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Abstract For a second-order hyperbolic equation with inhomogeneity |u|m−1u, m > 1, a
forward and an one-dimensional inverse problems are studied. The inverse problem is devoted
to determining the coefficient under heterogeneity. As an additional information, the trace of
the derivative with respect to x of the solution to the forward initial-boundary value problem
is given at x = 0 on a finite interval. Conditions for the unique solvability of the forward
problem are found. For the inverse problem a local existence and uniqueness theorems are
established and a stability estimate of its solutions is found.
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1 Introduction

In recent years, there has been an increasing number of scientific papers devoted to
solving both forward and inverse problems for nonlinear wave equations. Equations
containing nonlinearities of the form |u|p−1u are called defocusing. For example, vari-
ous formulations of forward problems and methods for solving them are considered in
articles [1–8].

Thus, in the paper [1] the asymptotic behavior of finite energy solutions of one-
dimensional defocusing nonlinear wave equation �u + |u|p−1u = 0, p > 1, is studied.
In [2], the internal stabilization and control of the critical nonlinear Klein–Gordon
equation �u + u + |u|4u = g on 3-D compact manifolds are studied. In work [3],
the authors prove the exponential stabilization of the semilinear wave equation �u =
γ(x)∂tu+βu+f(u), with an effective damping in a zone satisfying a geometric control
condition only. The nonlinearity is assumed to be subcritical, defocusing and analytic.
In [4], the global behaviors of solutions to defocusing semilinear wave equation �φ =
|φ|p−1φ in R1+d, d > 3, is investigated. For the case p > 1 + 2/(d− 1), an uniform
weighted energy estimate for the solution is obtained, as well as an inverse polynomial
attenuation of the energy flow through hypersurfaces away from the light cone is found.

In [5], a wave equation �u + |u|p−1u = 0 with a power nonlinearity is considered
, defined outside the unit ball in Rn, n > 3, with Dirichlet boundary conditions. It
is proved that if p > n + 3 and the initial data are nonradial perturbations of large
radial data, then there exists a global smooth solution. The solution is unique in
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the energy class solutions satisfying an energy inequality. Work [6] is devoted to the
study of the asymptotic behavior of solutions to the one-dimensional wave equation
�u+ |u|p−1u = 0. It is proved that the solution with finite energy tends to zero in the
pointwise sense, moreover, for sufficiently localized data belonging to some weighted
energy space, the solution decays in time with inverse polynomial velocity. In [7], the
equation �φ + |φ|p−1φ = 0 is studied on R × R2 \ K with the Dirichlet boundary
condition. Here, K is is a star-shaped obstacle with smooth boundary. It is proven
that the solution scatters both in energy space and the critical Sobolev space. In paper
[8], a mixed boundary value problem for the equation utt =

(
k(x)ux

)
x

+ c|u|p−1u,
is considered. Here p > 1 and c > 0 are constants. Using the method of energy
inequalities, estimates for the solution of the differential and difference problems are
obtained.

Inverse problems for nonlinear wave equations have been studied relatively recently,
but many results have already been obtained in solving these problems. Thus, in [9–11]
various formulations of inverse problems related to the determination of the Lorentz
metric or the coefficients included in these equations are considered.

In [9], nonlinear inverse problems for the wave equation �gu(x) + H(x, u(x)) are
considered on a Lorentzian manifoldM with Laplacian—Beltrami operator. It is shown
that, on a given space-time (M, g), the source-to-solution map determines some coef-
ficients of the Taylor expansion of H in u. In [10], for the semilinear wave equation
�gu + w(x, u,∇gu) = 0 on Lorentzian manifolds, the inverse problem of determin-
ing the background Lorentzian metric is studied. In [11], the inverse boundary value
problem is considered for a semilinear wave equation �u + H(x, u(x)) = 0 on a time-
dependent Lorentzian manifold M, with a time-like boundary. It is assumed that

H(x, z) ∼
∞∑
k=2

hk(x)zk, where hk ∈ C∞(M). The time-dependent coefficients in the

nonlinear terms of the equation can be reconstructed using knowledge of the Neumann-
Dirichlet mapping, which allows for the reconstruction of the time-dependent terms. It
was shown that either distorted plane waves or Gaussian beams can be used to derive
uniqueness.

In [12], the inverse problem of recovering the nonlinearity f(x, u) in the differential
equation �u+f(x, u) = 0 is considered. It is demonstrated that it is possible to recover
the function f(x, u) when it is odd in u, and it is also possible to recover the function
α(x) when f(x, u) = α(x)u2m. In [13], the geometric non-linear inverse problem of
recovering a Hermitian connection A from the source-to-solution map of the cubic
wave equation �Au+κ|u|2u = f , is considered. Here κ 6= 0, �A is the connection wave
operator in Minkowski space R1+3. The microlocal analysis is used for this nonlinear
wave interactions.

In [14], it is shown that the scattering operator for defocusing energy critical semilin-
ear wave equations �u+ f(u) = 0, f ∈ C∞(R), f ∼ u5, defines the function f . In [15],
the recovery of a potential associated with a semi-linear wave equation �u+ aum = 0
in Rn+1, n > 1, is investigated, where m is integer number, m > 2. The Hölder
stability estimate for the recovery of an unknown potential a(x, t) from its Dirichlet-
to-Neumann map is proved. In [16] the equation �u + α(x)|u|2u = 0 is considered
in two-dimensional and three-dimensional spaces. The inverse problems of restoring
the function α(x), 0 ≤ α(x) ∈ C∞0 are investigated, and it is shown that using the
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Radon transform, an unknown coefficient can be restored.
In [17] the inverse problem of determining the coefficient of a nonlinear term in

the equation �u = q(x)u2 + θ0(t)δ(x − y), where θ0(t) is the Heavisaid step-function,
is considered. The properties of the solutions to the forward problem are studied.
In particular, the existence and uniqueness of a bounded solution in a neighborhood
of a characteristic plain is established, and the structure of the solution is described.
In [18], the equation �u = f(x, u), (x, t) ∈ R4, is considered, where f(x, u) is a smooth
function by x and u and finite in x. The forward Cauchy problem is studied, and the
existence of a unique bounded solution in a neighborhood of a characteristic plane is
stated. An amplitude formula for the derivative of the solution with respect to t on
the front of the wave is derived. It is demonstrated that the solution of the inverse
problem reduces to a series of X-ray tomography problems.

In [19], for the nonlinear partial differential equation �u = q(x)uγ+1, where γ > 0,
the inverse problem of determining the function q(x) from boundary data is considered.
Here, it is assumed that the desired function q is a continuous and finite function for
x ∈ R3. It is shown that solutions to the corresponding forward problem for the given
differential equation are bounded in some neighborhood of the characteristic curve, and
an asymptotic expansion for the solution in this neighborhood is obtained. A theorem
on the uniqueness of solutions to the inverse problem is proved.

In [20] the equation �u = q(t)(ux)
m, where m > 1 is a number, is considered.

Theorems of the existence and uniqueness of the solution of the forward problem and a
local existence and stability of the solution of the inverse problem are proved. In [21], an
one-dimensional inverse problem of determining the nonlinear coefficient for a second-
order hyperbolic equation with nonlinear absorption: �u+σ(x)|ut|mut = 0, is studied,
here m > 0 is a real number. For the inverse problem, a local existence and uniqueness
theorem and a global stability estimate of its solutions are stated.

In the present paper we consider an one-dimensional inverse problem for equation
utt −

(
k2(x)ux

)
x
− q(x)|u|m−1u = 0 on semi-axis x > 0 with zero initial data and the

boundary condition u(0, t) = f(t). The main goal is to recover coefficient q(x) from
given k(x) and the derivative ux(0, t) given for t ∈ [0, T ]. We prove an uniqueness and
existence theorem for the forward problem when coefficients k(x) and q(a) as well as
function f(t) are given. Then we study the inverse problem and state a local uniqueness
and existence theorem for this problem. Moreover, a stability estimate of solutions to
the inverse problem is also found. Both theorems for forward and inverse problems are
new in the theory of inverse problems.

2 Posing of problems

Let T be a real positive number.
A forward problem. Determine the function u(x, t) satisfying the relations

utt −
(
k2(x)ux

)
x
− q(x)|u|m−1u = 0, x > 0, 0 < t ≤ T,

u|t=0 = ut|t=0 = 0, u|x=0 = f(t), t ∈ (0, T ],
(1)

where m > 1, k(x) is the continuously differentiable function, 0 < k1 6 k(x) 6 k2;
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q(x) is the continuous function; f(t) is the twice continuously differentiable function
and f(+0) = 1.
An inverse problem. Let f(t), k(x) be the given functions. Determine the function
q(x) in equation (1), given the following information about the solution to the forward
problem:

ux|x=0 = h(t), t ∈ [0, T ]. (2)

Let’s write equations (1) in form

utt − k2(x)uxx = 2k′(x)k(x)ux + q(x)|u|m−1u, x > 0, 0 < t ≤ T, (3)
u|t=0 = ut|t=0 = 0, (4)

u|x=0 = f(t), t ∈ (0, T ]. (5)

We make the change of variables

z = z(x) =

x∫
0

dξ

k(ξ)
, z ∈ [0, ζ(T/2)], z(0) = 0

in equalities (3)–(5). Here x = x(z) is the inverse function to z = z(x) and define
functions

k̂(z) := k(x(z)), q̂(z) := q(x(z)), U(z, t) := u(x(z), t).

Rewrite equations (3)–(5) in terms of these functions

∂2U

∂t2
− ∂2U

∂z2
= −K(z)

∂U

∂z
+ q̂(z)|U |m−1U, z > 0, t ∈ [0, T ], (6)

U |t=0 = Ut|t=0 = 0, (7)
U |z=0 = f(t), t ∈ (0, T ], (8)

where K(z) = −k̂′(z)/k̂(z).

Let us introduce the function V (z, t) =
U(z, t)

S(z)
, where function S(z) is determined

from equations
2S ′(z)

S(z)
= K(z), S(0) = 1, therefore

S(z) = exp

{
1

2

z∫
0

K(ξ) dξ

}
= exp

{
− 1

2

z∫
0

k̂′(ξ)

k̂(ξ)
dξ

}
=

√
k̂(0)

k̂(z)
.

Rewrite equations (6)–(8) in term of function V (z, t):

Vtt − Vzz = p(z)V + q̄(z)|V |m−1V := Φ(z, t), z > 0, t ∈ [0, T ], (9)
V |t=0 = Vt|t=0 = 0, (10)

V |z=0 = f(t), t ∈ (0, T ], (11)
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where

p(z) =
K ′(z)

2
− K2(z)

4
= − k̂

′′(z)

2k̂(z)
+

1

4

(
k̂′(z)

k̂(z)

)2

, q̄(z) = q̂(z)

(√
k̂(0)

k̂(z)

)m−1
.

Equation (2) in term of function V (z, t) will be as follows

Vz|z=0 = h(t)− K(0)

2
f(t) ≡ µ(t), t ∈ (0, T ]. (12)

3 An analysis of the forward problem
The solution of the problem (9)–(11) can be rewritten in the form

V (z, t) = f(t− z) +
1

2

t∫
0

dτ

z+t−τ∫
|z−t+τ |

[
p(ξ)V (ξ, τ) + q̄(ξ)|V (ξ, τ)|m−1V (ξ, τ)

]
dξ, (13)

or, since V = 0 for t < z, the equality (13) can be written in the form

V (z, t) = f(t− z) +
1

2

∫∫
D(z,t)

[
p(ξ)V (ξ, τ) + q̄(ξ)|V (ξ, τ)|m−1V (ξ, τ)

]
dξdτ, (14)

where D(z, t) is a rectangle bounded by the characteristics

ξ + τ = t+ z, ξ + τ = t− z, ξ − τ = z − t, ξ − τ = 0.

We’ll assume, that max
06z6T/2

|p(z)| 6 p0, max
06z6T/2

|q̄(z)| 6 q0. Consider the domain G(T ) =

{(z, t) | z < t 6 T − z}.

Lemma 3.1. Let p(z), q(z) ∈ C[0, T/2], f(t) ∈ C2[0, T ], 1 6 f(t) 6 F , f(+0) = 1.
Then there exists a number T1, 0 < T1 6 T , such that function V (z, t) is the unique
solution of the forward problem (9)–(11), and it is non-negative and continuous in the
domain G(T1).

Proof. Rewrite equation (14) in operator form:

V = A1V, (15)

where

A1V (z, t) = f(t− z) +
1

2

∫∫
D1(z,t)

[
p(ξ)V (ξ, τ) + q̄(ξ)|V (ξ, τ)|m−1V (ξ, τ)

]
dξdτ. (16)

For (z, t) ∈ G(T ) assume f̂(z, t) := f(t− z), then f̂ ∈ C(G(T )). The norm in space
C(G(T )) is defined, as usual, by the formula

‖ϕ‖C(G(T )) = sup
(z,t)∈G(T )

|ϕ(z, t)|.
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Consider the closed ball

B1
T := {ϕ ∈ C(G(T )) | ‖ϕ− f̂‖C(G(T )) 6 1}. (17)

Since the closed subset of the complete metric space is complete, then this ball is a
complete metric space with respect to the metric defined by the above norm.

By virtue of the condition of the lemma ‖f̂‖C(G(T )) = ‖f‖C[0, T ] 6 F . Let V ∈ B1
T ,

then by virtue of (17) we obtain

‖V ‖C(G(T )) = ‖V − f̂ + f̂‖C(G(T )) 6 ‖V − f̂‖C(G(T )) + ‖f̂‖C(G(T )) 6 1 + F. (18)

Using (16), (18), we get

‖A1V − f̂‖C(G(T )) = sup
(z,t)∈G(T )

|A1(V (z, t))− f(t− z)|

6
1

2
sup

(z,t)∈G(T )

∫∫
D1(z,t)

[
|p(ξ)|+ |q̄(ξ)||V (ξ, τ)|m−1

]
|V (ξ, τ)| dξdτ

6
[
p0 + q0(1 + F )m−1

]
(1 + F )

T 2

8
. (19)

It follows from the formulas (18) and (19), if the condition

T ′1 = T ′1(F ) = min
{
T,
√

8(p0(1 + F ) + q0(1 + F )m)−1/2
}

is satisfied, then the inequality ‖A1V − f̂‖C(G(T ′
1))
6 1 holds, i. e. A1V ∈ B1

T ′
1
. Thus,

A1 maps the ball B1
T ′
1
into itself.

Let us show that operator A1, defined by the equality (16), is compressive for
a sufficiently small T > 0.

For V ∈ B1
T the inequality

V (z, t) > f(t− z)− |V (z, t)− f(t− z)| > 0, (z, t) ∈ G(T ),

holds. Therefore, |V (z, t)| = V (z, t), and we can omit the modulus sign in the integrand
expression.

Let V1(z, t), V2(z, t) ∈ B1
T and we write the difference V m

1 (z, t)−V m
2 (z, t) as follows:

V m
1 (z, t)− V m

2 (z, t) = m

V1(z,t)∫
V2(z,t)

sm−1 ds,

and replace the variable in the integral

s = V1(z, t)s
′ + V2(z, t)(1− s′), ds = (V1(z, t)− V2(z, t)) ds′,

s = V2(z, t) ⇒ s′ = 0, s = V1(z, t) ⇒ s′ = 1.

as a result, we get

V m
1 (z, t)− V m

2 (z, t) = (V1(z, t)− V2(z, t))Rm(V1(z, t), V2(z, t)), (20)
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where

Rm(V1(z, t), V2(z, t)) = m

1∫
0

[
V1(z, t)s

′ + V2(z, t)(1− s′)
]m−1

ds′. (21)

Then using equations (18), (20) we conclude

|Rm(V1(z, t), V2(z, t))| 6 m(1 + F )m−1, (22)∣∣V m
1 (z, t)− V m

2 (z, t)
∣∣ 6 |V1(z, t)− V2(z, t)|m(1 + F )m−1. (23)

Let us estimate the difference

‖A1V1 − A1V2‖C(G(T )) = sup
(z,t)∈G(T )

|A1V1(z, t)− A1V2(z, t)|

6
1

2
sup

(z,t)∈G(T )

∫∫
D1(z,t)

(
|p(ξ)|

∣∣V1(ξ, τ)− V2(ξ, τ)
∣∣+ |q̄(ξ)|

∣∣V m
1 (ξ, τ)− V m

2 (ξ, τ)
∣∣) dξdτ

6
1

2
sup

(z,t)∈G(T )

∫∫
D1(z,t)

(
|p(ξ)|+ |q̄(ξ)||Rm(V1(z, t), V2(z, t))|

)∣∣V1(ξ, τ)− V2(ξ, τ)
∣∣ dξdτ

6
T 2

8

[
p0 + q0m(1 + F )m−1

]︸ ︷︷ ︸
=:ρ1

‖V1 − V2‖C(G(T )). (24)

It follows from (24) that for ρ1 ∈ (0, 1) we can choose

T ′′1 = T ′′1 (F, ρ1) = min
{
T,
√

8ρ1
(
p0 + q0m(1 + F )m−1

)−1/2}
so that

‖A1V1 − A1V2‖C(G(T ′′
1 )) 6 ρ1‖V1 − V2‖C(G(T ′′

1 )).

Then A1 is a compressive mapping on the set B1
T1
, where T1 = min

{
T ′1, T

′′
1

}
. Then,

according to Banach Compressive Mappings Principle, there exists a unique solution
of the operator equation (15) in BT1 . Lemma 3.1 has been proved. �

Theorem 3.1. When the conditions of Lemma 3.1 are fulfilled, the function V (z, t) ∈
C2(G(T1)).

Proof. By virtue of Lemma 3.1, equation (14) can be written in the form

V (z, t) = f(t− z) +
1

2

∫∫
D(z,t)

[
p(z)V (z, t) + q̄(z)V m(z, t)

]
dξdτ. (25)

We introduce new function Ψ(z, t) = [p(z)V (z, t) + q̄(z)V m(z, t)] and rewrite the
equation (25) in the form of a sum of repeated integrals

V (z, t) = f(t− z) +
1

2

(t−z)/2∫
0

dξ

t−z+ξ∫
t−z−ξ

Ψ(ξ, τ) dτ
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+
1

2

z∫
(t−z)/2

dξ

t−z+ξ∫
ξ

Ψ(ξ, τ) dτ +
1

2

(z+t)/2∫
z

dξ

t+z−ξ∫
ξ

Ψ(ξ, τ) dτ. (26)

Differentiating (26) by variables t and z, we find

∂V

∂t
(z, t) = f ′(t− z) +

1

2

z∫
0

Ψ(ξ, t− z + ξ) dξ

+
1

2

(z+t)/2∫
z

Ψ(ξ, z + t− ξ) dξ − 1

2

(t−z)/2∫
0

Ψ(ξ, t− z − ξ) dξ; (27)

∂V

∂z
(z, t) = −f ′(t− z)− 1

2

z∫
0

Ψ(ξ, t− z + ξ) dξ

+
1

2

(t−z)/2∫
0

Ψ(ξ, t− z − ξ) dξ +
1

2

(z+t)/2∫
z

Ψ(ξ, z + t− ξ) dξ. (28)

Since the expressions standing in the right parts of the equalities (27) and (28) are
continuous functions, then the expressions standing in the left parts of these equalities
are also continuous functions, therefore, Vt, Vz belong to C(G(T )).

Differentiating equality (27), (28) by variable t, we get

∂2V

∂t2
(z, t) = f ′′(t− z) +

1

4
Ψ

(
z + t

2
,
z + t

2

)
− 1

4
Ψ

(
t− z

2
,
t− z

2

)

+
1

2

z∫
0

Ψt(ξ, t− z + ξ) dξ +
1

2

(z+t)/2∫
z

Ψt(ξ, z + t− ξ) dξ

− 1

2

(t−z)/2∫
0

Ψt(ξ, t− z − ξ) dξ;

∂2V

∂t∂z
(z, t) = −f ′′(t− z) +

1

4
Ψ

(
z + t

2
,
z + t

2

)
+

1

4
Ψ

(
t− z

2
,
t− z

2

)

− 1

2

z∫
0

Ψt(ξ, t− z + ξ) dξ +
1

2

(z+t)/2∫
z

Ψt(ξ, z + t− ξ) dξ

+
1

2

(t−z)/2∫
0

Ψt(ξ, t− z − ξ) dξ; (29)

∂2V

∂z2
(z, t) = f ′′(t− z)−Ψ(z, t) +

1

4
Ψ

(
z + t

2
,
z + t

2

)
− 1

4
Ψ

(
t− z

2
,
t− z

2

)
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+
1

2

z∫
0

Ψt(ξ, t− z + ξ) dξ − 1

2

(t−z)/2∫
0

Ψt(ξ, t− z − ξ) dξ +
1

2

(z+t)/2∫
z

Ψt(ξ, z + t− ξ) dξ.

Since Ψ(z, t), Ψt(z, t) are continuous functions in G(T ), it follows from the above
equations that all second derivatives of the function V (z, t) are also continuous in
G(T ). Therefore, V (z, t) ∈ C2(G(T1)). Theorem 3.1 has been proved. �

Corollary 3.1. The above analysis of the forward problem allows us to draw certain
conclusions about the properties of the function µ(t), which is used in the inverse prob-
lem. From the fact that the function V (z, t) belongs to the space C2(G(T1)) it follows
that µ ∈ C1(G(T1)), and from the equality (28) for t = z = 0 we get µ(0) = −f ′(0).

4 An investigation of the inverse problem

Inverse problem. Let T be a given positive number, µ(t) be a given function, t∈[0, T ].
Find function q̄(z) in equation (9) from given information (12) about solution V (z, t)
to the forward problem (9)–(11).

Theorem 4.1. Let functions f(t) and µ(t) satisfy the conditions

f ∈ C2[0, T ], µ ∈ C1[0, T ],

1 = f(0) 6 f(t), µ(0) + f ′(0) = 0, f ′(t) + µ(t) > 0, t ∈ [0, T ].

Then there exist a positive number T0 6 T and unique function q̄(z) ∈ C[0, T0/2], such
that the solution to problem (9)–(11) satisfies condition (12) for t 6 T0.

Proof. Rewrite equation (14) in the form of a sum of repeated integrals

V (z, t) = f(t− z) +
1

2

(t−z)/2∫
0

dξ

t−z+ξ∫
t−z−ξ

Φ(ξ, τ) dτ

+
1

2

z∫
(t−z)/2

dξ

t−z+ξ∫
ξ

Φ(ξ, τ) dτ +
1

2

(z+t)/2∫
z

dξ

t+z−ξ∫
ξ

Φ(ξ, τ) dτ. (30)

Differentiating equation (30) by z, we get

∂V

∂z
(z, t) = −f ′(t− z)− 1

2

z∫
0

Φ(ξ, t− z + ξ) dξ

+
1

2

(t−z)/2∫
0

Φ(ξ, t− z − ξ) dξ +
1

2

(z+t)/2∫
z

Φ(ξ, z + t− ξ) dξ. (31)
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From (31) at z = 0 we get

µ(t) = −f ′(t) +

t/2∫
0

Φ(ξ, t− ξ) dξ. (32)

Differentiate equality (32) by the variable t, we find

µ′(t) + f ′′(t) =
1

2
Φ(t/2, t/2) +

t/2∫
0

Φt(ξ, t− ξ) dξ. (33)

From (13) to by virtue of the condition of the theorem 4.1 we have V (z, z) = f(+0) = 1.
Therefore

Φ(z, z) = p(z)V (z, z) + q̄(z)|V (z, z)|m−1V (z, z) = p(z) + q̄(z). (34)

Let us replace t/2 = z in equation (33). Then we get

µ′(2z) = −f ′′(2z) +
1

2
Φ(z, z + 0) +

1

2

z∫
0

Φ′t(ξ, 2z − ξ) dξ.

It follows from this equality by virtue of (34) that

q̄(z) = q̄0(z)−
z∫

0

Φ′t(ξ, 2z − ξ) dξ, 0 6 z 6 T/2, (35)

where
q̄0(z) = 2[f ′′(2z) + µ′(2z)]− p(z). (36)

Let us write out alternative equations for the functions V (z, t) and Vt(z, t). To do
this, we apply the d’Alembert’s formula to the following problem (9), (11), (12)

Vzz − Vtt = −
[
p(z)V + q̄(z)|V |m−1V

]
= −Φ(z, t),

V |z=0 = f(t), t ∈ (0, T ],

Vz|z=0 = µ(t), t ∈ [0, T ].

(37)

As a result, we get

V (z, t) = V 0(z, t)− 1

2

∫∫
D2(z,t)

[
p(z)V (ξ, τ) + q̄(z)|V (ξ, τ)|m−1V (ξ, τ)

]
dτdξ, (38)

where D2(z, t) = {(ξ, τ) | 0 6 ξ 6 z, t− z + ξ 6 τ 6 z + t− ξ},

V 0(z, t) =
f(t+ z) + f(t− z)

2
+

1

2

t+z∫
t−z

µ(τ) dτ. (39)
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The condition f ′(t) + µ(t) > 0 for t ∈ [0, T ] implies that

f(t+ z)− f(t− z) +

t+z∫
t−z

µ(τ)dτ > 0, (z, t) ∈ G(T ),

so

V 0(z, t) =
f(t+ z) + f(t− z)

2
+

1

2

t+z∫
t−z

µ(τ) dτ

=
f(t+ z)− f(t− z)

2
+

1

2

t+z∫
t−z

µ(τ) dτ

︸ ︷︷ ︸
>0

+f(t− z) > f(t− z) > 1, (z, t) ∈ G(T ).

(40)

Denote by γ0 = max
(z,t)∈G(T )

V 0(z, t). Then from (39), (40) we get

1 < V 0(z, t) 6 γ0, (z, t) ∈ G(T ), (41)

and denote by max
(z,t)∈[0,T/2]

|q̄0(z)| = q0/2. We shall assume that q̄(z) belongs to the set

{
q̄(z) ∈ C[0, T/2] | ‖q̄ − q̄0‖C[0,T/2] 6 q0/2

}
.

Then the following estimate holds: ‖q̄‖C[0,T/2] 6 q0.
To further prove the theorem 4.1 we shall prove the following Lemma.

Lemma 4.1. Let p(z) 6 p0 and q̄(z) 6 q0 for z ∈ [0, T/2]. Then there exists a
number T2, 0 < T2 6 T , such that the function V (z, t) is the unique solution of the
forward problem (37), and it is non-negative and continuous in the domain G(T2).

Proof. Lemma 4.1 is proved similarly to Lemma 3.1. Rewrite the equation (38) in
operator form: V = A2V , where

A2V (z, t) = V 0(z, t)− 1

2

∫∫
D2(z,t)

[
p(z)V (ξ, τ) + q̄(z)|V (ξ, τ)|m−1V (ξ, τ)

]
dτdξ. (42)

Consider the closed ball

B2
T := {V (z, t) ∈ C(G(T )) | ‖V − V 0‖C(G(T )) 6 1}, (43)

which is a complete metric space with respect to the metric defined by the norm
‖ · ‖C(G(T )).

Let V (z, t) ∈ B2
T , then by virtue of (41) we have

‖V ‖C(G(T )) = ‖V − V 0 + V 0‖C(G(T )) 6 ‖V − V 0‖C(G(T )) + ‖V 0‖C(G(T )) 6 1 + γ0. (44)
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In addition, using the inequality (40), we have

V (z, t) > V0(z, t)− |V (z, t)− V0(z, t)| > f(t− z)− 1 > 0, (z, t) ∈ G(T ). (45)

Using (42), (44), we get

‖A2V − V 0‖C(G(T )) = sup
(z,t)∈G(T )

|A2V (z, t)− V0(z, t)|

6
1

2
sup

(z,t)∈G(T )

∫∫
D2(z,t)

[
|p(ξ)||V (ξ, τ)|+ |q̄(ξ)||V (ξ, τ)|m

]
dξdτ

6
[
p0(1 + γ0) + q0(1 + γ0)

m
]T 2

8
. (46)

From the formulas (46) it follows that if

T ′2 = T ′2(γ0) = min
{
T1,
√

8(p0(1 + γ0) + q0(1 + γ0)
m)−1/2

}
the inequality ‖A2V − V 0‖C(G(T ′

2))
6 1, is fulfilled, i. e. A2V ∈ B2

T ′
2
. Thus, A2 maps

the ball B2
T ′
2
into itself.

Let us show that the operator A2, defined by the equality (43), is compressive for
a sufficiently small T > 0.

Let V1(z, t) and V2(z, t) ∈ B2
T . By virtue of (45) |V (z, t)| = V (z, t) for V (z, t) ∈ B2

T ,
therefore, we can omit the modulus sign in the integrand expression. Using (23) we
estimate the difference

‖A2V1 − A2V2‖C(G(T )) = sup
(z,t)∈G(T )

|A2V1(z, t)− A2V2(z, t)|

6
1

2
sup

(z,t)∈G(T )

∫∫
D2(z,t)

(
|p(ξ)|

∣∣V1(ξ, τ)− V2(ξ, τ)
∣∣+ |q̄(ξ)|

∣∣V m
1 (ξ, τ)− V m

2 (ξ, τ)
∣∣) dξdτ

6
1

2
sup

(z,t)∈G(T )

∫∫
D2(z,t)

(
|p(ξ)|+ |q̄(ξ)||Rm(V1(z, t), V2(z, t))|

)∣∣V1(ξ, τ)− V2(ξ, τ)
∣∣ dξdτ

6
T 2

8

[
p0 + q0m(1 + γ0)

m−1]︸ ︷︷ ︸
=:ρ2

‖V1 − V2‖C(G(T )). (47)

It follows from (47) that for ρ2 ∈ (0, 1) we can choose

T ′′2 = T ′′2 (γ0, ρ2) = min
{
T1,

√
8ρ2
(
p0 + q0m(1 + γ0)

m−1)−1/2}
so that

‖A2V1 − A2V2‖C(G(T ′′
1 )) 6 ρ2‖V1 − V2‖C(G(T ′′

1 )).

Then A2 is a compressive mapping on the set B2
T2
, where T2 = min

{
T ′2, T

′′
2

}
. Then,

according to Banach Compressive Mappings Principle, there exists a unique solution
of the operator equation V = A2V in BT2 . Lemma 4.1 has been proved. �
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By virtue of Lemma 4.1, equation (38) can be written as follows:

V (z, t) = V 0(z, t)− 1

2

z∫
0

dξ

t+z−ξ∫
t−z+ξ

[
p(z)V (ξ, τ) + q̄(z)V m(ξ, τ)

]
dτdξ,

(z, t) ∈ G(T2). (48)

Differentiate (48) by the variable t, we find

Vt(z, t) =
∂V 0

∂t
(z, t)− 1

2

z∫
0

([
p(ξ)V (ξ, t+ z − ξ) + q̄(ξ)V m(ξ, t+ z − ξ)

]
−
[
p(ξ)V (ξ, t− z + ξ) + q̄(ξ)V m(ξ, t− z + ξ)

])
dξ.

Denote Vt(z, t) = W (z, t). As a result, we get

W (z, t) = W 0(z, t)− 1

2

z∫
0

([
p(ξ)V (ξ, t+ z − ξ) + q̄(ξ)V m(ξ, t+ z − ξ)

]
−
[
p(ξ)V (ξ, t− z + ξ) + q̄(ξ)V m(ξ, t− z + ξ)

])
dξ, (z, t) ∈ G(T2), (49)

where

W 0(z, t) =
∂V0
∂t

(z, t) =
f ′(t+ z) + f ′(t− z)

2
+
µ(t+ z)− µ(t− z)

2
. (50)

Denote ‖W 0‖C(G(T2)) = γ1/2.
Rewrite the equation (35) in form

q̄(z) = q̄0(z)−
z∫

0

[
p(ξ) +mq̄(ξ)V m−1(ξ, 2z − ξ)

]
W (ξ, 2z − ξ) dξ, z ∈ [0, T2/2]. (51)

We have obtained a closed system of equations (51), (48), (49):

q̄(z) = q̄0(z)−
z∫

0

[
p(ξ) +mq̄(ξ)V m−1(ξ, 2z − ξ)

]
W (ξ, 2z − ξ) dξ,

V (z, t) = V 0(z, t)− 1

2

z∫
0

dξ

t+z−ξ∫
t−z+ξ

[
p(z)V (ξ, τ) + q̄(z)V m(ξ, τ)

]
dτ, (52)

W (z, t) = W 0(z, t)− 1

2

z∫
0

([
p(ξ)V (ξ, t+ z − ξ) + q̄(ξ)V m(ξ, t+ z − ξ)

]
−
[
p(ξ)V (ξ, t− z + ξ) + q̄(ξ)V m(ξ, t− z + ξ)

])
dξ.
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In equalities (52) (z, t) ∈ G(T2). Further, for convenience of writing, we will omit
the index 2, assuming T2 = T .

Let us define the vector functions

g = (g1, g2, g3), g0(z, t) =
(
g01(z), g02(z, t), g03(z, t)

)
,

g1(z) = q̄(z), g2(z, t) = V (z, t), g3(z, t) = W (z, t),

g01(z) = q̄0(z), g02(z, t) = V 0(z, t), g03(z, t) = W 0(z, t)

(53)

and rewrite the equations (52) in operator form

g = Âg, (54)

where the operator Â = (Â1, Â2, Â3) is defined as follows:

Â1g = g01(z)−
z∫

0

[
p(ξ) +mg1(ξ)g

m−1
2 (ξ, 2z − ξ)

]
g3(ξ, 2z − ξ) dξ,

Â2g = g02(z, t)− 1

2

z∫
0

dξ

t+z−ξ∫
t−z+ξ

[
p(ξ)g2(ξ, τ) + g1(ξ)g

m
2 (ξ, τ)

]
dτ, (55)

Â3g = g03(z, t)− 1

2

z∫
0

([
p(ξ)g2(ξ, t+ z − ξ) + g1(ξ)g

m
2 (ξ, t+ z − ξ)

]
−
[
p(ξ)g2(ξ, t− z + ξ) + g1(ξ)g

m
2 (ξ, t− z + ξ)

])
dξ.

Denote by C(G(T )) = C[0, T/2]× C(G(T ))× C(G(T )) space of continuous vector
functions with norm

‖g‖C(G(T )) = max
{
‖g1‖C[0,T/2],max

k=2,3
‖gk‖C(G(T ))

}
. (56)

Since g0 ∈ C(G(T )), then all vector functions defined in (53) are elements of
C(G(T )). We introduce in this Banach space the closed set

RT :=
{
g ∈ C(G(T )) |

∥∥g1 − g01∥∥C[0,T/2]
6 q0/2,∥∥g2 − g02∥∥C(G(T ))

6 1,
∥∥g3 − g03∥∥C(G(T ))

6 γ1/2
}
. (57)

The following estimates

g2(z, t) ≥ 0, ‖g1‖C[0,T/2] 6 q0, ‖g2‖C(G(T )) 6 1 + γ0, ‖g3‖C(G(T )) 6 γ1 (58)

hold true on this set.
Using (55), (58), we can write the estimates for |Âkg − g0k|, k = 1, 2, 3,

|Â1g − g01| 6
z∫

0

[
|p(ξ)|+m|g1(ξ)||g2(ξ, 2z − ξ)|m−1

]
|g3(ξ, 2z − ξ)| dξ
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6
T

2

[
p0 +mq0(1 + γ0)

m−1]γ1,
|Â2g − g02| 6

1

2

z∫
0

dξ

t+z−ξ∫
t−z+ξ

[
|p(ξ)|+ |g1(ξ)||g2(ξ, τ)|m−1

]
|g2(ξ, τ)| dτ

6
T 2

8

[
p0(1 + γ0) + q0(1 + γ0)

m
]
, (59)

|Â3g − g03| 6
1

2

z∫
0

([
|p(ξ)|+ |g1(ξ)|g2(ξ, t+ z − ξ)|m−1

]
|g2(ξ, t+ z − ξ)|

+
[
|p(ξ)|+ |g1(ξ)|g2(ξ, t− z + ξ)|m−1

]
|g2(ξ, t− z + ξ)|

)
dξ

6
T

2

[
p0(1 + γ0) + q0(1 + γ0)

m
]
.

From the formulas (59) it follows that when

T ′0 = T ′0(q0, γ0, γ1) = min
{
T2, q0

[(
p0 +mq0(1 + γ0)

m−1)γ1]−1,
√

8
[
p0(1 + γ0) + q0(1 + γ0)

m
]−1/2

, γ1
[
p0(1 + γ0) + q0(1 + γ0)

m
]−1}

the following inequalities hold

‖Â1g − g01‖C[0,T ′
0/2]
6 q0/2, ‖Â2g − g02‖C(G(T ′

0))
6 1, ‖Â3g − g03‖C(G(T ′

0))
6 γ1/2.

Thus, Â maps RT ′
0
into itself.

Now we demonstrate that the operator Â, defined by the equality (54), is compres-
sive for a sufficiently small T > 0.

Let
g1 = (g11, g

1
2, g

1
3), g2 = (g21, g

2
2, g

2
3), gk ∈ RT , k = 1, 2.

Note that similarly to (20), (21) we can write(
g12(z, t)

)m − (g22(z, t)
)m

=
(
g12(z, t)− g22(z, t)

)
Rm

(
g12(z, t), g22(z, t)

)
,

Rm

(
g12(z, t), g22(z, t)

)
= m

1∫
0

[
g12(z, t)s′ + g22(z, t)(1− s′)

]m−1
ds′.

(60)

Moreover, by virtue of (58) similarly to (22) we have∣∣Rm

(
g12(z, t), g22(z, t)

)∣∣ 6 m(1 + γ0)
m−1,∣∣g12(z, t)

)m − (g22(z, t)
)m∣∣ 6 ∣∣g12(z, t)− g22(z, t)

∣∣∣∣Rm

(
g12(z, t), g22(z, t)

)∣∣. (61)

Using the formulas (23), (55), (60), (61), we estimate the differences |Âkg1 − Âkg
2|,

k = 1, 3,
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|Â1g
1 − Â1g

2| 6
z∫

0

[
|p(ξ)|

∣∣g13(ξ, 2z − ξ)− g23(ξ, 2z − ξ)
∣∣

+m
∣∣g11(ξ)− g21(ξ)

∣∣∣∣g12(ξ, 2z − ξ)
∣∣m−1∣∣g13(ξ, 2z − ξ)

∣∣]
+m

∣∣g21(ξ)
∣∣∣∣g12(ξ, 2z−ξ)−g22(ξ, 2z−ξ)

∣∣∣∣Rm−1
(
g12(ξ, 2z−ξ), g22(ξ, 2z−ξ)

)∣∣∣∣g13(ξ, 2z−ξ)
∣∣

+m
∣∣g21(ξ)

∣∣∣∣g22(ξ, 2z − ξ)
∣∣m−1∣∣g13(ξ, 2z − ξ)− g23(ξ, 2z − ξ)

∣∣] dξ
6
T

2

[
p0+m(1+γ0)

m−1γ1+mq0(m−1)(1+γ0)
m−2γ1+mq0(1+γ0)

m−1]‖g1−g2‖C(G(T ))

=
T

2

[
p0 +m(1 + γ0)

m−2[(1 + γ0)(γ1 + q0) + q0(m− 1)γ1
]]︸ ︷︷ ︸

=:α1

‖g1 − g2‖C(G(T )),

|Â2g
1 − Â2g

2| 6 1

2

z∫
0

dξ

t+z−ξ∫
t−z+ξ

(
|p(ξ)|

∣∣g12(ξ, τ)− g22(ξ, τ)
∣∣+
∣∣g11(ξ)− g21(ξ)

∣∣∣∣g12(ξ, τ)
∣∣m

+
∣∣g21(ξ)|

∣∣g12(ξ, τ)− g22(ξ, τ)
∣∣∣∣Rm

(
g12(ξ, τ), g22(ξ, τ)

)∣∣) dτ
6
T 2

8

[
p0 + (1 + γ0)

m +mq0(1 + γ0)
m−1]︸ ︷︷ ︸

=:α2

‖g1 − g2‖C(G(T )), (62)

|Â3g
1−Â3g

2| 6 1

2

z∫
0

(
|p(ξ)|

∣∣g12(ξ, t+z−ξ)−g22(ξ, t+z−ξ)
∣∣+∣∣g11(ξ)−g21(ξ)

∣∣∣∣g12(ξ, t+z−ξ)
∣∣m

+
∣∣g21(ξ)

∣∣g12(ξ, t+ z − ξ)− g22(ξ, t+ z − ξ)
∣∣∣∣Rm

(
g12(ξ, t+ z − ξ), g22(ξ, t+ z − ξ)

)∣∣
+ |p(ξ)|

∣∣g12(ξ, t− z + ξ)− g22(ξ, t− z + ξ)
∣∣+
∣∣g11(ξ)− g21(ξ)

∣∣∣∣g12(ξ, t− z + ξ)
∣∣m

+
∣∣g21(ξ)

∣∣g12(ξ, t− z + ξ)− g22(ξ, t− z + ξ)
∣∣∣∣Rm

(
g12(ξ, t− z + ξ), g22(ξ, t− z + ξ)

)∣∣) dξ
6
T

2

[
p0 + (1 + γ0)

m +mq0(1 + γ0)
m−1]︸ ︷︷ ︸

=:α3

‖g1 − g2‖C(G(T )).

Let ρ ∈ (0, 1) and we choose T ′′0 from the condition

T ′′0 = T ′′0 (q0, γ0, γ1) = min

{
T2,

2ρ

α1

,

√
8ρ

α2

,
2ρ

α3

}
,

then ‖ÂV1 − ÂV2‖C(G(T ′′
0 )) 6 ρ‖V1 − V2‖C(G(T ′′

0 )). Thus, Â is a compressive mapping
on the set RT0 , where T0 = T0(q0, γ0, γ1) = min

{
T ′0, T

′′
0

}
. Then there exists a unique

solution of the operator equation (54) in RT0 . Theorem 4.1 has been proved. �
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5 A stability estimate of the solution to the inverse
problem

Let T0 = T0(q0, γ0, γ1) is the number defined in theorem 4.2. Define the class of
functions

Q(q0) =
{
q̄ ∈ C[0, T0/2] | ‖q̄ − q̄0‖C[0,T/2] 6 q0/2

}
.

Here the number q0 and the function q̄0(z) are defined in the previous section (see (36)).
We also define the class F(γ0, γ1) consisting of functions f(t), µ(t) for which the con-
ditions of the theorem 4.1 are fulfilled and, in addition, for the functions V 0(z, t) and
W 0(z, t) defined by formulas (39) and (50), respectively, the conditions

max
(z,t)∈G(T0)

V 0(z, t) 6 γ0, max
(z,t)∈G(T0)

|W 0(z, t)| 6 γ1/2

hold.

Theorem 5.1. Let the functions q̄k ∈ Q(q0), k = 1, 2, be solutions of inverse problem
(9)–(12) with data (fk, µk) ∈ F(γ0, γ1) for k = 1, 2. Then there exists a positive number
C = C(q0, γ0, γ1, T0) such that the following estimate

‖q̄1 − q̄2‖C[0,T0/2] 6 C
(
‖µ1 − µ2‖C1[0,T0] + ‖f1 − f2‖C2[0,T0]

)
. (63)

is valid.

Proof. Rewrite equations (52) as follows:

q̄(z) = 2[f ′′(2z) + µ′(2z)]− p(z)

−
z∫

0

[
p(ξ) +mq̄(ξ)V m−1(ξ, 2z − ξ)

]
W (ξ, 2z − ξ) dξ,

V (z, t) =
f(t+ z) + f(t− z)

2
+

1

2

t+z∫
t−z

µ(τ) dτ

− 1

2

z∫
0

dξ

t+z−ξ∫
t−z+ξ

[
p(z)V (ξ, τ) + q̄(z)V m(ξ, τ)

]
dτ, (64)

W (z, t) =
f ′(t+ z) + f ′(t− z)

2
+
µ(t+ z) + µ(t− z)

2

− 1

2

z∫
0

([
p(ξ)V (ξ, t+ z − ξ) + q̄(ξ)V m(ξ, t+ z − ξ)

]
−
[
p(ξ)V (ξ, t− z + ξ) + q̄(ξ)V m(ξ, t− z + ξ)

])
dξ.

Let us define the functions

q̃ = q̄1 − q̄2, Ṽ1 = V1 − V2, W̃1 = W1 −W2, µ̃ = µ1 − µ2, f̃ = f1 − f2,
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and, using (23), we write the equations (64) in terms of functions q̃, Ṽ , W̃ , µ̃, f̃ . As a
result, we obtain the following relations

q̃(z) = 2[f̃ ′′(2z) + µ̃′(2z)]−
z∫

0

[
p(ξ)W̃ (ξ, 2z− ξ) +mq̃(ξ)V m−1

1 (ξ, 2z− ξ)W1(ξ, 2z− ξ)

+mq̄2(ξ)Ṽ (ξ, 2z − ξ)Rm−1(V1(ξ, 2z − ξ), V2(ξ, 2z − ξ))W1(ξ, 2z − ξ)
+mq̄2(ξ)V

m−1
2 (ξ, 2z − ξ)W̃ (ξ, 2z − ξ)

]
dξ, (65)

Ṽ (z, t) =
f̃(t+ z) + f̃(t− z)

2
+

1

2

t+z∫
t−z

µ̃(τ) dτ

− 1

2

z∫
0

dξ

t+z−ξ∫
t−z+ξ

[
p(z)Ṽ (ξ, τ) + q̃(z)V m

1 (ξ, τ)

+ q̄2(z)Ṽ (ξ, τ)Rm(V1(ξ, τ), V2(ξ, τ))
]
dτ, (66)

W̃ (z, t) =
f̃ ′(t+ z) + f̃ ′(t− z)

2
+
µ̃(t+ z) + µ̃(t− z)

2

− 1

2

z∫
0

([
p(ξ)Ṽ (ξ, t+ z − ξ) + q̃(ξ)V m

1 (ξ, t+ z − ξ)

+ q̄2(ξ)Ṽ (ξ, t+ z − ξ)Rm(V1(ξ, t+ z − ξ), V2(ξ, t+ z − ξ))
]

−
[
p(ξ)Ṽ (ξ, t− z + ξ) + q̃(ξ)V m

1 (ξ, t− z + ξ)

+ q̄2(ξ)Ṽ (ξ, t− z + ξ)Rm(V1(ξ, t− z + ξ), V2(ξ, t− z + ξ))
])
dξ. (67)

Denote ψ(z) = max{|q̃(z)|,max
t
|Ṽ (z, t)|,max

t
|W̃ (z, t)|}. Using (58), from (65)–(67)

we can write

|q̃(z)| 6 2
(
‖f̃‖C2[0,T ] + ‖µ̃‖C1[0,T ]

)
+

z∫
0

[
p0 +m(1 + γ0)

m−1γ1

+mq0(m− 1)(1 + γ0)
m−2γ1 +mq0(1 + γ0)

m−1]ψ(ξ) dξ,

|Ṽ (z, t)| 6 ‖f̃‖C[0,T ] + T‖µ̃‖C[0,T ] +
T

2

z∫
0

[
p0 + (1 + γ0)

m + q0m(1 + γ0)
m−1]ψ(ξ) dξ,

(68)

|W̃ (z, t)| 6 ‖f̃‖C1[0,T ] + ‖µ̃‖C[0,T ] +

z∫
0

[
p0 + (1 + γ0)

m + q0m(1 + γ0)
m−1]ψ(ξ) dξ.
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From (68) we get

ψ(z) 6 C1

(
‖f̃‖C2[0,T0] + ‖µ̃‖C1[0,T0]

)
+ C2

z∫
0

ψ(z) dξ, (69)

where C1 = max{2, T0},

C2 = max
{[
p0 +m(1 + γ0)

m−1γ1 +mq0(m− 1)(1 + γ0)
m−2γ1 +mq0(1 + γ0)

m−1],[
p0 + (1 + γ0)

m + q0m(1 + γ0)
m−1]max{1, T0/2}

}
.

Using Gronwall’s inequality, we obtain the estimate

|ψ(z)| 6 C1

(
‖f̃‖C2[0,T0] + ‖µ̃‖C1[0,T0]

)
ezC2 , z ∈ [0, T0/2]. (70)

The required stability estimate (63) follows from (70) with C = C1e
C2T0/2. Theorem 5.1

has been proved. �

Corollary 5.1. The uniqueness of the solution to inverse problem (9)–(12) follows
from estimate (63).
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