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THREE-COMPONENT VERSION OF THE TIKHONOV
REGULARIZATION METHOD FOR OPERATOR
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Abstract An ill-posed problem in the form of a linear operator equation is considered. It
is assumed that the solution to the equation in the one-dimensional case can be represented
in the form of a sum of three components: the first component contains discontinuities, the
second contains discontinuities in the derivative, and the third is continuous. To construct
a stable approximate solution, the three-component Tikhonov method is used. In this case,
the stabilizer is the sum of three functionals: BVp-norm of the first component, BVp-norm
of the derivative for the second component and the norm of the Sobolev space for the third
component, and each functional depends on only one component. The convergence of the
sum of regularized components to the solution of the original equation is proved. In addi-
tion, piecewise uniform convergence of approximate solutions is established. The results of
numerical experiments on reconstructing a three-component model solution for the Fredholm
equation of the first kind are presented.
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1 Introduction

For ill-posed problems with a solution that has some singularities in different parts of the
domain of definition, an important problem is the construction of a stabilizing functional that
takes into account this information as much as possible when using variational methods of
regularization of these problems. The most common case is when, along with smooth areas,
the solution contains discontinuities and kinks, as well as areas with close extrema, etc.

The main approach, which first emerged in applications [1, 2] and then became the object
of theoretical research [3, 4, 5], is based on representing the solution as a sum of several
components. For simplicity of presentation, we will first restrict ourselves to the case of
two components u = u1 + u2. Then in the Tikhonov regularization method the stabilizing
functional is constructed in the form of the sum of two functionals Ω(u1, u2) = Ω1(u1)+Ω2(u2)
each of which depends on only one component and takes into account its peculiarity.

Provided that there is a priori information about the presence of discontinuities and kinks
in the solution of the linear operator equation,

Au = f (1.1)
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consider Tikhonov’s regularization method in the form (||f − fδ|| ≤ δ)

inf
{
‖A(u1 + u2)− fδ‖2L2

+ α
[
‖u1‖BVp + ‖u(1)2 ‖BVp

]
: u2(a) = 0, u1, u

(1)
2 ∈ BVp

}
= Φ∗,

(1.2)
here BVp is a complete normed space with the norm [6]

‖u‖BVp = ‖u‖Lp +Gba(u), p > 1, (1.3)

Gba(u) = sup

{∫ b

a
u(x) · v′(x) dx : v ∈ C1

0 (a, b), |v(x)| ≤ 1

}
.

If in (1.3) instead of Lp is used L1− norm is used, then the corresponding Banach space is
denoted by BV [7].

It should be noted that the norm of the space BV and its smooth approximation were
successfully used as a stabilizer when reconstructing non-smooth components of the solution
in the multidimensional case n ≥ 2 (see [5]). Here in the proof convergence of regularized
components of approximate solutions, the theorem on the compactness of the embedding
operator J : BV → Lp(D) [8] is essentially used. However, in the one-dimensional case
there is no analogue of this theorem; therefore, we cannot use a similar technique to prove
the convergence of approximate solutions. To investigate Tikhonov regularization (1.2), we
need a strengthened version of the following statement about approximation of the function
by smooth functions.

Statement 1 [7]. For any function u ∈ BV there is a sequence of functions ui ∈ C∞(D)
for which the following relations hold:

lim
i→∞
‖ui − u‖L1(D) = 0, lim

i→∞
GD(ui) = GD(u), (1.4)

where GD(u) is the total variation of the function u, given in a domain D ⊆ Rn.
Let us establish that in the one-dimensional case the convergence of {ui} holds not only

in L1, but also in Lp[a, b], p > 1..
Lemma 1. For any function u ∈ BVp there is a sequence ui ∈ C∞(a, b), for which the

following relations holds:

lim
i→∞
‖ui − u‖Lp = 0, lim

i→∞
Gba(ui) = Gba(u). (1.5)

Proof
From the first relation in (1.4) it follows the existence of a convergent almost everywhere
subsequence

uik(x)→ u(x) (almost everywhere) x ∈ [a, b]. (1.6)

Let x0 be the convergence point of the subsequence {uik}, which implies that |uik | ≤ c1 is
bounded. Since uik ∈ C∞ and (1.4) holds, we have Gba(uik) = V a

b (uik) → Gba(u), from the
following estimate holds

|uik(x)− uik(x0)| ≤ V x
x0(uik) ≤ V b

a (uik) ≤ c2. (1.7)

From (1.6) and (1.7) it follows that

max
x∈[a,b]

|uik(x)| ≤ c2. (1.8)

From the convergence of the sequence {uik} almost everywhere (1.6) and the boundedness
almost everywhere (1.8) by the Lebesgue theorem on transition to the limit for the integral,
the first relation (1.5) follows, and the second relation implies from (1.4).
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2 Existence end convergence of regularized solutions

Let us show that there is an analogue of the normal solution to problem (1.1).
Theorem 1. Let the operator A acting from Lp, (p > 1), into L2 be continuous. Then

there is a unique solution (û1, û2) to the following problem

inf
{
‖u1‖BVp + ‖u(1)2 ‖BVp : A(u1 + u2)− f = 0, u2(a) = 0, u1, u

(1)
2 ∈ BVp

}
= Ψ∗. (2.1)

Proof
Let (u1k, u2k) be a minimizing sequence in problem (2.1). Then, due to its boundedness,
there exist weakly convergent subsequences

uki1 → û1 (weakly) in Lp, (uki2 )(1) → v̂ (weakly) in Lp.

Since W 1
p is a weakly complete space and u2(a) = 0, then v̂ = û

(1)
2 , where û2 is an element

of the space Lp. Due to the weak lower continuity of the norm Lp and the total variation Gba
([8], theorem 2.4), we have the relations:

0 ≤ ‖A(û1 + û2)− f‖ ≤ lim inf
i→∞

‖A(uki1 + uki2 )− f‖ = 0,

Ψ∗ ≤ ‖û1‖BVp + ‖û(1)2 ‖BVp ≤ lim inf
i→∞

(
‖uki1 ‖BVp + ‖(uki2 )(1)‖BVp

)
≤ Ψ∗,

i. e. (û1, û2) is solution to problem (2.1). Since the Lp− norm for p > 1 is strictly convex,
and Gba is a convex functional, then the pair û1, û2 is the unique solution of problem (2.1).

Theorem 2. Let the operator A acting from Lp[a, b], p > 1 into L2[a, b] be linear and
continuous. Then:

1) for any α > 0 problem (1.2) has a unique solution uα1 , uα2 ;
2) for α(δ)→ 0, δ2/α(δ)→ 0, δ → 0 the convergence of the components holds:

lim
δ→0
‖uα(δ)1 − û1‖Lp = 0, lim

δ→0
‖uα(δ)2 − û2‖W 1

p
= 0,

where (û1, û2) is the solution of problem (2.1), hence, û = û1 + û2 is the normal solution of
problem (1.1) with respect to the stabilizer Ω(u1, u2) = ||u1||BVp + ||u(1)2 ||.

3) if the component û1(x) (the derivative of û(1)2 of the cjmponent û2) does not contain
brakes on [a1, b1] ∈ [a, b], then for α(δ)→ 0, δ2/α(δ)→ 0, δ → 0 the sequence

u
α(δ)
1 → û1, (u

α(δ)
2 )(1) → (û2)

(1))

converges uniformly on [a1, a2].
Proof
Solvability. Let us denote the objective functional in problem (1.2) by Φ. Let (uk1, u

k
2) be

the minimizing sequence in problem (1.2), i.e. Φ(uk1, u
k
2) → Φ∗. Since each of the sequences

{uki }(i = 1, 2) is bounded, the existence of a weakly convergent subsequence follows:

uki1 → ū1 (weakly) in Lp, (uki2 )(1) → v̄2 (weakly) in Lp.

Then, as in the proof of Theorem 1, we can replace v̄2 by ū(1)2 , where ū2 ∈ Lp. Due to the
continuity of the operator A, weak lower continuity of the Lp−norm and generalized variation,
we obtain

Φ∗ ≤ Φ(ū1, ū2) ≤ lim inf
i→∞

Φ(uki1 , u
ki
2 ) ≤ Φ∗,
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i.e. problem (1.2) is solvable. Since the objective functional Φ is strictly convex, the solution
is unique.

Convergence in Lp. Let us redesignate (ū1, ū2) by (uα1 , u
α
2 ). We have obvious inequalities

Φ(uα1 , u
α
2 ) ≤ Φ(û1, û2),

‖uα1 ‖Lp+Gba(uα1 )+‖(uα2 )(1)‖Lp+Gba((uα2 )(1)) ≤ ‖û1‖Lp+Gba(û1)+‖(û2)(1)‖Lp+Gba((û2)(1))+
δ2

α(δ)
,

(2.2)
where (û1, û2) is solution to problem (2.1). Under the following conditions on the parameters
αk = α(δk)→ 0, δ2/αk → 0, δk → 0 as k→∞ from it follows that there are weakly convergent
sequences in Lp:

uαk1 ⇁ ũ1 (weakly) in Lp, (uαk2 )(1) ⇁ ũ2 (weakly) in Lp, (2.3)

for which the follwing inequalities are true

‖A(ũ1 + ũ2)− f‖2 ≤ lim inf
k→∞

Φ(uαk1 , uαk2 ) ≤ Φ(û1, û2) ≤ lim
δk→0

(
δ2k + α(δk) · Ω(û1, û2)

)
= 0,

i.e. (ũ1, ũ2) is solution of the operator equation (1.1); here Ω(u1, u2) denotes the stabilizing
functional in (1.2). Passing to the lower limit in inequality (2.2) at k →∞, we have ratio

‖ũ1‖Lp +Gba(ũ1) + ‖(ũ2)(1)‖Lp +Gba((ũ2)
(1))

≤ lim inf
k→∞

(
‖uαk1 ‖Lp +Gba(u

αk
1 ) + ‖(uαk2 )(1)‖Lp +Gba((u

αk
2 )(1))

)
≤ ‖û1‖Lp +Gba(û1) + ‖(û2)(1)‖Lp +Gba((û2)

(1))

(2.4)

which means that equality is realized in (2.4) and (ũ1, ũ2) coincides with the solution to
problem (2.1). In addition, (2.4) implies convergence of the norms:

lim
k→∞

‖uαk1 ‖Lp = ‖û1‖Lp , lim
k→∞

‖(uαk2 )(1)‖Lp = ‖(û2)(1)‖Lp (2.5)

Combining (2.3) and (2.5), we obtain strong convergence of the components in Lp, i.e. proof
of item 2 of the theorem.

Piecewise uniform convergence. By Lemma 1, for any ū1, ū
(1)
2 there exist sequences

such that
lim
k→∞

‖uk1 − ū1‖Lp = 0, lim
k→∞

Gba(u
k
1) = Gba(ū1), (2.6)

lim
k→∞

‖(uk2)(1) − (ū2)
(1)‖Lp = 0, lim

k→∞
Gba((u

k
2)(1)) = Gba((ū2)

(1)). (2.7)

Let us first show that for any first component ū1 there is an equivalent function ¯̄u1, such
that V b

a (̄̄u1) = Gba (̄̄u1) = Gba(ū1). From (2.6) (see proof of Lemma 1) it follows the existence
subsequences {uki1 } for which u

ki
1 (almost everywhere), |u(x)| ≤ c1, V b

a (uki1 ) ≤ c2. Then, based
on Hellys theorem, we can consider that

uki1 (x)→ ¯̄u1(x)∀x ∈ [a, b], V b
a (¯̄u1) ≤ c3, (2.8)

hence, ū1(x) = ¯̄u1(x), Gba(ū1) = Gba(¯̄u1). From (2.6) and (2.8) we have for uki1 ∈ C∞[a, b]

V b
a (¯̄u1) ≤ lim inf

i→∞
V b
a (uki1 ) = lim

i→∞
Gba(u

ki
1 ) = Gba(ū1) = Gba(¯̄u1). (2.9)
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By property ([7], page 29) the folloving relation holds

Gba(ū1) = inf
{
V b
a (g) : g(x) = ū1(x) (almost everywhere), x ∈ [a, b]

}
.

Together with the relation (2.9) this implies

V b
a (¯̄u1) ≤ Gba(ū1) = inf

{
V b
a (g) : g(x) = ū1(x) (almost everywhere), x ∈ [a, b]

}
≤ V b

a (¯̄u1).

A similarly established property is proved for the function u(1)2 .
From what was proved above it follows that we can assume that the following equality is

true: Gba(u
αk
1 ) = V b

a (uαk1 )∀uαk,1 therefore, taking into account (2.4) we have

Gba(û1) = lim
k→∞

Gba(u
αk
1 ) = lim

k→∞
V b
a (uαk1 ). (2.10)

Taking into account the convergence of {uαk1 } in Lp proved in paragraph 1, using a similar
scheme from the proof of Lemma 1 we select a pointwise convergent subsequence, which can
be considered coinciding with uαk1

uαk1 (x)→ û1(x) ∀x ∈ [a, b]. (2.11)

On the one side,combining (2.10), (2.11), we obtain

V b
a (û1) ≤ lim

k→∞
V b
a (uαk1 ) = Gba(û). (2.12)

On the other hand, the following relation is valid

V b
a (û1) ≤ Gba(û1) = inf

{
V b
a (g) : g(x) = û1(x) (almost everywhere), x ∈ [a, b]

}
≤ V b

a (û1).

(2.13)
From (2.11) – (2.13) and the results of the work ([9], Chapter 4, 1, Theorem 1, Corollary 2)
the proof of item 3 of the theorem follows.

Taking (2.7) into account, the piecewise uniform convergence of regularized solutions for
the derivative of the second component û(1)2 is proved in a similar way.

Corollary 1. If, along with the components u1, u2, there is the third component, i.e.
u = u1+u2+u3, where u3 is responsible for the smooth component, then ‖u3‖Wn

p
(p > 1, n ≥ 1)

can be taken as the third stabilizing functional Ω3(u3) In this case, all the properties in the
conclusion of Theorem 2 regarding the components u1, u2 are preserved, and in item 2 we
additionally include the relation limα→0 ||uα3 − û3||Wn

p
= 0.

3 Discrete approximation and subgradient methods

After agging the third component u3 with the stabilizer ||u3||2w1
2
in (1.2) and using a finite-

difference approximation, we associate the problem (1.2) with the following sequence of finite-
dimensional problems:

inf

{
‖An(u1n + u2n + u3n)− fn‖2ln2 + α

[
‖u1n‖lnp +Gn(∆1u1n) + ‖∆1u2n/h‖lnp +Gn(∆2u2n)+

+||u3n||2wn,12

]
: u2n(a) = 0, u1n, u2n, u3n ∈ Rn

}
,

(3.1)
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where

||u1n||lnp = (
n∑
i=1

h|ui1n|p)1/p, ||Gn(∆1u1n) =
n−1∑
i=0

|ui+1
1n − u

i
1n|,

‖∆1u2n/h‖lnp =

(
n−1∑
i=0

∣∣(ui+1
2n − u

i
2n)/h

∣∣p) 1
p

,

Gn(∆2u2n) =

n−1∑
i=1

∣∣(ui+1
2n − 2ui2n + ui−12n

)
/h
∣∣ ,

||u3n||2wn,12

=

n∑
i=1

h|ui3n|2 +

n−1∑
i=1

h|(ui3n − ui3n)/h|2.

When formulating the following theorem on the approximation of the solution (ûα1 , û
α
2 ) of

problem (1.2) by solutions u1n, u2n of finite-dimensional problems (3.1) some terms, definitions
and notations relating to discrete approximation of spaces, discrete convergence of elements
and operators, which are presented, for example, in [10, 11], are used. Let’s use the notations
"− →" and "−⇁" for discrete and weak discrete convergence.
Theorem 3. Let A : Lp → L2 be a linear bounded and let the discrete convergence conditions
An− → A, An−⇁ A, fn− → fδ as n→∞ be fulfilled, where {An} is the sequence of linear
operators An : lnp → ln2 . Let rn : lnp → Lp be the operaor of piecewise linear interpolation.
Then the problem (3.1) has a unique solution (ū1n, ū2n, ū3n) with the following properties:

lim
n→∞

||rnū1n − uα1 ||Lp = 0, lim
n→∞

||rnū2n − uα2 ||Lp = 0,

lim
n→∞

||rnū3n − uα3 ||Lp = 0,

where (uα1 , u
α
2 , u

α
3 ) is the solution of problem (1.2) after adding the stabilizer ||u3||W 1

2
.

The proof is based on the scheme outlined in [10].
Since any convex function is subdifferentiable, the the following subgradient method can

be used to solve problem (1.3):

uk+1
i = uki − γk ·

vk

‖vk‖
, vk ∈ ∂Φ(uk1, u

k
2, u

k
3), i = 1, 2, (3.2)

where ∂Φ(uk1, u
k
2, u

k
3) — subdifferential of the objective function of problem (3.1) at point

(uk1, u
k
2, u

k
3). Provided that γk > 0,

∑∞
k=1 γk = ∞, γk > 0,

∑∞
k=1 γ

2
k < ∞, the iterative

process (3.2) converges to the solution uα1n, uα2n, u3nα as n → ∞[12]. For γk we can take, for
example, γk = 1/k.

4 Numerical experiments

A numerical experiment was performed for problem (3.1) with using the subgradient method
for a integral equation arising under continuation of a gravitational field to the depth H [13]

Au ≡ 1

π

∫ 1

−1

H

(x− s)2 +H2
u(s)ds = f(x), H = 0.3.

After discrete approximation of the integral equation calculations were carried out at 201
nodes of the uniform grid.
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In the experiment the model solution is the sum of three components u1, u2, u3, where
the function u1 has the breaks of the first kind, u2 has discontinuities in the derivative of the
first kind, u3 is smooth. The model solution has the form u(x) = u1(x)+u2(x)+u3(x), where

u1(x) =

{
1, if −0.9 ≤ x ≤ −0.6;
0, otherwise.

u2(x) =

{
−3 · |x|+ 0.9, if −1 ≤ x < −0.75;
0, otherwise.

u3(x) =

{
3 · exp

(
− 0.252

0.252−(x−0.7)2

)
, if |x− 0.7| < 0.25;

0, otherwise.

Figure 1.

Figure 1 contains the exact (solid line) and numerical (dotted line) solutions obtained for
the parameters of regularization α1 = 0.5 · 10−4, α2 = 0.5 · 10−6, α3 = 0.5 · 10−6, Lp−norm
with p = 1.1 and the right hand side fδ(x) given with relative error δ = 0.012 after N = 10000
iteration by the subgradient method. The relative error of the numerical solution is ∆̄ = 0.125,
and the relative residual equals to 0.04.

Conclusion

From the theoretical view point for the modified three-component Tikhonov method, the
convergence of the sum of regularized components to the solution of the original equation is
proved. Also, piecewise uniform convergence of approximate solutions is established. The
numerical results obtained with using the subgradient method show that in the case when
the solution has three types of peculiarities, the regularizing algorithm simultaneously re-
constructs all three components of the solution and its subtle structure. The results of a



162 Vasin V.V., Belyaev V.V.

numerical experiment show that the structure of a component with a discontinuity of the
first kind is reconstructed worse than the structure of the other two components, i.e. there is
oversmoothing of the first component. Maybe, it is necessary to choose more carefully the con-
trol parameters.Thus, a multicomponent version of the Tikhonov regularization method with
several stabilizing functionals allows us to simultaneously restore the solution to an ill-posed
problem with different types of peculiarities.
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