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RECURRENT NEURAL NETWORK LEARNING
ALGORITHM-BASED EVENT-TRIGGERED OBSERVER

OF THE PERMANENT MAGNET SYNCHRONOUS MOTOR
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Abstract In this paper, we propose a novel method to estimate the electrical angular ve-
locity, the electrical angle, and the currents of the permanent magnet synchronous motor. A
recurrent neural network learning algorithm is first developed to estimate the states of the
permanent magnet synchronous motor. Then, an event-triggered state observer is designed
for the recurrent neural network. This state observer robustly estimates state variables of
the permanent magnet synchronous motor. A sufficient condition in terms of a convex op-
timization problem for the existence of the event-triggered state observer is established. In
contrast with the abundance of state estimation methods based on time-triggered state ob-
servers where the measurements are always continuously available, the ones in this paper are
updated when an event-triggered condition holds. Therefore, it lessens the stress on commu-
nication resources while can still maintain an estimation performance. Simulation results are
provided to demonstrate the merit of the proposed method.
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1 Introduction

The information on state vectors of dynamical systems plays an important role in most
engineering applications. It is often used to solve many practical problems such as state
feedback control, system supervision, fault diagnosis of dynamic systems, and general
diagnosis issues from available information [1], [11], [22], [23], [24], [36]. In particular,
the authors of the work [1] used the information on state vectors of the nonlinear
teleoperation system to solve the H∞ cost guaranteed integral sliding mode control for
the synchronization problem, while the problem of designing a sliding mode observer
for descriptor systems was considered in [11]. In [22], the authors solved the fault
detection of time-delay systems by using functional observers, while state observers
were designed in [23] for time-delay systems based on state transformations. The state
estimation problem was investigated in [24] for fractional-order systems and in [36]
for delayed stochastic neural networks. Nevertheless, due to technical or economic
reasons, people usually use information state vector estimation instead of measuring the
actual one. A typical example of this statement is the problem of estimating the speed
and rotor position of permanent magnet synchronous motors (PMSMs) using a Kalman
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filtering technique [5], and using an improved square root unscented Kalman filter [43],
which are brushless drives with all the properties required for servo applications [33].
In the PMSMs, the phase current must be a sinusoidal function of the rotor position.
A high-resolution sensor is needed to obtain position information with appropriate
resolution. Speed information may be derived from the position sensor or measured
by a tachometer. These mechanical sensors increase the shaft inertia and dynamic
friction, adding to the cost of the drive. They also need extra wiring beyond the
cables required for supplying proper currents to the motor windings. These connections
between the motor and the control system are often the source of an overall decrease
in reliability. In order to reduce their cost and increase their reliability, PMSMs are
not always equipped with mechanical sensors (rotor position and velocity). Instead,
state observers are proposed to provide state variables of the PMSMs. This approach
is very significant since electrical sensors tend to be cheaper and easier to maintain
than mechanical ones.

Many methods are proposed in the literature to solve the problem of estimating the
state vector of the PMSMs. For example, an identity state observer was proposed in
[25], while a nonlinear speed observer is designed [32]. In [39], the authors proposed a
mechanically sensorless full-state observer to solve the real-time observer-based control
of a permanent magnet synchronous motor. Extended Kalman filters are implemented
in [5] and [13] to estimate speed and rotor position. However, the above methods
[5], [13], [25], [32], [39] did not consider the issue of the unknown load torque, which
may lead to large estimation errors. To overcome this limitation, the authors of the
work [42] proposed a nonlinear extended observer to estimate the state vector of a
PMSM subject to an unknown load torque. Recently, there have been some interesting
methods solving the state estimation problem of the PMSMs, for example, improved
square root UKF [43], a nonlinear Luenberger approach for a non-observable system
[35], sliding mode observer [26].

It is worth noting that all existing methods for estimating state vector of the PMSMs
[5], [13], [25], [26], [32], [35], [39], [42], [43] were implemented based on time-triggered
mechanisms, i.e., observer designs require system data for each sampling instant, which
may lead to the wastage of communication resources in practical applications. So far,
the methods in [5], [13], [25], [26], [32], [35], [39], [42], [43] have not been extended
to event-triggered state estimation, which is useful in saving communication resource.
Different from traditional state observers, event-triggered ones utilize only information
from the output vector at triggering instants. Thus, they lessen the stress on communi-
cation resources while keeping the estimation performance. Many event-triggered state
observers have been designed to solve the event-triggered state estimation. For exam-
ple, an event-triggered extended state observer was designed in [18], while a dynamic
event-triggered state observer was introduced in [20]. In [21], a discrete-time event-
triggered state observer was designed to estimate the state of recurrent neural networks,
while a state estimator that can successfully cope with event-based measurements was
developed in [41]. In [19] and [38], the event-triggered-based stabilization problem was
studied for onesided Lipschitz timedelay systems, and the neural network-based control
system, respectively.

On the other hand, recurrent neural networks (RNNs) have attracted a lot of re-
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search attention in the literature [4], [15], [27], [44], [47]. In particular, the qualitative
problem of dynamical neural networks was investigated in [4] and [15]. The high-order
neural network structures were studied in [27], while the design of model predictive
control systems by using an RNN was reported in [44]. In [47], the exponential sta-
bility problem was considered in for uncertain stochastic Hopfield neural networks.
Since the structure of RNNs is more advantageous in designing event-triggered state
observers than other nonlinear dynamical systems, in this paper, we aim to develop
the RNN learning algorithm in [27], [44] to design event-triggered state observers for
the PMSM. The main contributions of this paper are: (1) An RNN model is trained to
estimate the states of the PMSM; (2) A new event-triggered state observer is designed
to estimate the state vectors of the obtained RNN model; (3) An existence condition of
such observer in terms of LMIs is established; and (4) Simulation results are obtained
to demonstrate the applicability of the proposed method.

Notation: AT is the transpose of A. || · || denotes the Euclidean norm. Rn is the n−
dimensional linear vector space over R. P > 0 means that xTPx > 0,∀x 6= 0. sym{A}
denotes A+ AT .

2 Preliminaries and problem statement

Consider the following permanent magnet synchronous motor [14]:

ω̇r(t) =
3n2

p

2J

(
ψr + (Ld − Lq)id(t)

)
iq(t)−

np
J
sL −

1

J
Bωr(t), (1)

θ̇r(t) = ωr(t), (2)

i̇q(t) = −Rs

Lq
iq(t)− ωr(t)

Ld
Lq
id(t)− ωr(t)

ψr
Lq

+
1

Lq
uq(t), (3)

i̇d(t) = −Rs

Ld
id(t) + ωr(t)

Lq
Ld
iq(t) +

1

Ld
ud(t), (4)

where Rs is the stator resistance (Ω), ud(t), uq(t), id(t), iq(t), Ld and Lq are the d− q
axis stator voltages (V), currents (A) and inductances (Wb), respectively, ψr is the
amplitude of the permanent magnet flux linkage (Wb), ωr(t) and θr(t) are the electrical
angular velocity (rad/s) and the electrical angle (rad), np is the number of pole pairs,
sL is the load torque (N.m), J and Bb are the total moment of inertia (kg.m2) and the
viscous friction coefficient (Nm.s/rad).

Note that system (1)-(4) can be expressed into the following form

ẋ(t) = f(x(t), u(t), d(t)), (5)

where x(t) =


ωr(t)
θr(t)
iq(t)
id(t)

 is the state vector, u(t) =

[
uq(t)
ud(t)

]
is the measurable input

vector, d(t) = sL is unknown input disturbances, y(t) =

 ωr(t)
iq(t)
id(t)

 is the measurable

output vector.
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3 Main result

3.1 Approximating the permanent magnet synchronous mo-
tor by a recurrent neural networks

We first estimate the states of the PMSM (5) by the following RNN:

ż(t) = frnn(z(t), u(t)) = Az(t) + Θzσ(z(t)) + Θuu(t), t ≥ 0, (6)

z(0) = x0, (7)

y(t) = Cz(t), (8)

where n = 4, m = 2, z(t) ∈ Rn, u(t) ∈ Rm, y(t) =
[
y1(t) y2(t)

]T ∈ Rn+m, y1(t) = y1
...
yn

 =

 σ(z1)
...

σ(zn)

, y2(t) =

 yn+1
...

yn+m

 =

 u1
...
um

, where σ(·) is the activation

function satisfying the following inequality

|σi(v1)− σi(v2)| ≤ σ̄i|v1 − v2|, ∀v1, v2 ∈ R, (9)

where σ̄i > 0 for i = 1, 2, . . . , n are positive scalars. A = diag{−a1,−a2, . . . ,−an},[
Θz

Θu

]
= Θ, and Θ =

[
θ1 . . . θn

]
∈ R(n+m)×n (θi = bi

[
wi1 . . . wi(n+m)

]T
,

ai > 0, bi are constants, for i = 1, . . . , n, j = 1, . . . , n + m, matrices wij are the
weight connecting from the jth input to the ith neuron, which will be optimized during
training.

We can determine optimal weighs a∗i and θ∗i for the RNN model (6) by solving the
following ordinary least squares linear regression

(a∗i , θ
∗
i ) = Λ∗i = arg min

Λi

1

2
‖SiΛi − zi‖2, (10)

where

Si =


[S1]i ȳ>1
[S2]i ȳ>2

...
[SN ]i ȳ>N

 , zi =


fi(s1, u1)
fi(s2, u2)

...
fi(sN , uN)

 ,Λi =

[
ai
θi

]
.

The following lemma provides an upper bound for the error between the state of
the permanent magnet synchronous motor and the recurrent neural networks:

Lemma 3.1. Assume that ||d(t)|| ≤ d̄, where d̄ is a positive number. If ||f(z(t), u(t), 0)−
frnn(z(t), u(t))|| ≤ ω̄, then the following inequality holds:

||e(t)|| ≤
np

J
d̄+ ω̄

γ
(eγt − 1), t > 0, (11)
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where e(t) = x(t)− z(t), ω̄ is a positive number, and

γ =

√
max

{
4M

L2
d

L2
q

, 2M
(9n4

p(Ld − Lq)2

4J2
+
L2
d

L2
q

)}
,

M ∈ (0,∞) such that the states of the permanent magnet synchronous motor operate
in a bounded region R = {z ∈ R4||zi| ≤M}.

Proof: We have

||ė(t)|| = ||ẋ(t)− ż(t)|| = ||f(x(t), u(t), d(t))− frnn(z(t), u(t))||
= ||f(x(t), u(t), d(t))− f(z(t), u(t), 0) + f(z(t), u(t), 0)− frnn(z(t), u(t))||.

(12)

On the other hand, for all x, z ∈ R, the following inequality is satisfied:

||f(x(t), u(t), d(t))− f(z(t), u(t), 0)||

=
∥∥∥


3n2
p(Ld−Lq)

2J
x4x3

0
−Ld

Lq
x1x4

Lq

Ld
x1x3

−


3n2
p(Ld−Lq)

2J
z4z3

0
−Ld

Lq
z1z4

Lq

Ld
z1z3

+


−np

J

0
0
0

 d(t)
∥∥∥.

≤ γ||x(t)− z(t)||+ np
J
d̄. (13)

By using (12), (13) and inequality ||f(z(t), u(t), 0)− frnn(z(t), u(t))|| ≤ ω̄, we obtain

||ė(t)|| ≤ γ||e(t)||+ np
J
d̄+ ω̄. (14)

Therefore, under the zero initial condition, the inequality (11) is obtained. The
proof is completed.

3.2 Event-triggered state estimation problem for the recur-
rent neural networks

In the following, we consider that the measurement vector of (6) is not continuously
implemented. Instead, it is only updated at triggering instants {sk}k∈N defined by the
following dynamic event-triggered mechanism (DETM):

s0 = 0, sk+1 = sk + hmin
{
ξ ∈ N+ | H(eρ(t), ρ(sk)) > γ(sk), h > 0

}
, (15)

where H(eρ(t), ρ(sk)) = α[eρ(t)
T (t)Ξeρ(t)− µρT (sk)Γρ(sk)], ρ(t) = z(t)− ẑ(t), eρ(t) =

ρ(sk) − ρ(sk + ξh), ξ ∈ N, α, µ ∈ (0,∞), Ξ > 0, function γ(t) satisfies the following
condition

γ̇(t) = −ζγ(t) + µρT (sk)Γρ(sk)− eTρ (t)Γeρ(t), (16)
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PMSM model
ẋ = f (x, u, d)

d(t)

u(t) C
y(t)

RNN

A,Θz,Θu

+Θu

∫ż(t)
C

z(t) y(t)

A
σ(.)

Θz
σ(z)

ż(t) = Az(t) + Θzσ(z(t)) + Θuu(t)

ETM

ỹ(sk)

+
∫˙̂z(t) ẑ(t)

A
σ(.)

Θz
σ(ẑ)

K+
− C

ẑ(sk)

˙̂z(t) = Aẑ(t) + Θzσ(ẑ(t)) + Θuu(t) +K(ỹ(sk)− Cẑ(sk))

Figure 1: Schematic of an event-triggered state observer based on the DETM.

with ζ ∈ (0,∞) and γ(0) = 0.
The event-triggered state observer based on the DETM (15) to estimate the state

vector of the RNN model (6) is as below:

˙̂z(t) = Aẑ(t) + Θzσ(ẑ(t)) + Θuu(t) +K(ỹ(sk)− Cẑ(sk)), t ∈ [sk, sk+1), (17)

where ẑ(t) ∈ Rn is the estimate of z(t), K is the gain matrix to be designed. Denoting
ρ(t) = z(t)− ẑ(t), τ(t) = t− sk − rh, t ∈ Ir, one gets

ρ̇(t) = Aρ(t) + Θzσzẑ(t)−KCρ(t− τ(t))−KCeρ(t),
t ∈ [sk + εk, sk+1 + εk+1), (18)

ρ(s) = ρ(0), s ∈ [−h, 0], (19)

where σzẑ(t) = σ(z(t))− σ(ẑ(t)).
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Remark 1. The event-triggered observer (17) uses DETM (15), which depends on
discrete supervision H(eρ(t), ρ(sk)) > γ(sk). It is clear from (15) that the minimum
triggering interval [sk, sk+1) is one sampling period h > 0. Therefore, for DETM (15),
the Zeno behaviour is excluded.

We will determine the gain matrix K such that system (18) is asymptotically stable.

Theorem 3.1. Assumed that inequality eεηh < αε+ 1 holds, where µ, ε, α are positive
scalars and η is the smallest integer number satisfying h ≤ sk+1 − sk ≤ ηh. Given
ϑ > 0, (18) is asymptotically stable if there exist P > 0, Q > 0, R > 0, Γ > 0,
Z, X, non-singular S, positive scalars δ, such that the following LMIs are feasible for
θ ∈ {0, 1}:

∆?(θ) =

[
∆(θ) ∇
∗ −δIn

]
< 0, (20)

Φ =

[
diag(R,R) Z

∗ diag(R,R)

]
> 0, (21)

where

∆(θ) = ∆1(θ) + ∆2(θ) + δσ̄2
maxε

T
1 ε1, σ̄max = max{σ̄1, . . . , σ̄n},

∆1(θ) = sym{ΨT
θ PΓ}+ εT1Qε1 − εT3Qε3 + h2εT4R2ε4 − ΛTΦΛ

+µεT2 Γε2 + µεT7 Γε7 − sym
{[

εT1 εT4
] [ ϑS

S

]
ε4

}
,

∆2(θ) = sym
{[

εT1 εT4
] [ ϑS

S

]
Aε1 −

[
εT1 εT4

] [ ϑX
X

]
Cε2 −

−
[
εT1 εT4

] [ ϑX
X

]
Cε7,

Ψθ =
[
εT1 θhεT5 + (1− θ)hεT6

]T
,Γ =

[
εT4 (εT1 − εT3 )

]T
,

Λ =
[

Λ1 Λ2 Λ3 Λ4

]T
,Λ1 =

[
(ε1 − ε2)T

]
,

Λ2 =
[ √

3(ε1 + ε2 − 2ε5)T
]
,

Λ3 =
[

(ε2 − ε3)T
]
,Λ4 =

[ √
3(ε2 + ε3 − 2ε6)T

]
,

∇ =
[
εT1 εT4

] [ ϑS
S

]
×Θz

[
In 0n×n

]
,

εi =
[
ε1i ε2i

]
∈ Rn×(7n), i = 1, . . . , 7,

ε1i =
[

0n×(i−1)n In
]
, ε2i =

[
0n×(7−i)n

]
.

The observer gain matrix K is obtained as

K = S−1X. (22)

Proof:

We denote ẽ(t) =
[
ρT (t) stt−hρ

T (s)ds
]T

and consider the following Lyapunov func-
tion:

V (t) = γ(t) + ẽT (t)P ẽ(t) + stt−hρ
T (s)Qρ(s)ds+ hs0

−hs
t
t+ηρ̇

T (s)Rρ̇(s)ds. (23)
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In light of the proof of Lemma 4 in [21], we can prove that γ(t) ≥ 0, ∀t > 0. Thus,
V (t) ≥ 0, ∀t > 0. Taking derivative of V (t) in t, we obtain

V̇ (t) = −λγ(t) + µ(ρ(t− τ(t)) + ερ(t))
TΓ(ρ(t− τ(t)) + ερ(t)) + 2ζT (t)ΨT

θ PΓζ(t) +

+ζT (t)[εT1Qε1 − εT3Qε3]ζ(t) + h2ζT (t)(εT4Rε4)ζ(t)−
−hstt−τ(t)ρ̇

T (s)Rρ̇(s)ds− hst−τ(t)
t−h ρ̇T (s)Rρ̇(s)ds, (24)

where

ζ(t) =
[
ζ1(t) ζ2(t) ζ3(t) ζ4(t)

]T
, ζ1(t) =

[
ρT (t) ρT (t− τ(t))

]
ζ2(t) =

[
ρT (t− h) ρ̇T (t)

]
, ζ3(t) =

[
1
τ(t)

stt−τ(t)ρ
T (s)ds

]
,

ζ4(t) =
[

1
h−τ(t)

s
t−τ(t)
t−h ρT (s)ds eTρ (t)

]
. (25)

Now, by employing the Wirtinger-based integral inequality [40], the reciprocally
convex combination inequality [34], the Cauchy matrix inequality and the Schur Com-
plement Lemma [9], one gets

V̇ (t) ≤ ζT (t)∆?(θ)ζ(t), (26)

where θ ∈ (0, 1).
Since ∆?(θ) is convex with respective to θ, ∆?(θ) < 0 ∀θ ∈ {0, 1} implies ∆?(θ) <

0 ∀θ ∈ (0, 1). Thus, (18) is asymptotically stable. The proof is completed.

4 Simulation results

The trajectory of the PMSM (x1(t) = ωr(t), x2(t) = θr(t), x3(t) = iq(t), x4(t) = id(t))
and the RNN (z1(t), z2(t), z3(t), z4(t)) are shown in Figure 2, Figure 4, Figure 6, Figure
8, while the errors between xi(t) and zi(t) (i = 1, 2, 3, 4) are shown in Figure 3, Figure
5, Figure 7, Figure 9. Figure 10 depicts intervals of ETM (12). Figure 11, Figure 13,
Figure 15, Figure 17 plot the trajectory of the RNN and its estimation, while the errors
between zi(t) (i = 1, 2, 3, 4) and their estimations are shown in Figure 12, Figure 14,
Figure 16, Figure 18. From the above figures, we see that the proposed method can
estimate the trajectory of the PMSM.
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Figure 2: x1(t) and z1(t)
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Figure 3: x1(t)− z1(t)
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Figure 4: x2(t) and z2(t)
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Figure 5: x2(t)− z2(t)
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Figure 6: x3(t) and z3(t)
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Figure 7: x3(t)− z3(t)
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Figure 8: x4(t) and z4(t)
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Figure 9: x4(t)− z4(t)
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Figure 10: Intervals of ETM (12)
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Figure 11: z1(t) and its estimation
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Figure 12: z1(t)− ẑ1(t)
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Figure 13: z2(t) and its estimation
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Figure 14: z2(t)− ẑ2(t)
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Figure 15: z3(t) and its estimation

0 10 20 30 40 50 60 70 80

Time(s)

-12

-10

-8

-6

-4

-2

0

2

Figure 16: z3(t)− ẑ3(t)
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Figure 17: z4(t) and its estimation
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Figure 18: z4(t)− ẑ4(t)
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5 Conclusion

We have solved the problem of estimating the electrical angular velocity, the electri-
cal angle, and the currents of the permanent magnet synchronous motor. A RNN
model which predicts the permanent magnet synchronous motor and a dynamic event-
triggered state observer for this model have been derived. Simulation results have been
provided to demonstrate the merit of the proposed method.
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