm [1]. However, it had some limitations: analytical
expressions contained exponential functions whose exponents had positive real parts,
which led to the accumulation of rounding errors during calculations and layer-by-layer
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recalculation. This drawback of the proposed layer-by-layer recalculation method was
eliminated in the Dmitriev’s works (see, for example, [2, 3]). To construct expressions
for calculations, he used the idea of Gelfand and Lokutsievsky [4] for solving a bound-
ary value problem for second-order differential equation. It made possible to obtain
expressions for calculations that are resistant to the accumulation of rounding errors.
Further, this method of layer-by-layer recalculation was developed for solving systems
of second-order differential equations: for a system of equations of the theory of elas-
ticity (horizontally layered isotropic medium [5]-[7], isotropic medium with absorption
[8, 9], transversely isotopic medium with a symmetry axis coinciding with the Oz axis
[10], a medium of any type of anisotropy [11, 12]), for calculating the gradient of the
residual functional for solving inverse problems to determine the velocity parameters of
thinly-stratified layer [13, 14], for Maxwell’s equations (horizontally layered medium of
any type of anisotropy [15]), for the system of equations of convective heat and mois-
ture transfer [16], for the fourth-order differential equation of transverse vibrations of a
piecewise homogeneous beam [17]. Currently, the layer-by-layer recalculation method
for solving a boundary value problem for second-order differential equations or systems
of second-order differential equations for horizontally layered media are recognized as
the most suitable for calculations [18]. In this work, the layer-by-layer recalculation
method is used to find expressions that are resistant to the accumulation of rounding
errors for the numerical solution of the continuation problem, which is the Cauchy
problem for a second-order differential equation.

The layer-by-layer recalculation method makes it possible to obtain a numerical
method for solving the direct problem that is not only resistant to rounding errors but
also requires relatively little time for calculations. This is a very useful property, espe-
cially when solving inverse problems using the optimization method, since in this case
solving the inverse problem is reduced to repeatedly solving the direct problem (see, for
example, [19]-[33]). The time for solving the direct and, therefore, the inverse problem
can be greatly reduced if it is necessary to solve the inverse problem of determining
the parameters of the medium, starting from a certain depth, since the upper part of
the medium is known. This could be, for example, a road surface, an airfield runway,
the upper part of an archaeological section, etc. Having solved the field continuation
problem to a certain depth and excluding information about the appropriate layers
from the known data, we obtain a simpler formulation of the inverse problem.

The numerical solving the continuation problems is, as a rule, unstable, and there-
fore requires the use of regularization methods (see, for example, [38]-[44]). 2D and 3D
field continuation problems in the stationary case is mathematically formulated as the
Cauchy problem for an elliptic equation, in the non-stationary case – as a problem for
a parabolic or hyperbolic equation with data on a timelike boundary. For numerical
solving the Cauchy problem for an elliptic equation, many methods have been proposed
(see, for example, the review in the work [45]). For the numerical solution of equations
with data on the timelike boundary, we know only two methods – the optimization
method [46] and the adjoint operator method [47]. As a rule, the proposed methods
for solving the Cauchy problem (see [45]) were tested on simulated data, in the works
[47]-[50] the problem was solved on data obtained during laboratory experiments. Also,
the solution to a parabolic equation with data on a timelike boundary was obtained
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after laboratory measurements [51, 52]. Some simple formulations of field continuation
problems can be found in [53]-[55].

In our case, when the continuation problem is solved in the frequency domain, it is
necessary to obtain analytical expressions for solving the Cauchy problem for a second-
order differential equation. This is a well-posed problem. This means that a correct
method for solving this problem must be presented. Here we propose a solution method
based on layer-by-layer recalculation: in each layer, analytical expressions are obtained
for solving the problem such that numerical calculations and recurrent recalculation
do not accumulate rounding errors.

2 Mathematical formulation of the problem

Figure 1: Medium
model.

Let the medium be a horizontally layered structure with inter-
faces zn (n = 0,M), the n-th layer is the interval [zn−1, zn],
thickness of the n-th layer hn = zn− zn−1, (−∞, z0] is air,
[zM ,∞) is underlying the half-space (see Fig/ 1).

The propagation of the electromagnetic field is described
by the Maxwell equations. The medium is characterized by
permittivity ε, conductivity σ and magnetic permeability µ.
Permittivity ε=ε0ε (ε0=8.854·10−12(F/m) is the permittivity
of vacuum and ε≥1 is the relative permittivity of the medium).
For most geophysical media µ = 4π·10−7(H/m). Relative per-
mittivity of air ε=1, conductivity of air σ=0. We will assume
that the relative permittivity ε and the conductivity σ of the
medium depend only on depth, i.e. ε= ε(z) and σ=σ(z), and
are piecewise constant functions. The electromagnetic proper-
ties of the n-th layer are determined by the constants εn and
σn.

Assume that the electromagnetic field is excited by a source
of external current of the following form:

j(r, φ, z, t) =

 jr
jφ
jz

 ≡
 0
jφ
0

 , (1)

jφ(r, z, t) = f(t)δ(r − r0)δ(z − z∗),

where z∗ is the coordinate of the source on the Oz axis, z∗<0
(the source is in the air), z∗ is small enough, r0 > 0 is the source parameter.

Since the medium is assumed to be isotropic and the source does not depend on
the angle φ, the Maxwell equations can be written in cylindrical coordinates, and the
components of the electromagnetic field not depend on the angle φ. Taking into account
the type of source (1), three of the six components of the electromagnetic field Eφ, Hr

and Hz are non-zero (see, for example, [33, 34]). For the component Eφ the following
differential equation can be obtained

ε
∂2Eφ
∂t2

+σ
∂Eφ
∂t

=
1

µ

[
∂2Eφ
∂z2

+
∂

∂r

(
1

r

1

∂r

(
rEφ
))]
− ∂jφ
∂t

(2)
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At the initial moment of time there is no electromagnetic field

Eφ|t<0 ≡ 0. (3)

The tangential components of the electromagnetic field when passing through the in-
terface between the media remain continuous, therefore, at the interface “ground-air”
z0 and the interface points zn the gluing conditions

[
Eφ
]
zn
= 0,

[
∂Eφ
∂z

]
zn

= 0, n = 0,M. (4)

are satisfied. The boundary condition

Eφ|r=0 = 0, (5)

holds, its rationale for which can be found in [35].
Let’s assume that the following measurements have been made on the surface

Eφ|z=0 = ξ(r, t). (6)

We assume that the receivers recording electrograms are located along the r axis.
Let us apply the Laplace and the Hankel transforms to the function Eφ(r, z, t):

u(ν, z, p) =

∞∫
0

e−pt
∞∫
0

rEφ(r, z, t)J1(νr)drdt, (7)

where p = α+i2πf is the Laplace transform parameter (α is the attenuation parameter,
f is the time frequency (Hz)), J1(r) is the 1-st order Bessel function (see, for example,
[36, 37]), ν is the Hankel transform parameter.

Let’s introduce the following notation: ξ(ν, p) – image of the function ξ(r, t), f(p) –
Laplace image for the function f(t), k(z)=

√
ν2+p2µε0ε(z)+pµσ(z) (Re

{
k(z)

}
> 0), in

n-th layer kn=
√
ν2+p2µε0εn+pµσn, in the air k0=

√
ν2+p2µε0, and g(ν) = r0J1(νr0).

For z ∈ {(−∞,∞)\{z0}...\{zM}} the function u(ν, z, p) satisfies the following dif-
ferential equation:

uzz − k2(z)u = µpf(p)g(ν)δ(z − z∗), (8)

and at the points z = zn (n = 0,M) the gluing conditions

[uz]zn = 0, [u]zn = 0, (9)

hold, and additionally we must assume damping conditions

u|z→±∞ = 0. (10)

Since δ(z − z∗) is present in the source (1), for z ∈ {(−∞,∞)\{z∗}\{z0}...\{zM}}
we can consider the homogeneous differential equation

uzz − k2u = 0, (11)
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with additional gluing conditions at the point z∗

[uz]z∗ = µpf(p)g(ν), [u]z∗ = 0. (12)

From (6) follows
u|z=0 = ξ(ν, p). (13)

Requirement z∗ 6= 0 is mathematical because the product δ(z)w(z) has no a sense
if the function w(z) is discontinuous at the point z = 0. Using the smallness of the
value z∗, we can go to the limit z∗ → 0 and simplify the statement (8)-(12).

Using the condition of damping at −∞ (10), the solution of differantial equation
(11) in the interval (−∞, z∗), the gluing condition (12), the solution of differantial
equation (11) in the interval (z∗, 0), the gluing condition (9) at point z = 0, we can go
to the limit z∗ → 0 and obtain the boundary condition

(uz − k0u)|z=0 = µpf(p)g(ν). (14)

Thus, the function u(ν, z, p) can be found as solution of the differantial equation
(11) for z ∈ {(0,∞)\{z0}...\{zM}}, for wich the boundary condition (14), the condition
of damping at ∞ (10), and the gluing condition (9) at the points z = zn (n = 1,M)
hold. Here it is assumed that the electromagnetic properties of the layers [zn−1, zn]
(n = 1,M) and the underlying half-space [zM ,∞) are known.

Let us assume that the electromagnetic properties of layers from the first to the
N -th are known, but below are not.

We could formulate inverse problem statement for reconstruction unkown electro-
magnetic constants εn and σn (n = N+1,M) using additional information (13). But
in this case we would need to solve the direct problem in the interval z ∈ [0, zM ]. We
would like to use the knowledge that the electromagnetic properties of the first N layers
are known and solve the direct problem in the interval z ∈ [zN , zM ]. Reducing the in-
terval over which the direct problem is solved significantly reduces the time for solving
the direct problem and, consequently, the inverse problem, since solving the inverse
problem using the optimization method is a multiple solution of the direct problem.

Therefore, we need to put the continuation problem: assuming that the ε(z) and
σ(z) (z ∈ [0, zN ]) are known piecewise constant functions, it is necessary to find ex-
pressions for values

uz|z=zN and u|z=zN , (15)

where the function u(ν, z, p) satisfies the differential equation (11) and boundary con-
ditions (13) and (14).

This statement is the Cauchy problem for a second-order differential equation. This
problem is well-posed. Thus, it is necessary to propose a stable algorithm for the
numerical determination of the values (15).

3 Derivating the main relations

Let us consider the new functions α(z) and β(z), which are connext with the function
u(ν, z, p) by the following equality:

uz = α(z)u+ β(z). (16)
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It should be noted here that since the constants ν and p are included as parameters in
the formulation of (11), (9), (13) and (14), then the functions α(z) and β(z) depend
on them, but for brevity this dependence is not indicated.

Substituting the relation (16) into (11), (9) and (14), we obtain that the functions
α(z) and β(z) satisfy the following problems (n = 1, N−1):

α′ + α2 = k2, α(0) = k0, [α]zn = 0, (17)

β′ + αβ = 0, β(0) = µpf(p)g(ν), [β]zn = 0. (18)

For brevity, we denote: αn = α(zn), βn = β(zn), un = u(ν, zn, p).
In each n-th layer, the solution to the Riccati differential equation (17) can be

represented in the following forms:

α(z)=kn
(αn−1+kn)+(αn−1−kn)e−2kn(z−zn−1)

(αn−1+kn)−(αn−1−kn)e−2kn(z−zn−1)
, (19)

α(z)=kn
(αn + kn)e

2kn(z−zn) + (αn − kn)
(αn + kn)e2kn(z−zn) − (αn − kn)

. (20)

From (19) and the gluing conditions (17) it follows that αn can be defined “top to
bottom” recursively:

α0 = k0, αn=kn
(αn−1+kn)+(αn−1−kn)e−2knhn
(αn−1+kn)−(αn−1−kn)e−2knhn

, n = 1, N, (21)

and from (20) and the gluing conditions (17) it follows that αn can be defined “bottom
to top” recursively:

αn−1=kn
(αn+kn)e

−2knhn+(αn−kn)
(αn+kn)e−2knhn−(αn−kn)

, n = N, 1. (22)

If in the relation (21) we express αn−1 in terms of αn, then the relation (22) will be
obtained, and vice versa, if in the relation (22) express αn in terms of αn−1, then the
relation (21) will be obtained.

In each n-th layer, the solution to the differential equation from (18) can be repre-
sented in the following forms:

β(z) = βn−1 e
−

z∫
zn−1

α(x)dx

=
2knβ

n−1e−kn(z−zn−1)

(αn−1+kn)−(αn−1−kn)e−2kn(z−zn−1)
, (23)

β(z) = βn e
−

z∫
zn

α(x)dx

=
2knβ

nekn(z−zn)

(αn+kn)e2kn(z−zn) − (αn−kn)
, (24)

From (23) and the gluing conditions (18) it follows that βn can be determined “top to
bottom” recurrently:

β0 = µpf(p)g(ν), βn =
2knβ

n−1e−knhn

(αn−1 + kn)− (αn−1 − kn)e−2knhn
, n = 1, N. (25)
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Note that in the expressions (19)-(25) there are only exponential functions whose
real parts of the exponents are negative. This means that the calculation of the func-
tions α(z) and β(z) and recurrent recalculation will be done without the accumulation
of rounding errors.

To obtain expressions that allow calculations without accumulating rounding errors,
in each n-th layer the solution to the differential equation (16) can be presented in the
following form:

u(ν, z, p) = un−1 e

z∫
zn−1

α(x)dx

+ e

z∫
zn−1

α(x)dx
z∫

zn−1

β(y) e
−

y∫
zn−1

α(x)dx

dy.

Using the representations (20) and (24) we obtain

u(ν, z, p) = un−1 e
−kn(z−zn−1)

(αn+kn)e
2kn(z−zn)−(αn−kn)

(αn+kn)e−2knhn−(αn−kn)

+ βnekn(zn−z)
e−2knhn−e2kn(z−zn)

(αn+kn)e−2knhn−(αn−kn)
. (26)

From (26) and the gluing conditions (9) it follows that un can be determined recur-
rently:

u0 = ξ(ν, p),

un =
2kn

(αn+kn)e−2knhn−(αn−kn)

(
un−1e

−knhn−βn1−e
−2knhn

2kn

)
, n = 1, N. (27)

The obtained relationships allow us to suggest the algorithm for solving the continua-
tion problem, which will be presented in the next section. The denominator of the first
factor in (27) does not vanish, since the Cauchy problem for a second-order differential
equation for a layer has a limited unique solution, but it can be quite small, if the
product hnRe{kn} is large.

4 Solving the continuation problem

First, calculate αn and βn (n = 1, N) with the help of the recurrent formulas (21) and
(25).

Second, using known αn and βn (n = 1, N) calculate un (n = 1, N) with the help
of the recurrent formula (27).

Thus, the following values

u|z=zN = uN and uz|z=zN = αNuN + βN (28)

are obtained which means that the stated problem of continuation of the electromag-
netic field in the frequency domain has been solved numerically. Note that all expres-
sions for calculations are calculated stably, without accumulating rounding errors.



112 Orman I.M., Kurmashev I.G., Karchevsky A.L.

Knowing the quantities (28) allows us to formulate the direct problem statement:

uzz − k2u = 0, z ∈ [zN , zM ], (29)
uz|z=zN = αNuN + βN , (30)
(uz + kM+1u)|z=zM = 0, (31)

[uz]zn = 0, [u]zn = 0, n = N + 1,M − 1, (32)

and assume that additional information

u|z=zN = uN (33)

is known. The boundary condition (31) was obtained similarly to the condition (14).
The inverse problem (29)-(33) can be solved using a well-known approach (see, for

example, [31]). Since the inverse problem is solved on a smaller interval [zN , zM ], the
speed of determining the parameters εn and σn (n = N + 1,M) will be higher.

5 Conclusion

In this work, analytical expressions are obtained for solving the contimuation problem
for the electromagnetic field in the frequency domain for horizontally layered media.
The algorithm for the numerical solution of the problem is based on the layer-by-layer
recalculation method. The resulting analytical expressions are presented in the form
that allows calculations and layer-by-layer recalculation without the accumulation of
rounding errors.
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[37] Janke E., Emde F. Lösch F. Tafeln Höherer Funktionen. Stuttgart, B.G. Verlagsgesellschaft,
1960.

[38] Tikhonov A. N. Collection of scientific works. In 10 volumes, Moscow, Nauka, 2009. (In Russian)

[39] Tikhonov A. N., Arsenin V. Ya., Methods for solving ill-posed problems. Moskow, Nauka, 1979.
(In Russian)

[40] Lavrent’ev M. M., Romanov V. G., Vasil’ev V. G., Multidimensional inverse problems for dif-
ferential equations. Novosibirsk, Nauka, 1969. (In Russian)

[41] Lavrent’ev M. M., Romanov V. G., Shishatskii S.P., Some problems of mathematical physics
and analysis. Novosibirsk, Nauka, 1980. (In Russian)

[42] Vasin V. V., Ageev A.L., Ill-posed problems with a priori information. Ekaterinburg, Nauka,
1993. (In Russian)

[43] Vasin V. V., Eremin I. I., Operators and iteration processes of the Feyer type. Theory and
applications. Moscow-Izhevsk, Institute of Computer Technologies, Research Center “Regular
and Chaotic Dynamics”, 2005.

[44] Yagola A. G., Yanfei V., Stepanova I. E., Taranenko V.N., Inverse problems and methods for
their solution. Applications in geophysics. Moskow, BINOM, Laboratoriya znanii, 2014.

[45] Sibiryakov N. E., Kochkin D. Yu., Kabov O. A., Karchevsky A.L., Determining the
Heat Flux Density in the Area of a Contact Line during the Evaporation of Liquid
into a Bubble, Journal of Applied and Industrial Mathematics, 17. 3 (2023), 628-639.
https://doi.org/10.1134/S199047892303016X

[46] Belonosov A., Shishlenin M., Regularization Methods of the Continuation Problem for the
Parabolic Equation, In: Dimov I., Farago I., Vulkov L. (Editors), Numerical Analysis and Its
Applications - 6th International Conference, NAA 2016, Revised Selected Papers (p. 220-226).
Springer-Verlag GmbH and Co. KG. https://doi.org/10.1007/978-3-319-57099-0_22

[47] Karchevsky A. L., Reformulation of an inverse problem statement that reduces computa-
tional costs, Eurasian Journal of Mathematical and Computer Applications, 1. 2 (2013), 4-20.
https://ejmca.enu.kz/assets/files/1-2-1.pdf

[48] Karchevsky A. L., Marchuk I. V., Kabov O. A., Calculation of the heat flux near the
liquid-gas-solid contact line, Applied Mathematical Modelling, 40. 2 (2016), 1029-1037.
https://doi.org/10.1016/j.apm.2015.06.018

[49] Cheverda V. V., Marchuk I. V., Karchevsky A. L., Orlik E. V., Kabov O. A., Experimental
investigation of heat transfer in a rivulet on the inclined foil, Thermophysics and Aeromechanics,
23. 3 (2016), 415-420. https://doi.org/10.1134/S0869864316030112

[50] Cheverda V. V., Karchevsky A. L., Marchuk I. V., Kabov O. A., Heat flux density in the
region of droplet contact line on a horizontal surface of a thin heated foil, Thermophysics and
Aeromechanics, 24. 5 (2017), 803-806. https://doi.org/10.1134/S086986431705016X

[51] Karchevsky A. L., Development of the heated thin foil technique for investigating nonsta-
tionary transfer processes, Interfacial Phenomena and Heat Transfer, 6. 3 (2018), 179-185.
https://doi.org/10.1615/InterfacPhenomHeatTransfer.2018028949

[52] Karchevsky A. L., Numerical solving the heat equation with data on a time-like boundary for the
heated thin foil technique, Eurasian Journal of Mathematical and Computer Application, 8. 4
(2020), 4-14. https://doi.org/10.32523/2306-6172-2020-8-4-4-14



116 Orman I.M., Kurmashev I.G., Karchevsky A.L.

[53] Yaparova N. M., On various approaches to solving inverse boundary value problems of thermal
diagnostics, Vestn. SUSU, Series “Math., Mech., Phys.”, 7. (2012), 60-67.

[54] Yaparova N. M., Numerical modeling of solutions to the inverse boundary value problem of heat
conduction, Vestn. SUSU, series “Math. modeling and programming”, 6. 3 (2013), 112-124.

[55] Solodusha S. V., Yaparova N. M., Numerical solving an inverse boundary value problem of heat
conduction using Volterra equations of the first kind, Numer. Analys. Appl., 8. (2015), 267-274.
https://doi.org/10.1134/S1995423915030076

Orman I. M.,
Manash Kozybayev North Kazakhstan university
st. Pushkina, 86, 150000 Petropavlovsk, Kazakhstan,
Email: Indira.malikovna@mail.ru,

Kurmashev I. G.,
Manash Kozybayev North Kazakhstan university
st. Pushkina, 86, 150000 Petropavlovsk, Kazakhstan,
Email: ikurmashev@ku.edu.kz,

Karchevsky A. L.,
Sobolev Insritute of Mathematics SB RAS,
pr. Akad. Koptyuga, 630090 Novosibirsk, Russia,
Email: karchevs@math.nsc.ru.

Received 13.02.2024, revised 15.03.2024 Accepted 20.03.2024


