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ON THE PROPERTIES OF A FAST ALGORITHM FOR SOLVING
A THREE-DIMENSIONAL INVERSE PROBLEM

OF SCALAR ACOUSTICS

Bakushinsky A.B., Leonov A.S.

Abstract The inverse single-frequency problem of scalar acoustics in three-dimensional space
is considered. It consists in determining the characteristics of acoustic inhomogeneities lying
in a flat layer from the distribution of the complex amplitude of the acoustic field in a flat
recording layer. To effectively solve it, a special numerical algorithm is used, previously
proposed and justified by the authors. As its component part, the algorithm uses solutions to
special one-dimensional Fredholm equations of the 1st kind, and in the case of ambiguity in
the solution of the latter, their normal solutions (solutions with a minimum norm) are sought.
To regularize this ill-posed inverse problem, Tikhonov regularization and the TSVD method
are used. A systematic numerical study is carried out of the influence of various parameters
in the data recording scheme on the accuracy of the approximate solutions obtained using the
algorithm. In particular, we study the dependence of this accuracy on the position of point
sources and composite sources that cause sound vibrations, its dependence on the position of
the data recording layer, and on the number of planes in which the recording sensors lie. It is
shown that acceptable accuracy of approximate solutions can be obtained even with two such
layers. In addition, an approach to the numerical study of the ambiguity of the solution to the
inverse problem under consideration is proposed. It is based on special theoretical statements
given in the article, and on the same numerical algorithm for solving the inverse problem.
The approach is focused on comparing several normal solutions of one-dimensional integral
equations from the problem under consideration. These normal solutions are calculated with
respect to various elements. An example of using this theory to numerically estimate the
non-uniqueness of a solution is given.
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1 Introduction

This paper considers the inverse single-frequency problem of scalar acoustics. It is set
for the following mathematical model. Let the function p(x, t), that depends on the
coordinates x = (x, y, z) and time t ≥ 0, determines the acoustic wave field in the
medium, filling the space R3. The field is created by sources localized in the known
region S ⊂ R3. The medium is characterized by a local phase speed of sound c(x)
and has a constant density. Moreover, it is known that c(x) = c0 = const outside
the given region X ⊂ R3 satisfying the condition X ∩ S = ∅. In the region X itself,
the function c(x) can be variable, and this is interpreted as the presence of acoustic
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inhomogeneities there. Then, for a harmonic source of oscillations of the form f(x)eiωt

with a known frequency ω, the field p(x, t) within the framework of the linear acoustics
approximation can be found in the form p(x, t) = u(x, ω)eiωt. The complex amplitude
u(x, ω) of this field, depending on frequency as a parameter, satisfies the equation

∆u(x, ω) + k2
0u(x, ω) = f(x) + ω2ξ(x)u(x, ω), x ∈ R3, (1)

and radiation condition (see, for example, [15]). Here k0 = ω
c0

and ξ(x) = c−2
0 − c−2(x).

We are interested in the following inverse problem for the equation (1): knowing
for a given frequency (or frequencies) ω the complex amplitude of the field u(x, ω) in
the region Y, Y ∩ X = ∅, Y ∩ S = ∅, find the coefficient ξ(x), i.e. as a result, the
function c(x), which determines the acoustic inhomogeneities in the region X.

Problems of this kind have been studied in numerous works (see, for example,
[6, 10, 15, 16, 22, 24], etc.) from both theoretical and applied points of view. In
particular, the question of an effective numerical algorithm for solving them was also
considered [1, 2, 6, 7, 8, 9, 13, 14, 17, 18, 19, 23]. It turned out that approximate
solution of a three-dimensional inverse problem using standard methods on sufficiently
detailed grids “in a reasonable time” (tens of minutes) requires significant computing
resources (computing clusters, supercomputers) [1, 2, 13, 14, 7, 23, 6]. On the other
hand, the average researcher usually has access to only personal computers (PCs) of
average performance, and would like to somehow solve such inverse problems on a PC.
In this regard, in the series of works [3, 4, 5] we proposed an approach that allows us to
develop time-efficient algorithms for solving such three-dimensional inverse problems.
The approach is as follows.

By introducing the Green’s function for the Helmholtz equation (1) in R3:

G(r, ω) = −exp (iωr/c0)

4πr
, r = |x| =

√
x2 + y2 + z2, (2)

it is possible, under certain assumptions about the smoothness of the functions u(x, ω),
f(x), c(x) (see, for example, [1, 2, 10, 13, 15, 24]) reduce the main inverse problem to
a nonlinear system of integral equations for unknowns u(x′, ω), ξ(x′), x′ ∈ X :

u(x, ω) = u0(x, ω) + ω2

∫
X

G(|x− x′|, ω)ξ(x′)u(x′, ω)dx′, x ∈ X,

ω2

∫
X

G(|x− x′|, ω)ξ(x′)u(x′, ω)dx′ = W (x, ω), x ∈ Y. (3)

The functions included here, namely

u0(x, ω) =

∫
X

G(|x− x′|, ω)f(x′)dx′, W (x, ω) = u(x, ω)− u0(x, ω), x ∈ Y,

are known or computable, and the quantities u(x, ω), ξ(x), x ∈ X, are to be de-
termined from nonlinear system of equations (3). The latter can be reduced to the
following sequence of linear problems.
1) Solve the second equation, written in the form∫

X

G(|x− x′|, ω)v(x′, ω)dx′ = w(x, ω), x ∈ Y, (4)
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with respect to the function v(x′, ω) = ξ(x′)u(x′, ω), x′ ∈ X. Here w(x, ω) = W (x,ω)
ω2 .

2) Calculate the function u(x, ω), x ∈ X, from the first equality of the system (3)
written in the form

u(x, ω) = u0(x, ω) + ω2

∫
X

G(|x− x′|, ω)v(x′, ω)dx′, x ∈ X. (5)

3) Find the function ξ(x) from the equation v(x, ω) = ξ(x)u(x, ω), x ∈ X.
A similar procedure was used previously (see, for example, [12]). However, besides

this, we use additional information about the form of the regions X, Y , considering
them to be flat parallel infinite layers of finite thickness. Then, using two-dimensional
Fourier transforms, it is possible to significantly simplify procedure 1 - 3, reducing three-
dimensional integral equations (4) to a set of one-dimensional integral equations, and
the problem (5) can be represented as calculating a series of one-dimensional integrals.
The details of this approach and the exact formulations will be outlined below. The
result is a speed-efficient method (algorithm) for solving the inverse problem with data
in a flat layer. A similar approach was used in the work [5] for cylindrical layers.

In the works [3, 4, 5] we paid main attention to studying the speed of the proposed
method (algorithm) for solving the inverse problem. At the same time, some other
properties of this method remained unexplored, and in this work we will address this
issue. The main attention will be paid to clarifying the influence of changes in the set of
input data of the inverse problem (the number and positions of sources, the structure of
the data recording layer, etc.) on the “quality” of the resulting solution. Along the way,
we will discuss the problem of uniqueness (non-uniqueness) of the solution obtained
using our algorithm, drawing attention to the fact that the phrase “uniqueness of the
solution” makes sense only if the set of elements to which the desired solution belongs
is indicated.

We assume that in problem (1), i.e. in formulas (4), (5), only one frequency is used.
This is done in order to more clearly highlight the influence of changes in the spatial
data of the inverse problem on the solution obtained using the algorithm. Accordingly,
for brevity we will omit the symbol ω when writing the arguments of the functions
G(|x|, ω), u(x, ω), etc. Note that the algorithm for solving the inverse problem at
several frequencies was tested earlier in the works [4, 5].

The presentation is structured as follows. In Sect.2 we give a description of algo-
rithms for solving the considered direct and inverse problems. Next, Sect.3 provides a
description of the main model inverse problem on which the algorithm is tested. Sect.4
studies the influence of the position of a point source on the accuracy of the found
approximate solution. Sect.5 examines the influence of the position of the composite
source on the accuracy of the calculated solution and compares various regularizing
algorithms (RAs) used for calculations. The effect of the number of data sensors (i.e.,
grid sizes in the observation area) on the solution accuracy is studied in Sect.6. Sect.7
considers the problem of uniqueness/non-uniqueness of a solution to the inverse prob-
lem under study and contains some statements that are further used in Sect.8 to explore
numerically the non-uniqueness of a solution in the model example under consideration.
Sect.9 contains brief conclusions from the work.
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2 Description of algorithms for solving direct and inverse prob-
lems

We assume that the regions X, Y introduced above are flat layers of the form

X = R2
xy × [z1, z2], Y = R2

xy × [z3, z4].

Suppose that the function ξ(x) is finite in X. We use the two-dimensional Fourier
transform in variables (x, y), which is calculated for the function a(x) = a(x, y, z) ∈
L2(R2

xy) with fixed z:

Ã(z,Ω) = Fxy [a(x)] (Ω) =

∫
R2
xy

a(x, y, z) exp (i(Ω1x+ Ω1y)) dxdy, Ω = (Ω1,Ω2) ∈ R2,

as well as the inverse Fourier transform F−1
Ω

[
Ã(z,Ω)

]
(x, y). One can verify that for

the Green’s function (2) such Fourier transform, G̃(z,Ω), exists. Let us assume that
inclusions u(x), u0(x) ∈ L2(X), w(x) ∈ L2(Y ) take place. Then the existence of Fourier
images

Ũ(z,Ω), Ũ0(z,Ω), z ∈ [z1, z2], W̃ (z,Ω), z ∈ [z3, z4],

of these functions is ensured, respectively. Let us also take into account that the Fourier
image Ṽ (z,Ω), z ∈ [z1, z2], of the function v(x) = ξ(x)u(x) exists due to the finiteness
of ξ(x) . Next, transforming the integrals from formulas (4), (5), we obtain∫ z2

z1

G̃(z − z′,Ω)Ṽ (z′,Ω)dz′ = W̃ (z,Ω), z ∈ [z3, z4];

Ṽ (z′,Ω) = Fxy

[
ξ(x, y, z′)F−1

Ω

[
Ũ(z′,Ω)

]
(x, y)

]
(Ω), z′ ∈ [z1, z2];

Ũ(z,Ω) = Ũ0(z,Ω) + ω2

∫ z2

z1

G̃(z − z′,Ω)Ṽ (z′,Ω)dz′, z ∈ [z1, z2]. (6)

We will use these equalities to solve the direct and inverse problems. Let us formulate
the corresponding algorithms.

2.1 Solving the direct problem.

The direct problem for the equalities (4), (5) is to find the function w(x), x ∈ Y, using
the given functions u0(x) and ξ(x) . For Fourier images, this corresponds by virtue of
(6) to finding the function W̃ (z,Ω) of the argument z ∈ [z3, z4] for each parameter
Ω, using the function ξ(x, y, z), z ∈ [z1, z2], and the function Ũ0(z,Ω) of the argument
z ∈ [z1, z2] given (computed) for these parameters. The solution is carried out as
follows.
Algorithm 1.
1) Calculate the Fourier transform Ũ0(z,Ω). In practice, this is implemented using the
fast discrete Fourier transform (FFT).
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2) Set the iterative process

Ũn+1(z,Ω) = Ũ0(z,Ω) + ω2

∫ z2

z1

G̃(z − z′,Ω)Ṽn(z′,Ω)dz′, z ∈ [z1, z2],

Ṽn(z′,Ω) = Fxy

[
ξ(x, y, z′)F−1

Ω

[
Ũn(z′,Ω)

]
(r)
]

(Ω) , z′ ∈ [z1, z2] , n = 0, 1, ... (7)

starting with the function Ũ0(z,Ω).
3) Stop the process according to some rule at the iteration with n = ν − 1 and obtain
an approximate solution Ũν(z,Ω) of the first equation in the group (7).
4) Calculate sequentially the quantities

Ṽν(z
′,Ω) = Fxy

[
ξ(x, y, z′)F−1

Ω

[
Ũν(z

′,Ω)
]

(r)
]

(Ω) , z′ ∈ [z1, z2] ,

W̃ν (z,Ω) =

∫ z2

z1

G̃(z − z′,Ω)Ṽν(z
′,Ω)dz′, z ∈ [z3, z4] (8)

and accept the function W̃ν (z,Ω) and its inverse Fourier transform as an approximate
solution to the direct problem.

We use Algorithm 1 only to generate model data for the inverse problem. The
analysis of its convergence (at least for “small” ω) is briefly discussed in the work [4].

2.2 Solving the inverse problem.

The inverse problem consists of finding the function ξ(x, y, z), z ∈ [z1, z2], from the
system (6) using the value W̃ (z,Ω) , z ∈ [z3, z4], specified for each parameter Ω. This
is done in the following algorithm.
Algorithm 2.
1) Using the given function W̃ (z,Ω) ∈ L2 we solve one-dimensional integral equations
of the 1st kind∫ z2

z1

G̃(z − z′,Ω)Ṽ (z′,Ω)dz′ = W̃ (z,Ω) , z ∈ [z3, z4] ⇒ Ṽ (z′,Ω) ∈ L2, (9)

for each parameter Ω. Here we apply an appropriate method for regularizing these,
generally speaking, ill-posed problems.
2) Using the found function Ṽ (z′,Ω) we calculate the value

Ũ(z,Ω) = Ũ0(z,Ω) + ω2

∫ z2

z1

G̃(z − z′,Ω)Ṽ (z′,Ω)dz′, z ∈ [z1, z2], (10)

and then find the functions

V (x, y, z) = F−1
Ω

[
Ṽ (z,Ω)

]
(x, y), u(x, y, z) = F−1

Ω

[
Ũ(z,Ω)

]
(x, y), (x, y, z) ∈ X.

In practice, this is done using inverse FFT.
3) We find the function ξ(x, y, z) from the equation u(x, y, z)ξ(x, y, z) = V (x, y, z).
This can be done using the least squares method (LSM) or simply computing the
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solution as ξ(x, y, z) = V (x, y, z)/u(x, y, z). Generally speaking, the result depends on
the frequency ω.

The issues of numerical implementation of this algorithm are considered in detail in
the works [3, 4, 5]. Its high speed, achieved through the use of FFT, was also confirmed
there. Here we will numerically explore other properties of Algorithm 2.

3 Description of the main model problem

In this work, we studied Algorithm 2 for a number of model problems with various
solutions in the form of local acoustic inhomogeneities (finitely supported functions
ξ(x) with relatively small carrier sizes). For definiteness, below we present the results
of solutions for only one typical model inverse problem in dimensionless variables. It
is supposed everywhere that c0 = 1 и что k0 = ω = 3. In the area of solutions,

X = [−7, 7]× [−7, 7]× [−1, 1.5] = Πxy × [z1, z2],

uniform grids of size N ×N ×M with N = 128, M = 51 were used for variables x, y, z.
In the observation area represented by the “thin layer”

Y = [−7.7]× [−7.7]× [z3, z3 + 0.1] = Πxy × [z3, z3 + 0.1]

uniform grids of size N × N ×M1 for variables x, y, z′ were also used with N = 128
and different M1,M1 = 2, 4, 8. Model sources were specified in the form

f(x) =
∑
m

δ(x− xm),

where xm are the coordinates of δ-shaped point sources. The exact solution is expressed
as ξ̄(x, y, z) = ξ̄1(x, y, z) + ξ̄2(x, y, z). Its terms have supports X1 = {D1(x, y, z) ≤
D2(x, y, z)} and X2 = {D3(x, y, z) ≤ 0.01} respectively, where

D1(x, y, z) =
(
(x− 1)2 + (y + 2)2 + (z − 0.5)2 +R2 − r2

)2
,

D2(x, y, z) = 4R2
(
(x− 1)2 + (y + 2)2

)
,

D3(x, y, z) = (x+ 3)2 + (y − 2)2 − (x+ 3)(z − 0.5) + (z − 0.5)2,

and R = 0.7, r = 0.2. The terms themselves have the form

ξ̄1(x, y, z) = exp [200 (D1(x, y, z)−D2(x, y, z))] , ξ̄2(x, y, z) = 0.5 exp [−200D3(x, y, z)] .

Geometrically, the exact solution of the inverse problem is defined on carriers in the
form of a torus and an ellipsoid with the distribution of the quantities ξ̄1,2(x) in them
in the form of Gaussians, rapidly decreasing from the boundaries to the centers of
carriers. Model data for solving the inverse problem were calculated using Algorithm
1 with the source functions f(x) and the model solution ξ̄(x). These data were used
in unperturbed form when solving the inverse problem in order to see (in a pure form)
the influence of their changes on approximate solutions for various source positions
and observation areas. Studies of the effect of random data perturbations on solutions
to the inverse problem were previously carried out in the works [3, 4, 5] and are not
considered here. The support of exact model solution to the inverse problem, as well
as numbered possible positions of point sources and the position of one of the planes
in the observation area, are shown in Fig.1.
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Figure 1: The exact solution support (ellipsoid and torus), point source line, source positions
(asterisks), their numbers, and one of the planes in the observation area (rectangle) are
depicted.

4 The influence of the position of a point source on the accuracy
of calculated solution

In this section, we study two questions using numerical experiments.
1) Given a “thin layer” of observation, what position of one δ-shaped source gives the
smallest error in the approximate solution?
2) Given the position of the source, which observation layer is better to take: close to
the observation area or far away, so that the algorithm error is minimal?

Thus, to answer the second question, we will optimize the “height” of the observation
layer z3, and to answer the first, we will optimize the position of one point source on
various straight lines like the one shown in Fig.1.

The following estimate of the relative error of the approximate solution ξ̃(x) is taken
as an optimality criterion :

∆ = max


∥∥∥ξ̃(x, y, z) − ξ̄(x, y, z)

∥∥∥
L2(Πxy)∥∥ξ̄(x, y, z)

∥∥
L2(Πxy)

: z ∈ [zmin, zmax]

 . (11)

Here ξ̄(x, y, z) and ξ̃(x, y, z) are an exact (model) solution and some approximate
solution of the inverse problem. This criterion was chosen due to the specifics of
Algorithm 2. In it, for each point (x, y) ∈ Πxy the solutions are found as functions of
the argument z. Thus, the error estimate (11) means first calculating the average error
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Figure 2: (a) Error ∆ as a function of the position y of a point source on line `1 (for three
positions of the observation layer z3). The solid line marks the projection of the exact solution
onto the source plane Π1. (b) The best solution found for various positions of a point source
on line `1 for the observation layer z3 = 4.

over the points (x, y) ∈ Πxy:

∆0(z) =

∥∥∥ξ̃(x, y, z) − ξ̄(x, y, z)
∥∥∥
L2(Πxy)∥∥ξ̄(x, y, z)

∥∥
L2(Πxy)

, (12)

for each admissible fixed z, and then calculating the maximum error over all depths z.
When studying the first question, it was assumed that the source can occupy fixed

positions on the lines `1 − `4 shown in Fig.2–5. The inverse problem was solved for
each such source position, for three heights z3: z3 = 2, 4, 10, of the observation layer,
and the corresponding error ∆ was calculated. The results obtained, i.e. dependence
of the error ∆ on the positions of the point source, and the best of all approximate
solutions found for various positions of a point source on the corresponding straight
line `, are presented in Fig.2–5. Three-dimensional images of the approximate solution
are presented in the form of surfaces bounding the carrier. Due to the large amount of
graphic material, this is done only for one of the heights z3 of the data layer.

Analysis of these results leads to the following intermediate conclusions.
a) The error ∆ depends significantly on both the position of the point source and the
position of the observation layer. This error can range from 5− 8%. An “unsuccessful”
line for source positions can spoil the quality of the approximate solution (see Fig.4).
b) With increasing z3, i.e. when the observation layer is distanced from acoustic inho-
mogeneities, the accuracy improves for all source positions. However, experiments have
shown that it practically stops changing at z3 > 10. In addition, for large z3, artifacts
sometimes appear in the approximate solution, namely, false solutions on deep z-layers
of the solution (see, for example, Fig.3).
c) The error is significantly reduced (by 4%− 8%), if the point source turns out to be
“to the side” of the projection of the exact solution onto the plane of sources Π1.
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Figure 3: (a) Error ∆ as a function of the position of a point source on the line `2. (b) The
best solution found for various positions of a point source on line `2 for the observation layer
z3 = 10.

Figure 4: (a) Error ∆ as a function of the position of a point source on the line `3. (b) The
best solution found for various positions of a point source on line `3 for the observation layer
z3 = 10.
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Figure 5: (a) Error ∆ as a function of the position of a point source on the line `4. (b) The
best solution found for various positions of a point source on line `4 for the observation layer
z3 = 4.

Thus, it is better to use Algorithm 2 with a point source located not directly above
the acoustic inhomogeneities but at some, not very large, angle to them.

5 The influence of the position of the composite source on the
accuracy of the solution

In the next series of experiments, a composite source was used, namely: a set of 21
point sources lying on lines of the ` type (see, for example, Fig.1). The main question
that was studied is formulated as follows: what line of sources ` and what position of
the data recording layer z3 should be taken in order to minimize the solution error of
the form (12), ∆0(z), that is, the average error of the solution section at the depth z.
Two methods for solving one-dimensional integral equations were compared at step 1 of
algorithm 2: the A.N. Tikhonov regularization method (TRA) of zero order (see [25])
and the TSVD algorithm (see, e.g. [11]) with regularization parameters found by the
V.A. Morozov discrepancy principle [21]. We present the results obtained in Fig.6–9.

Analyzing these results, the following conclusions can be drawn. i) In general, the
error of the TRA method is comparable to the error of the TSVD method. Sometimes,
it turns out to be somewhat smaller for the depths z at which heterogeneities occur
(0 ≤ z ≤ 1). For this reason, we will further present only the results of calculations
using the TRA method. ii) The errors of both methods increase significantly with
increasing depth of the study (z < 0). iii) The smallest maximum errors are obtained
for sources lying on `4 line, which is closest to the inhomogeneities.



26 Bakushinsky A.B., Leonov A.S.

Figure 6: Composite source on line `1. Comparison of TRA and TSVD in terms of accuracy
∆0(z) for different z3. Curves 1,3,5 are the zero-order Tikhonov RA accuracies for z3 =

2, 4, 10 respectively. Curves 2,4,6 are similar lines for TSVD.

Figure 7: The same for the composite source on the line `2.

Figure 8: The same for the composite source on the line `3.
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Figure 9: The same for the composite source on the line `4.

Figure 10: (a) Error ∆ as a function of the position of point source y on line `1 for the
observation layer z3 = 2 and a different number M ′ of sensor layers. (b) The same for the
observation layer z3 = 4.

6 The influence of the number of data sensors on the accuracy
of the solution

The accuracy of Algorithm 2 was also studied depending on the number of planes of
the form z = const lying in the layer Y = [−7, 7]× [−7, 7]× [z3, z3 + 0.1], in which the
data of the inverse problem are measured. The study was carried out for layers with
different heights z3. These planes model sets of sensors located within the observation
layer. The study also considers different positions of a point source on two lines `1, `4.
The accuracy of Algorithm 2, depending on the ordinate y of the point source on the
corresponding line, is determined by the formula (11). The results are presented in
Fig.10, 11.
It can be seen that two layers of sensors provide better accuracy to the algorithm than
more. At M ′ ≥ 4 the value of ∆ stops changing, and the accuracy of the algorithm
saturates. This is true for all considered heights z3 of the observation layer.
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Figure 11: (a) Error ∆ as a function of source position y on line `4 for observation layer
z3 = 2 and varying number M ′ of sensor layers. (b) The same for the observation layer
z3 = 4.

Figure 12: Composite source on `1. (a) Comparison of the accuracy ∆0(z) of the algorithm
for z3 = 2 and for different numbers M ′ of sensor layers. (b) The same for z3 = 4.

A similar study for various positions of a linear (composite) source was carried out
for two lines `1, `4 filled with point sources. The accuracy of Algorithm 2 is defined
here by the formula (12). The results are given in Fig.12, 13.

As in the case of a point source, two layers of sensors provide better accuracy of
the algorithm at shallow depth (z1 ∈ (0, 1.5)) than more layers. However, for greater
depths, a larger number of layers M ′ turns out to be more preferable. At M ′ ≥ 4
the accuracy of the algorithm saturates. This is true for all observation layer heights
considered.

Similar effects arose for the other considered lines of the composite source.

7 On the uniqueness of solution to the inverse problem

In discussing solutions to inverse problems, specific sets on which these solutions are
sought are often not explicitly indicated. Nevertheless, words are spoken about the
uniqueness or non-uniqueness of the solution. Meanwhile, the words like “an equa-
tion has a non-unique solution” have a certain meaning only after specifying the set
on which the inverse problem should be solved. If this is not done, then it is implic-
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Figure 13: Composite source on `4. (a) Comparison of the accuracy of the ∆0(z) algorithm
for z3 = 2 and for different numbers M ′ of sensor layers. (b) The same for z3 = 4.

itly assumed that the corresponding set is the domain for the operator of the direct
problem in postulated solution space. Selecting a single solution from their many re-
quires introducing additional assumptions. These assumptions (constraints) can be of
various natures. For example, they can be expressed by special inequalities for the
solution and/or its functionals, they can be represented by properties such as source
representability of solutions, etc. Constraints of this type must be determined by the
user of solving algorithm and follow from the physical nature of solutions. However,
in practice such constraints are often absent. Experience in solving numerous inverse
problems shows that then it is convenient to use methods that allow us to search for
special solutions with postulated optimal mathematical properties (see [1, 2, 11, 20, 25],
etc.). So, these properties form a set of solutions, and sometimes this set consists of a
single element. Let us illustrate how this is done in our approach.

At step 1 of Algorithm 2, the Fredholm integral equation should be solved that may
not have a unique solution in the spaces indicated there. To eliminate this ambiguity,
one can use such well-known procedures for solving inverse problems as A.N. Tikhonov’s
regularization method [25] or the TSVD method [11] with the choice of the appropriate
regularization parameter based, for example, on the discrepancy principle [21]. The
mentioned methods allow to find stably an approximation to the normal solution in L2

of the equation (9), i.e. the solution with the minimal norm. Such a normal solution is
always unique, and thus Algorithm 2 provides a unique solution to the inverse problem
posed above.

In addition, procedures for finding a normal solution to the inverse problem can
sometimes be adapted to the numerical study of the uniqueness in selected solution
space. This is based on the following theoretical fragment.

For simplicity, let Z,U be Hilbert spaces and A : Z → U be a bounded linear
operator. Consider the operator equation Az = u and assume that for a given right-
hand side u ∈ U, u 6= 0, it is solvable in the space Z. Then, as is known, the extremum
problem of finding a normal solution, i.e. find an element z̄ ∈ Z such that

‖z̄‖ = inf {‖z‖ : ‖Az − u‖ = 0}

has a unique solution z̄ 6= 0. Similarly, extremum problems of finding normal solutions
z̃(z0) ∈ Z with respect to elements z0 ∈ Z , i.e. tasks

‖z̃(z0)− z0‖ = inf {‖z − z0‖ : ‖Az − u‖ = 0} , (13)
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have a unique solution for every z0 ∈ Z.
Proposition 1. If for any z0 /∈ kerA the equality z̃(z0) = z̄ holds, then kerA = 0.
Proof. Suppose the proposition is not true. Then for any z0 /∈ kerA the equality

z̃(z0) = z̄ is satisfied, but kerA 6= 0. Take an arbitrary element w ∈ kerA, w 6=
0. From (13) and the proposition condition it follows: ‖z̃(z0)− z0‖ = ‖z̄ − z0‖ <
‖z − z0‖ , ∀z 6= z̄, ∀z0 ∈ Z. In particular, for the elements z = z̄+w/2, z0 = z̄+w we
obtain:

‖z̄ − z0‖ = ‖w‖ < ‖z − z0‖ = ‖z̄ + w/2− (z̄ + w)‖ = ‖w/2‖ ⇒ w = 0,

that contradicts the assumption w 6= 0.�
Corollary 1. If kerA 6= 0, then there is an element z0 /∈ kerA such that z̃(z0) 6= z̄.
Let now the right side of the equation Az = u be given with an error, namely,

the element uδ ∈ U is known such that ‖u− uδ‖ ≤ δ. Suppose that two families of
stable approximations have been constructed for finding normal solutions: z̃δ(z0) →
z̃(z0), z̄δ → z̄ (δ → 0).

Proposition 2. If ‖z̃δ(z0)− z̄δ‖ → 0 for any z0 /∈ kerA as δ → 0 , then kerA = 0.
Indeed, if ‖z̃δ(z0)− z̄δ‖ → 0 for δ → 0, then ‖z̃(z0)− z̄‖ = 0 for any z0 /∈ kerA.

Then, by Proposition 1, kerA = 0. �
Corollary 2. If kerA 6= 0, then there is an element z0 /∈ kerA such that

‖z̃δn(z0)− z̄δn‖ ≥ const > 0 for at least one sequence δn → 0.
This corollary can be used to a certain extent in a numerical study on the non-

uniqueness of solution to our inverse problem in L2. Schematically, this is represented
by the following procedure.

Let us consider a model problem for the equation (9), written in operator form
Az = u, and having some given solution z̄ ∈ Z, z̄ 6= 0. Then we can calculate the
corresponding right-hand side of this equation, ū = Az̄, and find several of its perturbed
realizations uδ ∈ U with perturbation level δ > 0, close to the rounding errors on the
computer used. Then, for approximate inverse problems Az = uδ, it is possible to find
normal solutions z̄δ, using, for example, Tikhonov regularization. Similar regularized
normal solutions z̃δ(z0) ∈ Z can be calculated with respect to various elements z0 ∈
Z, Az0 6= 0. If we managed to find an element z0 for which the inequality

‖z̃δ(z0)− z̄δ‖ ≥ C0 = const > 0 (14)

holds, with a constant C0 significantly exceeding the rounding errors, then, taking into
account Corollary 2, there is reason to assume that kerA 6= 0, i.e. that the equation
Az = u does not have a unique solution in the space Z.

8 Numerical study of uniqueness

Such a non-uniqueness study for our inverse problem of acoustic sounding was carried
out on the same model problem with a composite source lying on the line `4. Specif-
ically, step 1 of Algorithm 2 was considered. Then, for each Ω, the normal solution
Ṽnorm(z′,Ω; Ṽ0) ∈ L2[z1, z2] of the integral equation from (9),∫ z2

z1

G̃(z − z′,Ω)Ṽ (z′,Ω)dz′ = W̃ (z,Ω) , z ∈ [z3, z4],
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Figure 14: Numerical study of uniqueness. Images of approximate solutions ξm(x) for differ-
ent z0 = Ṽ0m(z,Ω): (a) ξ3(x); (b) ξ1(x).

was approximately calculated with respect to various elements Ṽ0(z′,Ω) ∈ L2[z1, z2]
using Tikhonov’s regularization. In numerical experiments, these elements were taken
as Fourier images Ṽ0m(z,Ω) = Fxy[v0m(x, y, z)](Ω), z ∈ [z1, z2], (m = 0, 1, 2, 3) of func-
tions

v00(x, y, z) = 0, v01(x, y, z) = 10−4x, v02(x, y, z) = 10−5(x2 + y2 + z2),

v03(x, y, z) = 10−5(x2 − y2 + z2).

The result was a family of Tikhonov approximations Ṽtikh(z,Ω; Ṽ0m) ∈ L2[z1, z2].
Therefore, in the notation from Section 7, the role of z0 here is played by the quantities
Ṽ0m(z,Ω), m = 0, ..., 3, depending on the parameter Ω. The quantity z̄δ is presented
by elements Ṽtikh(z,Ω; Ṽ00), and the values z̃δ(z0) correspond to approximate solutions
Ṽtikh(z,Ω; Ṽ0m), m = 1, 2, 3. The left side of the inequality (14), used in analyzing the
ambiguity of the solution of integral equations (9), can be written in relative form as

Dm =

∥∥∥Ṽtikh(z,Ω; Ṽ0m)− Ṽtikh(z,Ω; Ṽ00)
∥∥∥
L2[z1,z2]∥∥∥Ṽtikh(z,Ω; Ṽ00)

∥∥∥
L2[z1,z2]

, m = 1, 2, 3.

In our calculations, it turned out that D1 ≈ 2.556, D2 ≈ 2.119, D3 ≈ 0.997, and this,
according to the theory from Section 7, serves as some basis for the conclusion about
non-uniqueness of solutions to equations (9) in L2.

Further applying Algorithm 2 for found functions Ṽtikh(z,Ω; Ṽ0m), m = 1, 2, 3, we
can compare the corresponding approximate solutions ξm(x) of our inverse problem
with a solution for m = 0. An example of such a comparison is given in Fig.14, and it
confirms the significant difference in the approximate solutions of the inverse problem
for different m.

9 Conclusions

Previously, in the works [3, 4, 5] it was shown that Algorithm 2 for solving the three-
dimensional inverse problem of acoustic sounding is very efficient in terms of solution
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time. At the same time, as established in the above study, the accuracy of the resulting
approximate solution depends significantly on the tuning of geometric parameters of
the data recording system.

Firstly, this accuracy depends on the location of the point or composite source that
excites oscillations in the system. Calculations have shown that the line of sources
(such as lines `1 − `4), on the one hand, should not be far from the area of acoustic
inhomogeneity, and on the other hand, point sources should be at some small angle to
this areas.

Secondly, the accuracy of the resulting solution is affected by the height of the obser-
vation layer containing sensors for data recording. With an increase in this height, i.e.
when the observation layer moves away from inhomogeneities, the accuracy improves
at first for all source positions, but then remains virtually unchanged.

Thirdly, good accuracy of the approximate solutions is ensured even for a thin
layer of data observation, that is, already for two planes of sensor location, and when
the number of layers is greater than four, the accuracy of the algorithm stabilizes
(saturates).

Finally, Algorithm 2 can, to a certain extent, be applied to numerically study of
the ambiguity of solution to the inverse problem under consideration using the method
from Section 7.

Acknowledgement

The work was carried out with the financial support of the Russian Science Foundation,
project no. 22-71-10070

References
[1] Bakushinsky A., Goncharsky A., Ill-Posed Problems: Theory and Applications. Kluwer Academic

Publishers, Dordrecht, 1994.

[2] Bakushinsky A.B., Kokurin M.Yu., Iterative methods for approximate solution of inverse prob-
lems. Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 2004.

[3] Bakushinsky A.B., Leonov A.S., Fast numerical method of solving 3D coefficient inverse problem
for wave equation with integral data. J. of Inverse and Ill-Posed Problems. 26 (2018), no. 4, 477—
492.

[4] Bakushinskii A.B., Leonov A.S., Numerical solution of an inverse multifrequency problem in
scalar acoustics. Comput. Math. and Math. Phys. 60 (2020), no. 6, 987—999.

[5] Bakushinsky A.B., Leonov A.S., Fast Solution Algorithm for a Three-Dimensional Inverse Mul-
tifrequency Problem of Scalar Acoustics with Data in a Cylindrical Domain. Comput. Math. and
Math. Phys. 62 (2022), no. 2, 287–301.

[6] Beilina L., Klibanov M.V., Approximate Global Convergence and Adaptivity for Coefficient In-
verse Problems. Springer, New York, 2012.

[7] Belishev M.I., Recent progress in the boundary control method. Inverse Problems, 23 (2007),
no. 5, 1—67.



Properties of a fast algorithm for solving a 3D inverse acoustics problem 33

[8] Burov V.A., Alekseenko N.V., Rumyantseva O.D., Multifrequency generalization of the Novikov
algorithm for the two-dimensional inverse scattering problem. Acoust. Phys. 55 (2009), no. 6,
843—856.

[9] Burov V.A., Vecherin S.N., Morozov S.A., Rumyantseva O.D. Modeling of the exact solution of
the inverse scattering problem by functional methods. Acoust. Phys. 56 (2010). no. 4, 541—559.

[10] Colton D., Kress R., Inverse Acoustic and Electromagnetic Scattering Theory. 2nd ed. Appl.
Math. Sci. 93, Springer, Berlin, 1998.

[11] Engl H.W., Hanke M., Neubauer A., Regularization of Inverse Problems. Kluwer Academic
Publishers, Dordrecht, 1996.

[12] Evstigneev R.O., Medvedik M.Yu., Smirnov Yu.G., Tsupak A.A., Inverse problem of recon-
structing body inhomogeneities for early disease detection by microwave tomographic imaging.
Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki. 44 (2017), no. 4, 3—17.

[13] Goncharskii A.V., Romanov S.Yu., Two approaches to the solution of coefficient inverse problems
for wave equations. Comput. Math. Math. Phys. 52 (2012), no. 2, 245—251.

[14] Goncharskii A.V., Romanov S.Yu., Supercomputer technologies in inverse problems of ultrasound
tomography. Inverse Problems. 29 (2013), no. 7, Article ID 075004.

[15] Goryunov M.A., Saskovets A.V., Inverse Scattering Problems in Acoustics. Mosk. Gos. Univ.,
Moscow, 1989 (in Russian).

[16] Kabanikhin S.I., Satybaev A.D., Shishlenin M.A., Direct Methods of Solving Multidimensional
Inverse Hyperbolic Problems. VSP, Utrecht, 2004.

[17] Klibanov M.V., Kolesov A.E., Convexification of a 3-D coefficient inverse scattering problem.
Computers and Mathematics with Applications. 77 2019, no. 6, 1681—1702.

[18] Klibanov M.V., Kolesov A.E., Dinh-Liem Nguyen. Convexification method for an inverse scat-
tering problem and its performance for experimental backscatter data for buried targets. SIAM
J. Imaging Sciences. 12 2019, no. 1, 576—603.

[19] Klibanov M.V., Jingzhi Li, Inverse Problems and Carleman Estimates. Global Uniqueness, Global
Convergence and Experimental Data. De Gruyter, Berlin/Boston, 2021.

[20] Leonov A.S., Solution of Ill-Posed Inverse Problems: Theory, Practical Algorithms, and Demon-
strations in MATLAB. Librokom, Moscow, 2013 (in Russian).

[21] Morozov V. A., Methods for Solving Incorrectly Posed Problems. Springer-Verlag, New York,
1984.

[22] Novikov R.G., Reconstruction of a two-dimensional Schrodinger operator from the scattering
amplitude for fixed energy. Funct. Anal. Appl. 20 (1986), no. 3, 246—248.

[23] Pestov L.N., Bolgova V.M., Danilin A.N., Numerical reconstruction of three-dimensional speed
of sound by applying a boundary control method. Vestn. Yugor. Gos. Univ. (2011), no. 3, 92—98.

[24] Ramm A.G. Multidimensional Inverse Scattering Problems. Pitman Monogr. Surv. Pure Appl.
Math. 51. Longman Scientific and Technical, Harlow, 1992.

[25] Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G., Numerical Methods for the
Solution of Ill-Posed Problems. Nauka, Moscow, 1990; Kluwer Academic, Dordrecht, 1995.



34 Bakushinsky A.B., Leonov A.S.

A.B. Bakushinsky
Institute for Systems Analysis,
Federal Research Center “Computer Science and Control”,
Russian Academy of Sciences
Moscow, 117312 Russia
Mari State University, Yoshkar-Ola,
424000 Mari El Republic, Russia
E-mail: bakush@isa.ru,

A.S. Leonov
Department of Higher Mathematics
National Research Nuclear University “MEPhI”
Moscow, 115409 Russia
E-mail: asleonov@mephi.ru

Received 10.02.2024, revised 04.03.2024, Accepted 05.03.2024


