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BOUNDARY CONTROL PROBLEM FOR A PARABOLIC EQUATION
WITH INVOLUTION
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Abstract In this paper, we consider a boundary control problem for a parabolic equation
with involution in a bounded one-dimensional domain. On the part of the border of the
considered domain, the value of the solution with control function is given. Restrictions on
the control are given in such a way that the average value of the solution in the considered
domain gets a given value. The problem given by the method of separation of variables
is reduced to the Volterra integral equation of the first kind. The existence of the control
function was proved by the Laplace transform method.
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1 Introduction

In this article, we consider the following parabolic equation with involution in the
domain ΩT := (0, π)× (0,∞)

ut(x, t)− uxx(x, t) + ε uxx(π − x, t) = 0, (x, t) ∈ ΩT , (1)

with Neumann boundary conditions

ux(0, t) = −ν(t), ux(π, t) = 0, t ≥ 0, (2)

and initial condition
u(x, 0) = 0, 0 ≤ x ≤ π, (3)

where ε is a nonzero real number such that |ε| < 1, and ν(t) is the control function. If
the control function ν(t) ∈ W 1

2 (R+) satisfies the conditions ν(0) = 0 and |ν(t)| ≤ 1 on
the half-line t ≥ 0, then we call it an admissible control.

We will prove later in Section 3 that the function ν belongs to the class W 1
2 (R+).

Differential equations with modified arguments are equations in which the unknown
function and its derivatives are evaluated with modifications of time or space variables;
such equations are called, in general, functional differential equations. Among such
equations, one can single out, equations with involutions [1].

Definition 1. ([2, 3]) A function f(x) 6≡ x maps bijectively a set of real numbers Ω,
such that

f(f(x)) = x or f−1(x) = f(x),
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is called an involution on Ω.

Due to the widespread use of partial differential equations in physics and technology,
there is always a great interest in the study of boundary value control problems. For
this purpose, various boundary problems for parabolic and pseudo-parabolic equations
have been widely studied by many researchers.

It can be seen that equation (1) for ε = 0 is a classical parabolic equation. If
ε 6= 0, equation (1) relates the values of the second derivatives at two different points
and becomes a nonlocal equation. It is known that boundary control problems for the
parabolic equation in the case ε = 0 were studied in details in work [4].

Assume that the function ρ(x) ∈ W 2
2 (0, π) satisfies the conditions

ρ′(x) ≤ 0, ρ′′(x) ≥ 0,

π∫
0

ρ(x) dx = 1. (4)

Let

ρ(x) =
∞∑
k=0

ρk cos kx, x ∈ (0, π),

where

ρ0 =
1√
π

π∫
0

ρ(x) dx =
1√
π
, ρk =

√
2

π

π∫
0

ρ(x) cos kx dx, k = 1, 2, ... (5)

We now consider the following control problem.
Control Problem. For the given function φ(t) Problem consists of looking for the

admissible control ν(t) such that the solution u(x, t) of the initial-boundary problem
(1)-(3) exists and for all t ≥ 0 satisfies the equation

π∫
0

ρ(x)u(x, t) dx = φ(t), t ≥ 0. (6)

The optimal control problem for the parabolic type equations was studied by Fat-
torini and Friedman [5, 6]. Control problems for the infinite-dimensional case were
studied by Egorov [7], who generalized Pontryagin’s maximum principle to a class of
equations in Banach space, and the proof of a bang-bang principle was shown in the
particular conditions.

The boundary control problem for a parabolic equation with a piecewise smooth
boundary in an n−dimensional domain was studied in [8] and an estimate for the
minimum time required to reach a given average temperature was found. In [9], math-
ematical models of thermocontrol processes for the parabolic equation are considered.
Control problems for the heat transfer equation in the three-dimensional domain are
studied in [10].

Control problems for parabolic equations in bounded one and two-dimensional do-
mains are studied in works [11, 12, 13, 14]. In these articles, an estimate was found for
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the minimum time required to heat a bounded domain to an estimate average temper-
ature. The existence of control function is proved by Laplace transform method.

Basic information on optimal control problems is given in detail in monographs
by Lions and Fursikov [15, 16]. General numerical optimization and optimal control
for second-order parabolic equations have been studied in many publications such as
[17]. Practical applications of optimal control problems for equations of parabolic type
were presented in [18]. The control problems for the pseudoparabolic equation in the
bounded domain were studied in works [19, 20] and the existence of an admissible
control function was proved using the Laplace transform method.

It is known that in recent years, due to the increasing interest in physics and
mathematics, the boundary problems related to heat diffusion equations related to
involution were widely studied. In [21], a boundary value problem for the heat equation
associated with involution in a one-dimensional domain is studied. Many boundary
value problems for parabolic type equations with involution were studied in works
[22, 23].

Finding the control function ν(t) from the additional integral condition (6) with
the solution of the mixed problem (1)-(3) can be also considered as an inverse problem.
In [25], the inverse problem for the non-homogeneous parabolic type equation was
considered and the uniqueness theorem was proved. Inverse problems for integro-
differential equations of electrodynamics with dispersion and viscoelasticity equations
were considered in [26].

In [27], the inverse problem of determining the time-dependent reaction diffusion
coefficient in the Cauchy problem for the fractional time diffusion equation was studied.
One-dimensional inverse problems for systems of isotropic, anisotropic orthorombic,
and anisotropic hexagonal (transversally isotropic) elasticmedia were studied in [28].

In this work, the boundary control problem for the parabolic equation with invo-
lution is considered. The boundary control problem studied in this work is reduced
to the Volterra integral equation of the first kind by the Fourier method (Section 2).
In Section 3, the existence of a solution to the integral equation is proved using the
Laplace transform method.

2 Volterra integral equation

In this section, we consider how the given control problem can be reduced to a Volterra
integral equation of the first kind.

We now consider the spectral problem

X ′′(x)− εX ′′(π − x) + λX(x) = 0, 0 < x < π,

X ′(0) = X ′(π) = 0, 0 ≤ x ≤ π,

where |ε| < 1, ε ∈ R \ {0}. It is proved in [23, 24] that expressing the solution of
spectral problem in terms of the sum of even and odd functions, one finds the following
eigenvalues:

λ2k+1 = (1 + ε) (2k + 1)2, k ∈ N0 = N ∪ {0},

λ2k = (1− ε) 4 k2, k ∈ N0,
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and we have the following eigenfunctions

X0 =
1√
π
, X2k =

√
2

π
cos 2kx, k ∈ N,

and

X2k+1 =

√
2

π
cos(2k + 1)x, k ∈ N0.

For an arbitrary Banach space B and for T > 0 by the symbol C([0, T ] → B) we
denote the Banach space of all continuous maps u : [0, T ]→ B with the norm

‖u‖ = max
0≤t≤T

|u(t)|.

By symbol W̃ 1
2 (Ω) we denote the subspace of the Sobolev space W 1

2 (Ω) formed by
functions, whose trace on ∂Ω is equal to zero. Note that due to the closure W̃ 1

2 (Ω) the
sum of a series of functions from W̃ 1

2 (Ω), converging in metric W 1
2 (Ω) also belongs to

W̃ 1
2 (Ω), where Ω := {x : 0 < x < π}.

Definition 2. By the solution of the problem (1) - (3) we mean a function u(x, t),
represented in the form

u(x, t) = ν(t)
(π − x)2

2π
− w(x, t), (7)

where the function w(x, t) is a generalized solution from the class C([0, T ] → W̃ 1
2 (Ω))

of the following problem:

wt(x, t)− wxx(x, t) + εwxx(π − x, t) =
(π − x)2

2 π
ν ′(t) +

ε− 1

π
ν(t),

with homogeneous initial and boundary conditions

wx(0, t) = wx(π, t) = 0, w(x, 0) = 0.

Thus, we obtain (see [29])

w(x, t) =
π
√
π

6
ν(t) +

ε− 1√
π

t∫
0

ν(s) ds+

+

√
2

π

∞∑
k=0

1

(2k + 1)2

( t∫
0

e−λ2k+1(t−s) ν ′(s) ds

)
cos(2k + 1)x+

+

√
2

π

∞∑
k=1

1

4k2

( t∫
0

e−λ2k(t−s) ν ′(s) ds

)
cos 2kx. (8)

Note that the class C([0, T ] → W̃ 1
2 (Ω)) is a subset of the class W 1,0

2 (ΩT ), which
was considered in monograph [30] for defining a solution to the problem homogeneous
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boundary conditions ( see the corresponding uniqueness theorem in Ch. III, Theorem
3.2, pp. 173-176). Therefore, the above introduced generalized solution is also a
generalized solution in the sense of [30]. However, unlike a solution from the class
W 1,0

2 (ΩT ), which is guaranteed to have a trace for almost everywhere t ∈ [0, T ], a
solution from a class C([0, T ] → W̃ 1

2 (Ω)) continuously depends on t ∈ [0, T ] in the
metric L2(Ω).

Proposition 2.1. Let ν ∈ W 1
2 (R+), ν(0) = 0 and |ε| < 1. Then the function

u(x, t) =
1− ε√
π

t∫
0

ν(s) ds+ (1 + ε)

√
2

π

∞∑
k=0

( t∫
0

e−λ2k+1(t−s) ν(s) ds

)
cos(2k + 1)x+

+(1− ε)
√

2

π

∞∑
k=1

( t∫
0

e−λ2k(t−s) ν(s) ds

)
cos 2kx, (9)

is the solution of the initial-boundary value problem (1)-(3).

Proof. Using (7) and (8), we rewrite the solution of the problem (1)-(3) in the form

u(x, t) = ν(t)
(π − x)2

2 π
− π
√
π

6
ν(t) +

1− ε√
π

t∫
0

ν(s) ds−

−
√

2

π

∞∑
k=0

1

(2k + 1)2

( t∫
0

e−λ2k+1(t−s) ν ′(s) ds

)
cos(2k + 1)x−

−
√

2

π

∞∑
k=1

1

4k2

( t∫
0

e−λ2k(t−s) ν ′(s) ds

)
cos 2kx.

We will prove that function w(x, t) represented by the indicated Fourier series,
belongs to the class C([0, T ] → W̃ 1

2 (Ω)). It suffices to prove that the gradient of this
function, taken with respect to x ∈ Ω, continuously depends on t ∈ [0, T ] on the norm
of the space L2(Ω). According to Parseval’s equality, the norm of this gradient is equal
to

‖wx(·, t)‖2
L2(Ω) =

∞∑
k=0

1

(2k + 1)2

( t∫
0

e−λ2k+1(t−s) ν ′(s) ds

)2

+

+
∞∑
k=1

1

4k2

( t∫
0

e−λ2k(t−s) ν ′(s) ds

)2

≤ C ‖ν ′‖2
L2(R+)

∞∑
k=1

1

k4
= C1 ‖ν ′‖2

L2(R+).

The fact that the function w(x, t) is a generalized solution in the sense of the integral
identity (3.5) of monograph [30] immediately follows from Parseval’s equality.
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Using the condition (6) and the solution (9), we can write

φ(t) =

π∫
0

ρ(x)u(x, t) dx =
1− ε√
π

π∫
0

ρ(x) dx

t∫
0

ν(s) ds+

+(1 + ε)

√
2

π

∞∑
k=0

( t∫
0

e−λ2k+1(t−s) ν(s) ds

) π∫
0

ρ(x) cos(2k + 1)x dx+

+(1− ε)
√

2

π

∞∑
k=1

( t∫
0

e−λ2k(t−s) ν(s) ds

) π∫
0

ρ(x) cos 2kx dx.

By (4) and (5), we get

φ(t) =
1− ε√
π

t∫
0

ν(s) ds+ (1 + ε)
∞∑
k=0

ρ2k+1

t∫
0

e−λ2k+1(t−s) ν(s) ds+

+(1− ε)
∞∑
k=1

ρ2k

t∫
0

e−λ2k(t−s) ν(s) ds.

Set

K(t) =
1− ε√
π

+ (1 + ε)
∞∑
k=0

ρ2k+1 e
−λ2k+1 t+

+(1− ε)
∞∑
k=1

ρ2k e
−λ2k t, t > 0, (10)

where ρk is defined by (5).
Thus, we have the following Volterra integral equation of the first kind

t∫
0

K(t− s) ν(s)ds = φ(t), t > 0. (11)

3 Main result

In this section, we will consider on the existence of the control function.
Assume that M > 0 is a constant. Then we denote by W (M) the set of functions

φ ∈ W 2
2 (−∞,+∞), φ(t) = 0 for all t ≤ 0 which satisfy the condition

‖φ‖W 2
2 (R+) ≤M.

We present the following main theorem.

Theorem 3.1. There exists M > 0 such that for any function φ ∈ W (M) the solution
ν(t) of the Voltera integral equation (11) exists and it satisfies condition |ν(t)| ≤ 1.
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Remark 1. The uniqueness of the solution of Volterra integral equation (11) follows
from Titchmarsh’s theorem (see, e.g., [31], Chapter VI, Section 5).

Lemma 3.1. [11] Let g(x) ≥ 0 and g′(x) ≤ 0 on x ∈ [0,∞). Then the following
inequality holds:

nπ∫
0

g(x) sinx dx ≥ 0, n = 1, 2, ....

Lemma 3.2. The following estimate is valid:

0 ≤ ρk ≤
C

k2
, k = 1, 2, ...,

where ρk is defined by (5).

Proof. From (5), we write

ρk =

√
2

π

π∫
0

ρ(x) cos kx dx =
1

k

√
2

π
ρ(x) sin kx

∣∣∣∣x=π

x=0

−

− 1

k

√
2

π

π∫
0

ρ′(x) sin kx dx = −1

k

√
2

π

π∫
0

ρ′(x) sin kx dx. (12)

By condition (4) and Lemma 3.1 we obtain ρk ≥ 0. Then, from (12) we can
write

ρk = −1

k

√
2

π

π∫
0

ρ′(x) sin kx dx =
1

k2

√
2

π
ρ′(x) cos kx

∣∣∣∣x=π
x=0

−

− 1

k2

√
2

π

π∫
0

ρ′′(x) cos kx dx =
1

k2

√
2

π

(
ρ′(π) (−1)k − ρ′(0)

)
+
o(1)

k2
,

where ρ′(π) (−1)k − ρ′(0) ≥ 0.

Then we obtain
0 ≤ ρk ≤

C

k2
.

Proposition 3.1. Assume that ε is a nonzero real number such that |ε| < 1. Then,
the kernel K(t) of the integral equation (11) is continuous on t ≥ 0.
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Proof. By (10) and Lemma 3.2, we can write the following estimate for any
|ε| < 1:

0 < K(t) =
1− ε√
π

+ (1 + ε)
∞∑
k=0

ρ2k+1 e
−λ2k+1 t+

+(1− ε)
∞∑
k=1

ρ2k e
−λ2k t ≤ 2√

π
+ Cε

∞∑
k=1

1

k2
,

where Cε is a constant only depending on ε.

We find the solution of the Volterra integral equation (11) using the method of
Laplace transform. We know that

ν̃(p) =

∞∫
0

e−pt ν(t) dt.

Then using the Laplace transform we get the following equation

φ̃(p) =

∞∫
0

e−pt dt

t∫
0

K(t− s) ν(s)ds = K̃(p) ν̃(p).

Thus, we obtain

ν̃(p) =
φ̃(p)

K̃(p)
, where p = ξ + i τ, ξ > 0, τ ∈ R,

and we can write the function ν(t) as follows:

ν(t) =
1

2πi

ξ+i∞∫
ξ−i∞

φ̃(p)

K̃(p)
eptdp =

1

2π

+∞∫
−∞

φ̃(ξ + i τ)

K̃(ξ + i τ)
e(ξ+i τ)t dτ. (13)

Proposition 3.2. The following estimate

|K̃(ξ + i τ)| ≥ Cξ√
1 + τ 2

, ξ > 0, τ ∈ R,

is valid, where Cξ > 0 is a constant only depending on ξ.

Proof. Set
β2k+1 = (1 + ε) ρ2k+1, k ∈ N0,

and
β2k = (1− ε) ρ2k, k ∈ N.
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Using the Laplace transform, we may write

K̃(p) =

∞∫
0

K(t) e−pt dt =
1√
π

1− ε
p

+
∞∑
k=0

β2k+1

p+ λ2k+1

+
∞∑
k=1

β2k

p+ λ2k

,

where K(t) is defined by (10) and

K̃(ξ + i τ) =
1√
π

1− ε
ξ + i τ

+

+
∞∑
k=0

β2k+1

ξ + λ2k+1 + i τ
+
∞∑
k=1

β2k

ξ + λ2k + i τ
=

=
1√
π

(1− ε) (ξ − i τ)

ξ2 + τ 2
+
∞∑
k=0

β2k+1 (ξ + λ2k+1)

(ξ + λ2k+1)2 + τ 2
−

−i τ
∞∑
k=0

β2k+1

(ξ + λ2k+1)2 + τ 2
+
∞∑
k=1

β2k (ξ + λ2k)

(ξ + λ2k)2 + τ 2
−

−i τ
∞∑
k=1

β2k

(ξ + λ2k)2 + τ 2
= ReK̃(ξ + i τ) + i ImK̃(ξ + i τ),

where ReK̃(ξ + i τ) and ImK̃(ξ + i τ) are defined as follows:

ReK̃(ξ + i τ) =
1√
π

(1− ε) ξ
ξ2 + τ 2

+
∞∑
k=0

β2k+1 (ξ + λ2k+1)

(ξ + λ2k+1)2 + τ 2
+

+
∞∑
k=1

β2k (ξ + λ2k)

(ξ + λ2k)2 + τ 2
,

and

ImK̃(ξ + i τ) = − 1√
π

(1− ε) τ
ξ2 + τ 2

− τ
∞∑
k=1

β2k+1

(ξ + λ2k+1)2 + τ 2
−

−τ
∞∑
k=1

β2k

(ξ + λ2k)2 + τ 2
.

We know that
(ξ + λk)

2 + τ 2 ≤ [(ξ + λk)
2 + 1](1 + τ 2).

Then we get
1

(ξ + λk)2 + τ 2
≥ 1

1 + τ 2

1

(ξ + λk)2 + 1
, (14)

and
1

ξ2 + τ 2
≥ 1

1 + τ 2

1

1 + ξ2
. (15)
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Thus, according to (14) and (15), we can obtain the following estimates

|ReK̃(ξ + i τ)| = 1√
π

(1− ε) ξ
ξ2 + τ 2

+
∞∑
k=0

β2k+1 (ξ + λ2k+1)

(ξ + λ2k+1)2 + τ 2
+

+
∞∑
k=1

β2k (ξ + λ2k)

(ξ + λ2k)2 + τ 2
≥

≥ 1

1 + τ 2

(
1√
π

(1− ε) ξ
1 + ξ2

+
∞∑
k=0

β2k+1 (ξ + λ2k+1)

(ξ + λ2k+1)2 + 1

)
=

C1,ξ

1 + τ 2
, (16)

and

|ImK̃(ξ + i τ)| = |τ | 1√
π

1− ε
ξ2 + τ 2

+ |τ |
∞∑
k=0

β2k+1

(ξ + λ2k+1)2 + τ 2
+

+|τ |
∞∑
k=1

β2k

(ξ + λ2k)2 + τ 2
≥

≥ |τ |
1 + τ 2

(
1√
π

1− ε
1 + ξ2

+
∞∑
k=0

β2k+1

(ξ + λ2k+1)2 + 1

)
=
C2,ξ |τ |
1 + τ 2

, (17)

where C1,ξ, C2,ξ are constants only depending on ξ and they are as follows:

C1,ξ =
1√
π

(1− ε) ξ
1 + ξ2

+
∞∑
k=0

β2k+1 (ξ + λ2k+1)

(ξ + λ2k+1)2 + 1
,

C2,ξ =
1√
π

1− ε
1 + ξ2

+
∞∑
k=0

β2k+1

(ξ + λ2k+1)2 + 1
.

From (16) and (17), we have the following estimate

|K̃(ξ + i τ)|2 = |ReK̃(ξ + i τ)|2 + |ImK̃(ξ + i τ)|2 ≥

≥
min(C2

1,ξ, C
2
2,ξ)

1 + τ 2
,

or
|K̃(ξ + i τ)| ≥ Cξ√

1 + τ 2
, where Cξ = min(C1,ξ, C2,ξ). (18)

Then, proceed to the limit as ξ → 0 from (13), we obtain the equality

ν(t) =
1

2π

+∞∫
−∞

φ̃(i τ)

K̃(i τ)
ei τt dτ. (19)
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Proposition 3.3. ([32]) Assume that φ ∈ W (M). Then for the imaginary part of the
Laplace transform of function φ(t) the following inequality holds:

+∞∫
−∞

|φ̃(i τ)|
√

1 + τ 2 dτ ≤ C ‖φ‖W 2
2 (R+),

where C > 0 is a constant.

Now we prove Theorem 3.1.
Proof of Theorem 3.1. First of all, we prove that ν ∈ W 1

2 (R+). Due to (18)
and (19), we get the estimate

+∞∫
−∞

|ν̃(τ)|2(1 + |τ |2) dτ =

+∞∫
−∞

∣∣∣∣∣ φ̃(i τ)

K̃(i τ)

∣∣∣∣∣
2

(1 + |τ |2) dτ ≤

≤ C0

+∞∫
−∞

|φ̃(i τ)|2(1 + |τ |2)2 dτ = C0‖φ‖2
W 2

2 (R),

where C0 = min(C1,0, C2,0) is determined by (18).
Besides, we have

|ν(t)− ν(s)| =

∣∣∣∣∣∣
t∫

s

ν ′(y) dy

∣∣∣∣∣∣ ≤ ‖ν ′‖L2(t− s)1/2.

From (18), (19) and Proposition 3.3, we can write

|ν(t)| ≤ 1

2π

+∞∫
−∞

|φ̃(i τ)|
|K̃(i τ)|

dτ ≤

≤ 1

2πC0

+∞∫
−∞

|φ̃(i τ)|
√

1 + τ 2dτ ≤

≤ C

2πC0

‖φ‖W 2
2 (R+) ≤

CM

2πC0

= 1,

where M is as follows:
M =

2πC0

C
.

Conclusions

In this paper, the boundary control problem for a parabolic equation with involution
was considered. The studied boundary control problem was reduced to the Volterra
integral equation of the first kind by the Fourier method, and the existence of a solution
of the integral equation was proved using the Laplace transform method. In the fu-
ture research, we will continue to study boundary-value control problems for parabolic
equations involving involution, including proving the existence of control function in
two and n−dimensional domains.
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