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IDENTIFICATION OF POSITIONS OF SEPARATED RIGID
INCLUSIONS BY BOUNDARY MEASUREMENTS

FOR A SIGNORINI PROBLEM
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Abstract A variational inequality describing an elastic body with a finite set of rigid inclu-
sions is considered. The Signorini condition is imposed on a part of the boundary of the body.
On the other part a homogeneous Dirichlet boundary condition is specified. The inclusions
are arranged such that distance between any two inclusions is not less than a given positive
number. All inclusions are located at a nonzero distance from the outer boundary. An inverse
problem is investigated, which consists in identification of positions of the rigid inclusions
from the measurement of displacements on an observation boundary. Continuous dependency
of the solution of the forward problem on parameters of inclusions’ location and rotation is
established. This provides existence of a solution for the inverse identification problem.
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1 Introduction

Optimal control and inverse problems describing inhomogeneous bodies have been at-
tracting the close attention of specialists. Since, on the one hand, the improvement of
performance properties of composites is a crucial direction of technological progress.
On the other hand, a lot of practical problems for composites imply studies in which it
is necessary to identify information about internal components based on external mea-
surements. Below we overview some mathematical results on parameter identification
and its applications from the literature.

We cite the classical theory of inverse problems and its applications in mathematical
physics [1, 2]. Inverse problems for the nondestructive testing of inclusions embedded in
Kirchhoff–Love plates were investigated in [3, 4, 5]. A shape and topological sensitivity
analysis was performed, as well as relevant numerical results were provided in [6] for an
inverse problem of detection of the position of a hole in a domain. Shape optimization
of rigid inclusions for elastic bodies with cracks were investigated, for example, in
[7, 8]. In [9] a variational inequality was controlled by the position and size of an
inhomogeneity posed in a one dimensional domain with moving boundary.

In [10, 11, 12] authors investigated the problem of determining the internal structure
of an inhomogeneous body on the basis of boundary measurements. Geometric position
of a deformable inclusion in frictionless unilateral contact with the matrix was identified
on the basis of measurements surveyed at some sensor points on the external boundary
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in [13]. Based on optimization methods, a theoretical framework for identifying voids
and inclusions was established in [14, 15, 16, 17], for cracks in [18, 19], and other
works. The papers [20, 21] present solution of the inverse dynamic seismic problem in
the frequency domain for a horizontally layered medium by determining parameters of
an anisotropic layer (thin-layered pack). In the framework of variational inequalities
with unilateral constraints of the Signorini type, see problems of optimal control by
volume or boundary forces in [22, 23], and suitable numerical methods in [24]. Different
optimality systems for strong stationarity in the case of optimal control of constrained
problems can be found in [25, 26, 27]. We cite problems describing rigid and elastic
inclusions in [28, 29, 30] as well as imperfect interfaces in [31, 32] which are of the great
interest in the description of composite materials.

In the present paper, we study an obstacle problem for an elastic body with a finite
set of bulk rigid inclusions of a prescribed number. The inclusions are mutually sep-
arated between themselves and from the boundary of the body by a strictly positive
distance that is fixed a-priori. Our motivation stems from modeling of micro-defects
and damage mechanisms, fibre-reinforced composites, and peridynamic models in solid
mechanics, see the respective collection of works [33]. This geometric description is
useful for further application of periodic as well as non-periodic homogenization tech-
niques when the size of inclusions decreases. We refer, for example, to [34] for the
mathematical modeling of discontinuous fields in a two-phase medium.

Assuming that displacements are measured on an observation part of external
boundary of the body, we formulate the inverse problem of identification of positions
of inclusions. For each inclusion with a prescribed shape, it is necessary to determine
the location, which is characterized by the vector of parallel translation and angles of
rotation relative to the reference coordinate axes. The novelty of the class of forward
problems under consideration consists in two generalizations compared to the previous
investigations [35, 36]. First, angles of rotations of inclusions are taken into account.
The second generalization deals with the assumption that functions of external forces
itself depend on locations of inclusions. Continuous dependence of the solution of the
forward problem have been proved with respect to the inclusion parameters varying in
a suitable compact set. Based on this result we establish existence of a solution for the
inverse identification problem.

2 Family of separated inclusions in a 3D domain

Let Ω ⊂ R3 be a bounded domain with the boundary Γ ∈ C0,1, where Γ = Γ0∪Γ1∪Γ2,
Γi ∩ Γj = ∅ for i, j = 0, 1, 2, i 6= j, and meas(Γ0) > 0, meas(Γ1) > 0, meas(Γ2) > 0.
We consider a family of m simply connected subdomains ωp ⊂ Ω, p = 1, . . . ,m, where
m ≥ 1 is some fixed natural number. We assume that these subdomains satisfy the
following properties:

a) the domains ωp have the Lipschitz boundaries ∂ωp, p = 1, . . . ,m;

b) the distance dist(ωp,Γ) ≥ δ0, dist(ωq, ωp) ≥ δ0 for each p, q = 1, . . . ,m, p 6= q,
where δ0 is a sufficiently small positive number.
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Let us note that the above assumptions a) and b) provide the possibility of applying
trace theorems and the Poincaré inequality in corresponding Sobolev spaces. Under
these assumptions, geometry of the subdomains can be arbitrary, just as their diameters
can be arbitrarily small. In particular, periodically located rigid inclusions satisfying
conditions a) and b) can be considered as adopted by the periodic homogenization.

We fix some inner points xp0 = (xp10, x
p
20, x

p
30) in each ωp , p = 1, . . . ,m, and consider

rotations of the subdomain ωp on angles γpi ∈ (0, 2π], i = 1, 2, 3, around local axes

epi = {(x1, x2, x3) ∈ R3 | xj = xpj0 = const, j 6= i}, i = 1, 2, 3.

For convention we compose the rotation matrix A of a sequence of rotations in the
right-hand rule, that is, the rotation on γ1 ∈ (0, 2π] around the ep1-axis, after rotation
on γ2 ∈ (0, 2π] around the ep2-axis which, in turn, after rotation on γ3 ∈ (0, 2π] around
the ep3-axis, as follows

A =

1 0 0
0 cos γ1 − sin γ1

0 sin γ1 cos γ1

 cos γ2 0 sin γ2

0 1 0
− sin γ2 0 cos γ2

cos γ3 − sin γ3 0
sin γ3 cos γ3 0

0 0 1

.
This case corresponds to counterclockwise rotation of vectors in the right coordinate
system.

Let us denote by ωp(γp) the transformed domains obtained by the rotations γp =
(γp1 , γ

p
2 , γ

p
3). For each X = (x1, . . . , xm) ∈ R3m, Υ = (γ1, . . . , γm) ∈ (0, 2π]3m with

xp = (xp1, x
p
2, x

p
3), γp = (γp1 , γ

p
2 , γ

p
3), p = 1, . . . ,m, we define the induced family

S(X,Υ) = {ω1(x1, γ1), . . . , ωm(xm, γm)}

of domains obtained by shifting of ωp(γp), where xp = (xp1, x
p
2, x

p
3), p = 1, . . . ,m, are

the translation vectors for each subdomain ωp(γp), such that

ωp(x
p, γp) = {(x1, x2, x3) ∈ R3 |

(x1, x2, x3) = (xp1, x
p
2, x

p
3) + (x̂1, x̂2, x̂3), (x̂1, x̂2, x̂3) ∈ ωp(γp)}.

We consider a compact subset A ⊂ S(X,Υ) with elements satisfying the conditions:

ωp(x
p, γp) ⊂ Ω, dist(ωp(x

p, γp),Γ) ≥ δ0, ∀ p = 1, . . . ,m, (1)

dist(ωp(x
p, γp), ωq(x

q, γq)) ≥ δ0 ∀ p, q = 1, . . . ,m, p 6= q. (2)

As an example of the compact set satisfying (1), (2) we present appropriate balls Ω
and ωp, p = 1, . . . ,m. Let rΩ be the radius of Ω, and xcΩ be coordinates of its center.
By xp0 and rp, p = 1, . . . ,m, we denote coordinates of centers and radii of balls ωp,
correspondingly. Then we have the following expressions for distances

dist(ωp(x
p, γp), ωq(x

q, γp)) = ‖xp0 + xp − xq0 − xq‖R3 − rp − rq ≥ δ0,

dist(ωp(x
p, γp),Γ) = rΩ − rp − ‖xcΩ − xp0 − xp‖R3≥ δ0.

In the sequel we will need the following assumption.
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Assumption 2.1. For some fixed p ∈ 1, . . . ,m and an arbitrary strictly inner subdo-
main D ⊂ ωp(x

p, γp) there exists a positive sufficiently small number δ > 0 such that
D ⊂ ωp(x

p, γp) ∩ ωp(x̂p, γ̂p) for all (x̂p, γ̂p) ∈ R6 such that ‖(xp, γp)− (x̂p, γ̂p)‖R6 < δ.

To formulate the model of a composite body with the family of rigid inclusions,
we will use the concept of a rigid inclusion occupying an arbitrary subdomain O ⊂ Ω.
In this case, the displacements in O should have a special structure W |O = ρ with
ρ ∈ R(O), and R(O) is the space of infinitesimal rigid displacements on O:

R(O) = {ρ = (ρ1, ρ2, ρ3) | ρt(x) = Bx+ C, x = (x1, x2, x3)t ∈ O},

where t denotes transposition of vectors, B is a skew-symmetric matrix which can be
obtained from the rotation matrix A by formula B = ȦAt, and C is a vector, such that

B =

 0 b12 b13

−b12 0 b23

−b13 −b23 0

 , C =

 c1

c2

c3

 , (3)

and b12, b13, b23, c1, c2, c3 ∈ R, see details in [37, 38].
For the Signorini problem following next, we fix the element (X,Υ) ∈ A and suppose

that the domains ωp(xp, γp), p = 1, . . . ,m, refer to rigid inclusions, while the domain

Ω\ω1,m, ω1,m =
m⋃
p=1

ωp(x
p, γp)

fits to the elastic matrix of the body.

3 Signorini problem

Denote by W = (W1,W2,W3) the displacement vector in the Sobolev space

H1
Γ0

(Ω) = {v ∈ H1(Ω) | v = 0 on Γ0}, H(Ω) = H1
Γ0

(Ω)3.

We introduce the second order symmetric tensors describing deformation of an elastic
part of the inhomogeneous body, and the corresponding stress by

εij(W ) =
1

2

(
∂Wi

∂xj
+
∂Wj

∂xi

)
, σij(W ) = cijklεkl(W ), i, j = 1, 2, 3,

using the convention of summation over repeated indexes, where cijkl is the given
elasticity tensor, assumed to be symmetric and positive definite:

cijkl = cklij = cjikl, i, j, k, l = 1, 2, 3, cijkl = const,

cijklξijξkl ≥ c0|ξ|2, ∀ξ : ξij = ξji, i, j = 1, 2, 3, c0 = const, c0 > 0.

By the geometric assumption concerning the domain Ω and using the Korn’s inequality
from [39, 40], the following lower estimate holds∫

Ω

σij(W )εij(W ) dx ≥ c‖W‖2
H(Ω), ∀W ∈ H(Ω), (4)

with a constant c > 0 independent of W .
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Remark 3.1. The inequality (4) implies the equivalence of the standard norm in H(Ω)
and the semi-norm determined by the left-hand side of (4).

We consider the frictionless contact at the external boundary, which is modeled
with the well-known Signorini condition

Wiνi ≤ 0 on Γ1,

where ν = (ν1, ν2, ν3) is an outward normal to Γ. We introduce the energy functional

Π(W,X,Υ) =
1

2

∫
Ω

σij(W )εij(W ) dx−
∫
Ω

Fi(X,Υ)Wi dx, (5)

where the vector of body forces F (X,Υ) = (f1(X,Υ), f2(X,Υ), f3(X,Υ)) ∈ C(Ω ×
(0, 2π]3;L2(Ω))3 is given. Regarding rotation, the periodicity condition

F (X, Υ̂) = F (X, Υ̃)

should hold for all Υ̂, Υ̃ such that |γ̂pi − γ̃
p
i | = 2π, i = 1, 2, 3, p = 1, . . . ,m. Note that in

contrast to the functional considered in the earlier paper [36], the function of external
loads F (X,Υ) depends on locations and rotations of inclusions. This assumption is
certainly more justified from the point of view of physics.

For fixed (X,Υ) ∈ A, a Signorini problem for the composite body can be formulated
as the following minimization problem (see textbooks [41, 42]):

Find U(X,Υ) ∈ K(X,Υ) such that Π(U,X,Υ) = inf
W∈K(X,Υ)

Π(W,X,Υ), (6)

where the set of admissible displacements is defined as follows

K(X,Υ) = {W ∈ H(Ω) | Wiνi ≤ 0 on Γ1,

W |ωp(xp,γp) = ρ, where ρ ∈ R(ωp(x
p, γp)), p = 1, . . . ,m}.

In the virtue of coercivity (4), the problem (6) has the unique solution U(X,Υ) ∈
K(X,Υ), which satisfies the variational inequality (see [36]):∫

Ω

σij(U(X,Υ))εij(W − U(X,Υ)) dx ≥
∫
Ω

Fi(X,Υ)(Wi − Ui(X,Υ)) dx, (7)

for all W ∈ K(X,Υ).

4 Inverse identification problem

In this section we formulate a class of inverse problem determining the family of rigid
inclusions in the composite body. For this reason, parameters (X,Υ) ∈ A are to
be identified from measurements. Let us introduce the cost functional J : A → R
representing a single boundary measurement by the following formula

J(X,Υ) =

∫
Γ2

Ui(X,Υ)νi dx, (8)
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where U(X,Υ) is the solution of the forward problem (6).
As commonly adopted in optimal control theory, we should either minimize: find

z1 ∈ R such that
z1 = min

(X,Υ)∈A
J(X,Υ), (9)

or maximize the cost: find z2 ∈ R such that

z2 = max
(X,Υ)∈A

J(X,Υ). (10)

For a given intermediate value z ∈ [z1, z2], we can formulate the inverse problem as
follows: find parameters (X,Υ) ∈ A of three-dimensional inclusions and a displacement
field U(X,Υ) of the body satisfying the variational inequality∫

Ω

σij(U(X,Υ))εij(W − U(X,Υ)) dx ≥
∫
Ω

Fi(X,Υ)(Wi − Ui(X,Υ)) dx, (11)

for all W ∈ K(X,Υ), and the equality

z = J(X,Υ). (12)

Theorem 4.1. There exist finite real numbers z1 and z2 solving the minimization (9)
and the maximization (10) problems, with z1 ≤ z2, such that for any fixed z ∈ [z1, z2]
the inverse problem (11), (12) has an exact solution.

Proof. Let us consider the reduced function J(X,Υ), where U(X,Υ) is the solution
of the variational inequality (7). Now we take into account Lemma (5.2), which is
rather technical and will be proved below: the solutions U(X,Υ) of (7) are continuous
with respect to (X,Υ) in the space H(Ω). This allows us to assert that the continuous
function J(X,Υ) attains minimum and maximum values on compact set A. Namely,

z1 = min
(X,Υ)∈A

J(X,Υ), z2 = max
(X,Υ)∈A

J(X,Υ).

Since the set A is compact, by the intermediate value theorem we conclude that ar-
bitrary z ∈ [z1, z2] is attained within the relations (11) and (12). The theorem is
proved.

Remark 4.1. It is worth noting that, in virtue of Lemma (5.2), the cost J in (8) can
be taken in the form J(X,Υ) = G(U(X,Υ)), where U(X,Υ) is the solution of the for-
ward problem (6), for an arbitrary uniformly continuous functional G : H(Ω)→ R. For
example, the result of Theorem (4.1) remains correct for the following measurements
over an observation part of the boundary Γ1 ∪ Γ2:

Ji =

∫
Γ2

Ui(X, Y ) dx, i = 1, 2, 3, or J4 =

∫
Γ1

Ui(X, Y )νi dx.
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5 Auxiliary lemmas

To justify Lemma (5.2) used in the proof of Theorem (4.1), it needs first to prove the
auxiliary lemma.

Lemma 5.1. Let (X∗,Υ∗) be a fixed element of the set A ⊂ S(X,Υ) describing
position of inclusions, and let {(Xn,Υn)} ⊂ A be a sequence of elements converging
to (X∗,Υ∗) in R6m as n → ∞. Then for an arbitrary feasible displacement W ∈
K(X∗,Υ∗) there exists a subsequence {(Xk,Υk)} = {(Xnk

,Υnk
)} ⊂ {(Xn,Υn)} and a

sequence of functions {Wk} such that Wk ∈ K(Xk,Υk), k ∈ N, and Wk → W strongly
in H(Ω) as k →∞.

Proof. First we consider the obvious case when a subsequence {(Xnk
,Υnk

)} exists such
that (Xnk

,Υnk
) = (X∗,Υ∗), k ∈ N. Then the assertion of the lemma holds forWk ≡ W .

We exclude this case from further consideration.
We will use the following notations X∗ = (x1,∗, . . . , xm,∗), Υ∗ = (γ1,∗, . . . , γm,∗),

Xn = (x1,n, . . . , xm,n), Υn = (γ1,n, . . . , γm,n). Let the functions

ρ∗p = (b∗p12x2 + b∗p13x3 + c∗p1,−b∗p12x1 + b∗p23x3 + c∗p2,−b∗p13x1 − b∗p23x2 + c∗p3)

describe infinitesimal rigid displacements in domains ωp(xp,∗, γp,∗), where bpji, cpi are
some constants for i, j ∈ {1, 2, 3}, j < i, and p = 1, . . . ,m.

In order to construct a desired subsequence, we start with introducing a system
of new domains ω̂p,k(xp,∗, γp,∗), which depend on natural numbers k ∈ N and on the
domains ωp(xp,∗, γp,∗), p = 1, . . . ,m. For arbitrary Lipschitz domain O ⊂ Ω and any
positive number ε, we denote by Oε the extended domain

Oε = {x ∈ R3 | dist(x,O) < ε}.

It is known [43] that there exists a positive number ε0 small enough such that for
all 0 < ε < ε0 the domain Oε would be Lipschitz. So we can choose the number
ε0 such that all extended domains ωεp(xp,∗, γp,∗), p = 1, . . . ,m, would be Lipschitz for
0 < ε < ε0.

Let the positive number M = max{1/ε0, 3/δ0}, and let us denote by ω̂p,k(xp,∗, γp,∗),
k ∈ N, the Lipschitz domains defined as follows

ω̂p,k(x
p,∗, γp,∗) = ωεkp (xp,∗, γp,∗), where 0 < εk =

1

M + k
< min

{
ε0,

δ0

3

}
.

Obviously, we have the inclusions

ω̂p,1(xp,∗, γp,∗) ⊃ . . . ⊃ ω̂p,k(x
p,∗, γp,∗) ⊃ . . .

for all p = 1, . . . ,m. On the basis of the affine functions ρ∗p, p = 1, . . . ,m, the infinites-
imal rigid displacements ρ∗p,1 can be constructed by the following equalities:

ρ∗p,1 = (b∗p12x2 + b∗p13x3 + c∗p1,−b∗p12x1 + b∗p23x3 + c∗p2,−b∗p13x1 − b∗p23x2 + c∗p3),

where x ∈ ω̂p,1(xp,∗, γp,∗), p = 1, . . . ,m.
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As the next step, we consider the family of auxiliary problems:

Find an argument Qk ∈ Kk of the minimum p(Qk) = inf
χ∈Kk

p(χ), (13)

where p(χ) =
∫
Ω

σij(χ−W )εij(χ−W ) dx, and the feasible sets are

Kk = {χ ∈ H(Ω) | χ = W on Γ, χ|ω̂p,k(xp,∗,γp,∗) = ρ∗p,1, p = 1, . . . ,m}.

The quadratic functional p(χ) is weakly lower semicontinuous and coercive on the
space H(Ω) due to the lower estimate (4), and sets Kk are convex and closed in H(Ω),
k ∈ N. These properties along with the reflexivity of H(Ω) provide existence of the
unique solution Qk to the problem (13) for each fixed k ∈ N, see [39]. This solution is
characterized equivalently by the variational inequality

Qk ∈ Kk,

∫
Ω

σij(Qk −W )εij(χ−Qk) dx ≥ 0 ∀χ ∈ Kk. (14)

Note that applying a lifting operator for the Lipschitz domain Ω\
⋃m
p=1 ω̂p,1(xp,∗, γp,∗),

a function χ̂ ∈ H(Ω) can be constructed such that

χ̂ = ρ∗p,1 on ω̂p1(xp,∗, γp,∗), p = 1, . . . ,m, χ̂ = W on Γ.

Since χ̂ ∈ Kk for all k ∈ N, we substitute χ̂ as the test function in (14), which yields
inequalities∫

Ω

σij(Qk −W )εij(χ̂) dx+

∫
Ω

σij(W )εij(Qk) dx ≥
∫
Ω

σij(Qk)εij(Qk) dx ∀k ∈ N.

Taking into account the Korn inequality, from the last estimate we get the uniform
upper bound:

‖Qk‖H(Ω) ≤ c ∀k ∈ N.

From the above estimate it follows that we can extract a subsequence {Qkl} (for sim-
plicity, we denote it by {Ql}) which converges weakly in H(Ω) to some function W̃ ,
i.e.

Ql → W̃ weakly in H(Ω). (15)

We will show that W̃ = W . For the sake of simplicity, denote the union of the domains
ωp (xp,∗, γp,∗) by

ω∗1,m =
m⋃
p=1

ωp (xp,∗, γp,∗) .

Since (Ql−W ) ∈ H1
0

(
Ω\ω∗1,m

)3, in the limit the inclusion (W̃−W ) ∈ H1
0

(
Ω\ω∗1,m

)3

holds. If the functions are of the form χ±l = Ql ± α, where α is defined by zero exten-
sion of an arbitrary function α̃ ∈ C∞0

(
Ω\ω∗1,m

)3 into Ω, then for sufficiently large l
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we have χ±l ∈ Kkl . The sequences χ+
l and χ−l can be substituted as test functions into

inequalities (14). As the result, we have∫
Ω

σij(Ql −W )εij(α) dx = 0. (16)

Now, we fix the function α and pass to the limit l→∞ in (16). The limiting expression
takes the form∫

Ω

σij(W̃ −W )εij(α) dx =

∫
Ω\ω∗

1,m

σij(W̃ −W )εij(α) dx = 0,

for all α ∈ C∞0 (Ω\ω∗1,m)3. In view of the density of C∞0
(
Ω\ω∗1,m

)3 in H1
0

(
Ω\ω∗1,m

)3,
we deduce that W̃−W = 0 in H1

0

(
Ω\ω∗1,m

)3. By construction, the equality W̃ = W is
satisfied in the union of domains ω∗1,m and on the external boundary Γ. Consequently,
W̃ = W in H(Ω). Then there exists a sequence {Ql} such that Ql ∈ Kkl , l ∈ N, and
Ql → W weakly in H(Ω) as l→∞.

We proceed to prove the strong convergence. The Mazur theorem provides the
existence of a function N : N → N and a sequence of sets of real numbers {α(l)i | i =

l, . . . , N(l)} satisfying α(l)i ≥ 0 and
∑N(l)

i=l α(l)i = 1 such that the sequence {Q̂l}
defined by the convex combination

Q̂l =

N(l)∑
i=l

α(l)iQi

converges toW strongly inH(Ω). According to this construction, a subsequence {kl} of
natural numbers corresponds to the subsequence {Ql} from (15), hence for the sequence
{N(l)} we will have the corresponding subsequence {kN(l)}.

Now, we compose a subsequence {(Xnk
,Υnk

)} ⊂ {(Xn,Υn)} by the following pro-
cedure: for every i ∈ N take the first element of {(Xn,Υn)} satisfying the inequality

‖Xn −X∗‖R3m +DΩ‖Υn −Υ∗‖R3m <
1

M + kN(i)

as the element (Xni
,Υni

) of the required subsequence {(Xnk
,Υnk

)}. Here by DΩ we
denote the following value representing the diameter of the domain Ω

DΩ = max
x,y∈Γ

‖x− y‖R3 .

In this case Q̂k ∈ K(Xnk
,Υnk

), and we can set {Wnk
} by the equations

Wnk
= Q̂k, k = 1, 2, . . . .

This completes the proof.

Using Lemma (5.1) we are in a position to prove the following statement which
was used in the proof of Theorem (4.1).
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Lemma 5.2. Let the paremeters (X∗,Υ∗) ∈ A, and {(Xn,Υn)} ⊂ A be a sequence
converging to (X∗,Υ∗) in R6m as n → ∞. Then U(Xn,Υn) → U(X∗,Υ∗) strongly
in H(Ω) as n → ∞, where U(Xn,Υn), U(X∗,Υ∗) are solutions to the minimization
problem (6) corresponding to parameters (Xn,Υn), (X∗,Υ∗), respectively.

Proof. We will prove the assertion by contradiction. Assume that there exists a number
ε0 > 0 and a sequence {(Xn,Υn)} ⊂ A such that (Xn,Υn)→ (X∗,Υ∗), ‖Un−U∗‖ ≥ ε0,
where Un = U(Xn,Υn), U∗ = U(X∗,Υ∗) are the corresponding solutions of (6).

Because (0, 0, 0) ∈ K(Xn,Υn) for all n ∈ N, we can insert zero in (11) for fixed
n ∈ N. This provides the estimate∫

Ω

σij(Un)εij(Un) dx ≤
∫
Ω

Fi(Xn,Υn)(Un)i dx, ∀n ∈ N. (17)

Since F (X,Υ) ∈ C(Ω × (0, 2π]3;L2(Ω))3, for (X,Υ) ∈ A there exists some constant
C > 0 such that

‖F (X,Υ)‖L2(Ω)3 ≤ C,

for all (X,Υ) ∈ A. The last inequality together with (17) ensures the uniform estimate

‖Un‖H(Ω) ≤ c

with some constant c > 0 independent of n ∈ N. Consequently, replacing {Un} by its
subsequence, if necessary, we conclude that {Un} converges to some function Ũ weakly
in H(Ω).

Now we show that the limit function Ũ ∈ K(X∗,Υ∗). Indeed, the relation

Un|ωp(xp,n) = ρp,n ∈ R(ωp(x
p,n, γp,n))

holds for some affine functions ρp,n, p = 1, . . . ,m, and n ∈ N. In accordance with the
Sobolev embedding theorem, see e.g. [39], for all p = 1, . . . ,m it follows

Un|ωp(xp,∗,γp,∗) → Ũ |ωp(xp,∗,γp,∗) strongly in L2(ωp(x
p,∗, γp,∗))3, (18)

Un|Γ → Ũ |Γ strongly in L2(Γ)3 as n→∞. (19)

Choosing a subsequence, if necessary, we also get Un → Ũ a.e. on ωp(xp,∗, γp,∗) for all
p = 1, . . . ,m.

In the next step we fix a natural number p, 1 ≤ p ≤ m, and an arbitrary strictly
inner subdomain D ⊂ ωp(x

p,∗, γp,∗). According to Assumption (2.1) there exists a suf-
ficiently large N such that, if n ≥ N , thenD ⊂ ωp(x

p,∗, γp,∗) ∩ ωp(xp,n, γp,n). Therefore,
the sequence {ρp,n} converges to Ũ a.e. on D as n → ∞. This allows us to conclude
that the numerical sequences

{bnpij}, {cnip}, i, j = 1, 2, 3, i 6= j,

which determine the infinitesimal rigid displacements ρp,n, n = 1, 2, . . . on D, are
bounded in R. We can extract subsequences (retaining notation) such that

bpij → bpij, cnip → cip, i, j = 1, 2, 3, i 6= j, as n→∞,
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and a subsequence {(Xnk
,Υnk

)} such that

U(Xnk
,Υnk

)→ (bp12x2+bp13x3+cp1,−bp12x1+bp23x3+cp2,−bp13x1−bp23x2+cp3) (20)

a.e. on D as k →∞. Consequently, a.e. on D

Ũ = (bp12x2 + bp13x3 + cp1,−bp12x1 + bp23x3 + cp2,−bp13x1 − bp23x2 + cp3).

In the view of arbitrariness of the domain D ⊂ ωp(x
p,∗, γp,∗), the above equation holds

a.e. on ωp(xp,∗, γp,∗). Hence we conclude that

Ũ |ωp(xp,∗,γp,∗) ∈ R(ωp(x
p,∗, γp,∗)).

Since p is arbitrary, this inclusion is true for all p = 1, . . . ,m.
We show that Ũ satisfies the Signorini condition inK(X∗,Υ∗), that is, the inequality

Ũiνi ≤ 0 on Γ1. Bearing in mind the convergence (19), if necessary, we can once again
extract a convergent subsequence satisfying Un|Γ → Ũ |Γ a.e. on Γ. This fact allows us
to pass to the limit in the inequality

(Un)iνi ≤ 0 on Γ1.

In the limit we deduce Ũiνi ≤ 0 on Γ1, hence the limit function Ũ ∈ K(X∗,Υ∗).
Our next goal is to prove that Ũ = U(X∗,Υ∗). For this purpose we will analyze the

variational inequality (11) and its limiting case. According to Lemma (5.1), for any
W ∈ K(X∗,Υ∗) there exists a subsequence of parameters {(Xnk

,Υnk
)} ⊂ {(Xn,Υn)}

and a sequence of functions {Wk} such that Wk ∈ K(Xnk
,Υnk

) and Wk → W strongly
in H(Ω) as k → ∞. Since F (Xnk

,Υnk
) → F (X∗,Υ∗) strongly in L2(Ω)3 as k → ∞,

the convergent sequences {Wk} and {Un} allow us to pass to the limit k → ∞ in the
following variational inequalities derived from (11) for the parameters {(Xnk

,Υnk
)}

and test functions Wk ∈ Kk:∫
Ω

σij(Unk
)εij(Wnk

− Unk
) dx ≥

∫
Ω

Fi(Xnk
,Υnk

)(Wnk
− Unk

)i dx. (21)

The result yields∫
Ω

σij(Ũ)εij(W − Ũ) dx ≥
∫
Ω

Fi(X
∗,Υ∗)(W − Ũ)i dx ∀ W ∈ K(X∗,Υ∗).

The unique solvability of this variational inequality ensures that Ũ = U∗.
To complete the proof, it remains to establish the existence of a solution sequence

Un = U(Xn,Υn), n = 1, 2, . . ., converging to U(X∗,Υ∗) strongly in H(Ω). By substi-
tuting W = 2Un and W = 0 into the variational inequalities (11), we get∫

Ω

σij(Un)εij(Un) dx =

∫
Ω

Fi(Xn,Υn)(Un)i dx ∀n ∈ N. (22)
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Equations (22) together with the weak convergence Un → U∗ in H(Ω) as n→∞ imply

lim
n→∞

∫
Ω

σij(Un)εij(Un) dx = lim
n→∞

∫
Ω

Fi(Xn,Υn)(Un)i dx

=

∫
Ω

Fi(X
∗,Υ∗)U∗i dx =

∫
Ω

σij(U
∗)εij(U

∗) dx.

The equivalence of norms (see Remark (3.1)) provides Un → U∗ strongly in H(Ω) as
n → ∞. But this contradicts to the assumption that ‖Un − U∗‖ ≥ ε0 > 0 and proves
Lemma (5.2).
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[2] Hasanov Hasanoǧlu A., Romanov V.G., Introduction to Inverse Problems for Differential Equa-
tions, Springer, Cham, 2021.

[3] Bilotta A., Morassi A., Rosset E., Turco E., Vessella S., Numerical size estimates of inclusions
in Kirchhoff–Love elastic plates, Int. J. Solids Struct. 168. (2019), 58–72.

[4] Morassi A., Rosset E., Vessella S., Optimal stability in the identification of a rigid inclusion in
an isotropic Kirchhoff-Love plate, SIAM J. Math. Anal. 51. (2019), 731–747.

[5] Lazarev N., Inverse problem for cracked inhomogeneous Kirchhoff–Love plate with two hinged
rigid inclusions, Bound. Value Probl. 2021, (2021), 88.

[6] Hintermüller M., Laurain A., Optimal shape design subject to elliptic variational inequalities,
SIAM J. Control Optim., 49. 3 (2011), 1015–1047.

[7] Shcherbakov V., Shape optimization of rigid inclusions for elastic plates with cracks, Z. Angew.
Math. Phys. 67. (2016), 71.

[8] Rudoy E.M., Shape sensitivity analysis of equilibrium problem for bodies with thin rigid inclu-
sions, J. Math. Sci. 211. (2015), 847–862.

[9] Kovtunenko V.A., Leugering G., A shape-topological control of variational inequalities, Eurasian
Math. J., 7. 3 (2016), 41–52.

[10] Alessandrini G., Morassi A., Rosset E., Detecting an Inclusion in an Elastic Body by Boundary
Measurements, SIAM Review, 46. 3 (2004), 477–498.

[11] Khludnev A.M., Inverse problems for elastic body with closely located thin inclusions, Z. Angew.
Math. Phys., 70. 134 (2019).



Identification of positions of separated rigid inclusions for a Signorini problem 79

[12] Khodadad M., Ardakani M.D., Inclusion identification by inverse application of boundary ele-
ment method, genetic algorithm and conjugate gradient method, Am. J. Appl. Sci., 5. 9 (2008),
1158–1166.

[13] Mallardo V., Alessandri C., Inverse problems in the presence of inclusions and unilateral con-
straints: a boundary element approach, Comput. Mech., 26. (2000), 571–581.

[14] Cakoni F., Kovtunenko V.A., Topological optimality condition for the identification of the center
of an inhomogeneity, Inverse Probl., 34. 3. (2018), 035009.

[15] Kovtunenko V.A., Kunisch K., High precision identification of an object: optimality conditions
based concept of imaging, SIAM J.Control Optim., 52. 1. (2014), 64.

[16] Shifrin E.I., Shushpannikov P.S., Identification of small well-separated defects in an isotropic
elastic body using boundary measurements, Int. J. Solids Struct., 50. 22-23. (2013), 3707–3716.

[17] Yu B., Hu P., Wei P. , Cao, G., Wang B., The identification of voids and inclusions based on the
parameter level set method using boundary data, Appl. Math. Model., 112, (2022), 505–539.

[18] Ghilli D., Kunisch K., Kovtunenko V.A., Inverse problem of breaking line identification by shape
optimization, J. Inverse Ill-Posed Probl., 28. 1. (2020), 119–135.

[19] Shifrin E.I., Kaptsov A.V., Identification of multiple cracks in 2D elasticity by means of the
reciprocity principle and cluster analysis, Inverse Probl., 34. 1. (2018), 015009.

[20] Karchevsky A.L., Fatianov A.G., Numerical solution of the inverse problem for a system of
elasticity with the aftereffect for a vertically inhomogeneous medium, Sib. Zh. Vychisl. Mat., 4.
3 (2001), 259–268.

[21] Karchevsky A.L., Oralbekova Zh.O., Iskakov K.T., Solution of the inverse problem of subsurface
electric exploration for horizontally stratified medium, J. Appl. Math., 13. 3 (2013), 432121.

[22] Rademacher A., Rosin K., Adaptive optimal control of Signorini’s problem, Comput. Optim.
Appl., 70 (2018), 531–569.
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