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Abstract In this paper, a multiscale approach with partially explicit time discretization is
proposed. The idea is to use a partially explicit time scheme, considering a filtration problem
in a fractured medium, where the implicit scheme is used for nodes whose subdomains contain
fractures, and the explicit scheme is used for all others. In this way, it is possible to use a
time step that is independent of the diffusion coefficient for fractures. Numerical results
demonstrating high accuracy of calculations are presented.
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1 Introduction

Multiscale methods are relevant in various fields where phenomena occur at multiple
scales or levels of detail. In numerical simulations and modeling, multiscale methods
are used to address problems that involve multiple spatial or temporal scales. By
considering different scales simultaneously, these methods can provide a more compre-
hensive understanding of the system’s behavior and capture important features that
may be missed by traditional numerical methods. Overall, multiscale methods play an
important role in bridging the gap between different scales of analysis, allowing for a
more comprehensive understanding of complex systems [1, 2].

The contrast of parameters refers to significant variations or disparities in the prop-
erties or characteristics of the system being studied across different scales. This can
include variations in material properties, boundary conditions, or other relevant pa-
rameters. The contrast of parameters strongly influences the solution of a multiscale
problem. Multiscale methods are specifically designed to solve these problems by con-
structing basis functions that can efficiently handle parameter variations across different
scales [3, 4].

Nevertheless, the high contrast of parameters can affect the choice of time integra-
tion schemes in time-dependent problems. Explicit time schemes rely on small time
steps to ensure stability and accuracy. However, in the presence of high parameter
contrast, the time step size may need to be further reduced to capture the fast dy-
namics associated with the high-contrast regions. This can significantly increase the
computational cost and make the explicit time scheme impractical or inefficient for
such problems.
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In such cases, alternative time integration schemes, such as implicit or partially
explicit methods, may be more suitable to handle the high contrast and ensure stability
and efficiency [5]. For example, [6] proposes a new approach to solve the problem of
poroelasticity in fractured media based on hybrid explicit-implicit learning (HEI). To
facilitate the calculations, the authors use the fixed strain and fixed stress splitting
schemes. The main idea of the proposed method lies in partial learning. The proposed
splitting algorithm in [7] treats dominant multiscale modes in the implicit fashion, while
the rest in the explicit fashion. The contrast-independent stability of these algorithms
requires a special multiscale space design, which is the main purpose of the paper. It is
shown that with an appropriate choice of multiscale spaces, an unconditional contrast
stability can be achieved.

In this paper, we propose a multiscale approach with partially explicit time dis-
cretization. This approach is based on a meshfree generalized multiscale finite element
method [8, 9]. The idea of the partially explicit scheme is to split the vector of coarse
mesh solutions for the stiffness matrix into two parts: with fast processes (with frac-
tures) and slow processes (without fractures). Next, use an implicit time scheme for
nodes with fast processes, and an explicit time scheme for all others. In this way, it is
possible to use a time step that is independent of the diffusion coefficient for fractures.

2 Problem formulation

In this paper, we consider the problem of single-phase filtration in a fractured porous
medium. The mathematical model is described by a coupled system of differential
equations for the pressure pm in the porous matrix Ω and the pressure pf in the fractures
γ

cm
∂pm
∂t
− div

(
km
µ

grad pm

)
+ q(pm − pf ) = 0, x ∈ Ω,

cf
∂pf
∂t
− div

(
kf
µ

grad pf

)
+ q(pf − pm) = 0, x ∈ γ,

(1)

where ci is the media compressibility, ki is the media permeability, µ is the fluid viscosity
and q is the mass transfer coefficient (i = m, f).

System of equation (1) is supplemented by the initial and boundary conditions

pi = p0, t = 0,

pm = g, x ∈ ξ,
pf = g, x ∈ ξ,

−km
µ

(grad pm, n) = 0, x ∈ ∂Ω,

−kf
µ

(grad pf , n) = 0, x ∈ ∂γ.

For our numerical tests, we take two different computational domains as shown
in the Figure 2 to show the robustness of our proposed approach. Here, in the first
geometry there are few fractures (Test 1), and in the second there is a more complicated
permeability field with a large number of fractures (Test 2).
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3 Fine-grid discretization

Let us define an uniform, for simplicity, time grid ωt = {tn = nτ, n = 0, 1, . . . , Nt −
1, τNt = tmax}, where τ - time step, Nt - number of time steps and tmax - solution
time. Here we use the implicit time discretization of the system (1). For spatial
approximation on a fine grid, we use the continuous Galerkin finite element method
with standard linear basis functions (FEM). For the fractures accounting we use the
discrete fracture model (DFM) [10, 11]. We use the superposition principle and assume
that p1 = p2 = p. Then, summing the equations of the system (1), we obtain the
following variational problem: find pn+1 ∈ V such that

m(
pn+1 − pn

τ
, v) + a(pn+1, v) = 0, n = 0, 1, . . . , Nt − 1,

where

m = m1 +m2, a = a1 + a2,

m1(
pn+1 − pn

τ
, v) =

∫
Ω

cm
pn+1 − pn

τ
vdx,

m2(
pn+1 − pn

τ
, v) = α

∫
γ

cf
pn+1 − pn

τ
vds,

a1(pn+1, v) =

∫
Ω

(
km
µ

grad pn+1, grad v

)
dx,

a1(pn+1, v) = α

∫
γ

(
kf
µ

grad pn+1, grad v

)
ds,

(2)

where ∀v ∈ V̂ . Here pn ≈ p(tn) and α is the fracture aperture.
We build an unstructured mesh Th and construct discrete function space Vh ⊂ V .

Then we use ph = (ph,1, ph,2, . . . , ph,Nf )
T to denote the vector of the required unknowns,

where Nf – the number of fine mesh vertices. Next we write the following matrix form
for the fully discrete system

M
pn+1
h − pnh
τ

+ Apn+1
h = 0, (3)

where

M = {mij}, mij = m1(φj, φi) +m2(φ̂j, φ̂i),

A = {aij}, aij = a1(φj, φi) + a2(φ̂j, φ̂i),
(4)

where φi – two-dimensional and φ̂i – one-dimensional fine-scale piecewise linear basis
functions for the porous medium and fractures.
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4 Meshfree GMsFEM

In this section, we give a brief description of the Meshfree GMsFEM algorithm for our
problem. In offline stage we have the following steps

1. Generation of meshfree coarse grid depending on fractures.

2. Construction of a multiscale offline space.

3. Assembling a projection matrix into a multiscale offline space.

In the online stage, the fine-grid system is converted to a coarse grid system using the
resulting projection matrix. As a result, the problem (2) is solved on a coarse grid.

4.1 Meshfree coarse scale

In Meshfree GMsFEM we use a point cloud instead of a structured triangular coarse
grid. Let SH be a partition of the computational domain Ω to the point cloud so that
Ω ⊂

⋃N
i=1 Si and suppose that each coarse element Si is partitioned into a connected

union of elements of a fine grid. Let {xi}Ni=1 is the coarse-scale nodes, where N denotes
the number of coarse nodes. Here, the coarse elements Si are the supports of basis
functions

Si = {y ∈ RN : ‖ y − xi ‖≤ ri},

where ri is radius of coarse element Si.
We denote the basis functions by ψi,k, which is supported in Si, and the index k

represents the numbering of these basis functions. In turn, the solution will be sought
as

pc(x) =
∑
i,k

ci,kψi,k(x). (5)

Here the function pc(x) is general, referring to the pressure. This is due to the fact that
the problem for the pressure is solved sequentially and for problem (2) the multiscale
method will be almost the same. Where the multiscale method differs, we will point it
out.

The main difficulties of the meshfree method are the choice of the location of points
{xi}Ni=1, as well as the sizes of ri for {Si}Ni=1. The version of CVT (centroidal Voronoi
tessellations) proposed in [12] is used in this work. An important point here is the
choice of the distribution density function ρ(x). Here we calculate the distribution
density function ρ(x) of a random variable taking into account the fractures using the
following problem

− div (β grad ρ) + ρ = f, x ∈ Ω,

−β ∂ρ
∂n

= 0, x ∈ ∂Ω,
(6)

where f is a piecewise linear function depending on the location of the fractures and β is
a smoothing parameter, which in our case β = 5 was chosen by numerical experiments.
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Here the right hand side in discrete form is defined as

fh(xi) =

{
105, xi ∈ γ,
1, otherwise,

where i = 1, 2, . . . , Nf and Nf is a number of nodes of the fine grid. Next, we use the
algorithm proposed in [13] for finding the radii ri for Si.

4.2 Local basis functions

To construct the offline space V S
off, we solve the following local eigenvalue problem in

each Si
AΨoff = λoffBΨoff,

where A and B denote similar fine-scale matrices as

A = {aij}, aij =

∫
S

(λ1 gradφj, gradφi) dx+ α

∫
γS

(
λ2 grad φ̂j, grad φ̂i

)
ds,

B = {bij}, bij =

∫
S

(λ1φj, φi) dx+ α

∫
γS

(
λ2φ̂j, φ̂i

)
ds.

For definition of the multiscale basis functions, we select the first M eigenvectors cor-
responding to the first M smallest eigenvalues.

4.3 Global formulation

In the meshfree multiscale method the shape functions Wi(x) defined in Si form the
initial coarse space

V init
0 = span{Wi(x)}Ni=1.

Here the shape functions Wi(x) are defined as

Wi(x) =
φi(x)∑N
j=1 φj(x)

,

where φi(x) are kernel functions, which here are cubic splines

φ(r) = 2


2/3 + 4 (r − 1) r2, r ≤ 0.5,
4/3 (1− r)3, 0.5 ≤ r ≤ 1,
0, 1 ≤ r,

where r is the normalized distance.
Accordingly, by multiplying the form function Wi(x) by the eigenvectors ψoff

k , we
obtain the basis functions in the offline space Voff

ψi,k = Wiψ
off
k , 1 ≤ i ≤ N, 1 ≤ k ≤M,

where k is an index of the eigenvector. Next, we construct the spectral multiscale space

Voff = span{ψi,k : 1 ≤ i ≤ N, 1 ≤ k ≤M}.



86 Nikiforov D. Ya.

Also, for further use, an operator matrix is constructed

RT = [ψ1, . . . , ψNc ],

where Nc = N ∗M and ψi are used to denote the nodal values of each basis function
defined on the fine grid. An example illustration of multiscale functions is shown in
Figure 1.

The transition matrix R is then used to solve the following system on the coarse
scale

Mc
pn+1
c − pnc
τ

+ Acp
n+1
c = 0, (7)

where
Mc = RMRT , Ac = RART .

After solving the system (7), we can go from a coarse-scale solution to a fine-scale
solution using also the transition operator R and the solution pc

pms = RTpc,

where pms is a fine-grid projection of the coarse-grid solution.

Figure 1: Illustration of multiscale functions. Left: shape function Wi(x). Middle:
eigenvector ψoff

k . Right: multiscale basis function ψi,k.

4.4 Partially explicit scheme

Here we will discuss the time partially explicit scheme at the coarse mesh nodes. All
indices and functions correspond to the coarse mesh only. First we have the discrete
multiscale function space Voff and discrete solutions pc ∈ Voff. We can represent the
required function in the form of node values

pc =
N∑
i=1

ciψi,

where for convenience, in contrast to the sum (5), we have reduced the index over the
basis functions k, that is, ci =

∑M
j=1 c

j
i and ψi =

∑M
j=1 ψ

j
i . We use pc = (c1, c2, . . . , cN)T

to denote the vector of the required unknowns.
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Let N = NI +NE, where NI is the number of subdomains Si that contain fractures,
and NE is the number without fractures. Then we can write

N∑
i=1

ciψi =

NI∑
i=1

ciψi +
N∑

i=NI+1

ciψi,

or pc = (pI , pE)T , where pI = (c1, c2, . . . , cNI
)T and pE = (cNI+1, cNI+2, . . . , cN)T . Then,

we have following system for the multiscale problem: find pn+1
c ∈ VH such that

Mc
pn+1
c − pnc
τ

+ Ac

(
pn+1
I

pnE

)
= 0, n = 0, . . . , Nt − 1,

where pn+1
I corresponds to implicit part of calculations, and pnE to explicit ones. Thus we

obtain a partially explicit scheme in time. The Figure 2 shows which nodes correspond
to the solutions pI and pE for Test 1 and Test 2.

Figure 2: Illustration of computational domains Ω with the fractures γ (red lines) and
point clouds with N = 225, where orange dots are nodes for pI and blue dots are nodes
for pE. Left: Test 1 with NI = 77 and NE = 148. Right: Test 2 with NI = 160 and
NE = 65.

5 Numerical results

This section presents numerical results for a single-phase filtration problem in a frac-
tured porous medium, demonstrating that the proposed approach can predict an accu-
rate approximation of the solution, independent of the contrast. The two-dimensional
model problem defined in Ω = [0, 80] × [0, 80] was considered. The fine meshes for
Test 1 and Test 2 are similar and have 34,814 vertices and 68,983 elements and 34,949
vertices and 69,253 elements, respectively. For both tests in the multiscale method we
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use N = 225 and M = 6. For Test 1 we use NI = 77 and NE = 148 and for Test 2 we
use NI = 160 and NE = 65.

The problem was solved numerically with the following values of the parameters:
cm = 0.4, cf = 1, km = 10−2, kf = 103, α = 1, µ = 1, p0 = 1, g = 10, tmax = 900,
Nt = 300, τ = 3.

To approximate equations using the finite element method on a fine grid, construct
systems and solve them, we use the open source computing platform FEniCS [14]
(LGPLv3).

Figure 3 show the solutions at the final time for Test 1 and Test 2. As we can
see, the solutions obtained by multiscale methods with implicit and partially explicit
discretization are similar to the reference solution on a fine grid.

Figure 3: Solutions at the final time for Test 1 (Top) and Test 2 (Bottom). Left:
reference solutions. Middle: Meshfree GMsFEM with impicit method. Right: Meshfree
GMsFEM with partially explicit method.

To test our approach, we compare the solution obtained on a coarse grid with the
solution obtained on a fine grid. The relative errors in L2 and H1 are calculated at
each time as follows in percentages

||e||L2 =

√
||u1 − u2||L2

||u1||L2

× 100%, ||e||H1 =

√
||u1 − u2||H1

||u1||H1

× 100%,

where ||u||L2 =
∫

Ω
u2dx, ||u||H1 =

∫
Ω

(gradu, gradu)dx, u1 – fine-grid solution and u2

– multiscale solution.
Figures 4 show the relative errors in L2 and H1 of the meshfree multiscale method

with an implicit time scheme for Test 1 and Test 2. As we can see, the errors fall over
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time and in the end become less than 0.5% in L2 and 4% in H1 for both tests. This
indicates that the proposed meshfree multiscale approach can achieve good accuracy
with a small number of degrees of freedom.

Figure 4: Plots of relative errors in L2 (left) and H1 (right) compared to the reference
solution.

In Figures 5 we plot the relative errors of the solution obtained with the partially
explicit scheme versus the solution with the implicit time scheme. Here we see that
the errors in L2 do not exceed 0.6% for both tests, and in H1 they do not exceed 3.5%
for Test 1 and 2% for Test 2. Here, the number of nodes NI and NE for a partially
explicit scheme have an influence, but it is insignificant, since for Test 1 we took twice
as many nodes for the explicit part as for the implicit part and obtained good results.

Figure 5: Plots of relative errors in L2 (left) and H1 (right) between impicit and
partially explicit methods.
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6 Conclusion

In this paper, a time partially explicit scheme is proposed for the meshfree generalized
multiscale finite element method. This scheme does not depend on the high contrast of
the multiscale problem, but depends only on the permeability of the porous medium,
which is much less than the permeability of fractures. It is shown numerically that our
chosen partially explicit scheme provides reliable time discretization. The developed
time discretization is beneficial for meshfree multiscale methods or other approaches
that control the location of coarse mesh nodes to achieve high computational accuracy.
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