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THE IMPACT OF A CURIOUS TYPE OF SMOOTHNESS CONDITIONS
ON CONVERGENCE RATES IN ℓ1-REGULARIZATION

Radu Ioan Bo�t and Bernd Hofmann1

Abstract Tikhonov-type regularization of linear and nonlinear ill-posed problems in
abstract spaces under sparsity constraints gained relevant attention in the past years.
Since under some weak assumptions all regularized solutions are sparse if the ℓ1-norm is
used as penalty term, the ℓ1-regularization was studied by numerous authors although
the non-re�exivity of the Banach space ℓ1 and the fact that such penalty functional is
not strictly convex lead to serious di�culties. We consider the case that the sparsity
assumption is narrowly missed. This means that the solutions may have an in�nite
number of nonzero but fast decaying components. For that case we formulate and prove
convergence rates results for the ℓ1-regularization of nonlinear operator equations. In
this context, we outline the situations of H�older rates and of an exponential decay of
the solution components.
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1 Introduction

In the last ten years there was a substantial progress with respect to the error analysis
including convergence rates results for regularized solutions to inverse problems in
Banach spaces. Such problems can be formulated as operator equations

G(z) = y, z ∈ D(G) ⊆ Z, y ∈ Y, (1.1)

with a nonlinear and smoothing (e.g. compact) forward operator G : D(G) ⊆ Z → Y
mapping between the Banach spaces Z and Y with norms ∥·∥Z and ∥·∥Y , respectively.
The impact of the smoothing character of G consists in the ill-posedness of the problem,
which means that small perturbations in the right-hand side y of equation (1.1) may
lead to signi�cant errors in the solution. Moreover, solutions z ∈ D(G) need not exist
for all y ∈ Y and if they exist they need not be uniquely determined. We assume
attainability, i.e. the element y belongs to the range R(G) = G(D(G)) of G, but only
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noisy data yδ ∈ Y are available, which satisfy the deterministic noise model

∥yδ − y∥Y ≤ δ (1.2)

with given noise level δ > 0. Based on such data the stable approximate solution of
equations of this type is required for numerous identi�cation problems in physics, geo-
sciences, imaging, and �nance (see e.g. [26, Chapter 1] and [4, 18, 20, 23, 24, 28]). Con-
sequently, the equation (1.1) must be regularized and the most prominent approach for
Banach space regularization is the Tikhonov-type or variational regularization, where
regularized solutions are minimizers of the extremal problem

1

p
∥G(z)− yδ∥pY + αΩ(z) → min, subject to z ∈ D(G) ⊆ Z , (1.3)

with a regularization parameter α > 0, a convex penalty functional Ω : Z → [0,∞]
and some exponent 1 ≤ p <∞ of the data mis�t term, where we refer to [15] and [26,
Chapt. 3] for standard assumptions to be made on G,D(G) and Ω. In this context, we
also refer to [16] for a discussion of appropriate choices of the regularization parameter
α > 0 depending on the noise level δ (a priori choice) and alternatively on δ and yδ (a
posteriori choice).

For the following studies we assume to have a bounded Schauder basis {uk}k∈N in the
Banach space Z such that the element z to be identi�ed can be written as z =

∞∑
k=1

xkuk

with uniquely determined coe�cients xk ∈ R in the sense that lim
n→∞

∥z−
n∑
k=1

xkuk∥Z = 0.

Our focus is on a situation where the solution z of equation (1.1) tends to be sparse.
The treatment of sparsity in ill-posed problems has gained enormous attention recently
and we refer, e.g., to [7, Section 1] for literature. In this paper, we conjecture that only
a small number of coe�cients xk is relevant. Either only a �nite number of coe�cients
is nonzero or at least the nonzero coe�cients for larger k are negligibly small. In any

case we assume that
∞∑
k=1

|xk| < ∞, or for short x := (x1, x2, ...) ∈ ℓ1. As usual we

consider in the sequel for 1 ≤ q < ∞ the Banach spaces ℓq of in�nite sequences of

real numbers equipped with the norms ∥x∥ℓq :=
(

∞∑
k=1

|xk|q
)1/q

and for q = ∞ with the

norm ∥x∥ℓ∞ := sup
k∈N

|xk|. The latter attains the same form as the norm ∥x∥c0 := sup
k∈N

|xk|

of the space c0 of in�nite sequences tending to zero. By ℓ
0 we denote the set of sparse

sequences, where xk ̸= 0 only occurs for a �nite number of components.

In our setting the synthesis operator L : ℓ1 → Z de�ned as Lx :=
∞∑
k=1

xkuk is a well-

de�ned, injective and bounded linear operator. Even if our focus is on a nearly sparse
situation we follow a standard approach in regularization under sparsity constraints
and consider with X := ℓ1 the composition F = G ◦ L : D(F ) ⊂ X → Y as forward
operator with a domain D(F ) = {x ∈ ℓ1 : Lx ∈ D(G)} and as a consequence the
nonlinear operator equation

F (x) = y, x ∈ D(F ) ⊆ X = ℓ1, y ∈ Y, (1.4)
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as an implementation of (1.1) for the speci�ed situation under consideration here. Then
in order to induce sparsity we consider as convex penalty functional Ω(x) := ∥x∥ℓ1 and
hence as regularized solutions the minimizers xδα ∈ D(F ) of the extremal problem

1

p
∥F (x)− yδ∥pY + α ∥x∥ℓ1 → min, subject to x ∈ D(F ) ⊆ ℓ1, (1.5)

again with exponents 1 ≤ p <∞. Such regularized solutions are sparse, i.e. xδα ∈ ℓ0, if
F is locally Lipschitz at xδα (see [11, Theorem 1.2]). We say that a solution x† ∈ D(F ) ⊆
ℓ1 to equation (1.4) is an ℓ1-norm minimizing solution if ∥x†∥ℓ1 = min

x̃∈D(F ):F (x̃)=y
∥x̃∥ℓ1 .

Since ℓ1 is not a strictly convex Banach space, ℓ1-norm minimizing solutions need not
be uniquely determined.

Since the ill-posedness of the original problem (1.1) in general carries over to the
problem (1.4) (see a detailed proof for linear G in [7, Prop. 2.1]) it is well-known that,
for appropriate choices of the regularization parameters α = α(δ, yδ), convergence rates

E(xδα(δ,yδ), x
†) = O(φ(δ)) as δ → 0 (1.6)

of regularized solutions xδα to exact solutions x† for some nonnegative error measure
E and some index function φ : (0,∞) → (0,∞) (continuous and strictly increasing
function with lim

t→+0
φ(t) = 0) can only occur if x† satis�es some smoothness condition

with respect to the forward operator and if, additionally, x† matches the nonlinear
structure of the forward operator F . In Banach space variational regularization with
strictly convex penalty functionals Ω it is common to use as error measure the Bregman
distance E(x, x†) = Ω(x)−Ω(x†)−⟨ξ†, x− x†⟩X∗×X with a subgradient ξ† ∈ ∂Ω(x†) ⊂
X∗ (see [8, 21, 22]), where we denote by X∗ the dual space of X and by ⟨·, ·⟩X∗×X
the dual pairing between X and X∗). For such penalties, appropriate smoothness
conditions attain the form of source conditions (sourcewise representations), as we
know them from Hilbert space regularization, but here in the form

ξ† = (F ′(x†))∗v, v ∈ Y ∗, (1.7)

where (F ′(x†))∗ : Y ∗ → X∗ denotes the adjoint operator of the G�ateaux derivative
F ′(x†) : X → Y of F at the point x†. For ℓ1-regularization (1.5) the Bregman distance
is not preferred as error measure E, because then E(x, x†) can be zero although x
and x† are di�erent elements (see [19]). Therefore, in [11] a rather curious form of
smoothness conditions for obtaining convergence rates in the ℓ1-setting outlined above
was suggested, which attains in our terms the form

ek = (F ′(x†))∗fk, fk ∈ Y ∗, k = 1, 2, .... (1.8)

That means, for every k ∈ N there exist source elements fk ∈ Y ∗ with respect to the
G�ateaux derivative of F at x† for a sourcewise representation of the k-th unit sequence
ek := (0, 0, ..., 0, 1, 0, ...) with 1 in the k-th component. Here we have X∗ = ℓ∞ and
hence (F ′(x†))∗ : Y ∗ → ℓ∞. Note that (1.8) really characterizes the smoothness of a
solution x† ∈ ℓ1 with respect to F , but in an implicit manner via the unit sequences
{ek}k∈N which form a Schauder basis in all spaces ℓq, 1 ≤ q <∞, and also in c0. This
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becomes clear if one rewrites x† ∈ ℓ1 as
∞∑
k=1

|⟨ek, x†⟩ℓ∞×ℓ1 | <∞. Namely, this condition

and the decay rate of the values |⟨ek, x†⟩ℓ∞×ℓ1 | → 0 for large k connect via (1.8) the
components of x† with the forward operator F by favour of its derivative F ′(x†). For
linear operators F : ℓ1 → Y a condition of type (1.8), simpli�ed as ek = F ∗fk for
all k ∈ N, was also successfully employed in [19] and [6] for obtaining convergence
rates under sparsity constraints and in [7] when the sparsity assumption fails. In this
context, Example 2.6 and Remark 2.9 in [7] indicate that a condition of the form (1.8)
is ful�lled in a natural way for a Hilbert space Y and when the forward operator is
assumed to be continuous from ℓ2 to Y and not too far from a diagonal structure. On
the other hand, [2] shows that a condition of type (1.8) is not so rare and occurs in
relevant practical applications.

In the following study we will formulate and prove assertions on convergence rates
(1.6) for the ℓ1-regularization (1.5) with the error measure E(x, x†) = ∥x− x†∥ℓ1 when
the sparsity assumption fails, but under the smoothness condition (1.8) and under the
condition

∥F ′(x†)(x− x†)∥Y ≤ σ(∥F (x)− F (x†)∥Y ) for all x ∈ M ⊆ X = ℓ1 (1.9)

on the structure of nonlinearity which was introduced in our paper [5]. Here, σ denotes
an in general concave index function and M an appropriate subset of X containing
all regularized solutions xδα for su�ciently small δ > 0. With the assertions presented
below we extend the results from [11] to the non-sparse case and the results from [7] to
the case of a nonlinear forward operator F . Note that the otherwise common source
condition (1.7) fails if x† /∈ ℓ0 (see [7, Section 4] and Remark 2.6 below).

The paper is organized as follows: In Section 2 we will collect the standing as-
sumptions used for the mathematical model under consideration and formulate two
technical lemmas. The main result will be formulated as a convergence rate theorem
and proven in Section 3. Conclusions in Section 4 concerning open questions and future
work complete the paper.

2 Model assumptions and two technical lemmas

In this section, we collect the necessary assumptions for the model under consideration
in order to formulate convergence rate results in the subsequent section.

Assumption 2.1.

(a) Let Y be a Banach space, for which we consider in addition to the norm-topology
∥.∥Y the weak topology `⇀'. That means,

wn ⇀ w0 in Y ⇐⇒ ⟨v, wn⟩Y ∗×Y → ⟨v, w0⟩Y ∗×Y ∀v ∈ Y ∗.

(b) In X = ℓ1 with predual space c0, i.e. c
∗
0 = X, we consider the weak ∗-topology

`⇀∗', where gn ⇀
∗ g0 in X means that

⟨gn, f⟩ℓ1×c0 = ⟨f, gn⟩ℓ∞×ℓ1 → ⟨g0, f⟩ℓ1×c0 = ⟨f, g0⟩ℓ∞×ℓ1 ∀f ∈ c0 ⊂ ℓ∞.
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(c) Let D(F ) be a nonempty and weak ∗ closed subset of X.

(d) Let F : D(F ) ⊆ X → Y be weak ∗-to-weak sequentially continuous, i.e.

gn ⇀
∗ g0 in X with gn ∈ D(F ) =⇒ F (gn)⇀ F (g0) in Y.

(e) Let y ∈ R(F ) := F (D(F )), i.e. the nonlinear operator equation (1.4) has a
solution.

Because of its importance for ℓ1-regularization we formulate and prove with the
following Lemma 2.2 the weak∗ Kadec-Klee property of the ℓ1-norm. As mentioned
in [11], the proof is analogously to the proof of the weak Kadec-Klee property of the
ℓ1-norm given in Lemma 2 in [14].

Lemma 2.2 (weak∗ Kadec-Klee property of ℓ1). If

x(n) ⇀ ∗ x̄ in ℓ1 and lim
n→∞

∥x(n)∥ℓ1 = ∥x̄∥ℓ1 for n→ ∞,

then we have
lim
n→∞

∥x(n) − x̄∥ℓ1 = 0.

Proof (analogously to [14, Lemma 2]). By using the assumption lim
n→∞

∥x(n)∥ℓ1 =

∥x̄∥ℓ1 we have

lim sup
n→∞

∥x(n) − x̄∥ℓ1 = lim sup
n→∞

{2(∥x(n)∥ℓ1 + ∥x̄∥ℓ1)− 2(∥x(n)∥ℓ1 + ∥x̄∥ℓ1) + ∥x(n) − x̄∥ℓ1}

= 4∥x̄∥ℓ1 − lim inf
n→∞

∞∑
k=1

(
2|⟨ek, x(n)⟩ℓ∞×ℓ1 |+ 2|⟨ek, x̄⟩ℓ∞×ℓ1 | − |⟨ek, x(n) − x̄⟩ℓ∞×ℓ1 |

)
.

Then due to 2(∥x(n)∥ℓ1 + ∥x̄∥ℓ1)− ∥x(n) − x̄∥ℓ1 ≥ 0 the Lemma of Fatou yields

− lim inf
n→∞

∞∑
k=1

(
2|⟨ek, x(n)⟩ℓ∞×ℓ1 |+ 2|⟨ek, x̄⟩ℓ∞×ℓ1| − |⟨ek, x(n) − x̄⟩ℓ∞×ℓ1 |

)
≤ −

∞∑
k=1

lim inf
n→∞

(
2|⟨ek, x(n)⟩ℓ∞×ℓ1 |+ 2|⟨ek, x̄⟩ℓ∞×ℓ1 | − |⟨ek, x(n) − x̄⟩ℓ∞×ℓ1 |

)
.

and since ek ∈ c0 for all k ∈ N the weak∗-convergence x(n) ⇀ ∗ x̄ in ℓ1 implies that

−
∞∑
k=1

lim inf
n→∞

(
2|⟨ek, x(n)⟩ℓ∞×ℓ1 |+ 2|⟨ek, x̄⟩ℓ∞×ℓ1 | − |⟨ek, x(n) − x̄⟩ℓ∞×ℓ1 |

)
= −4∥x̄∥ℓ1 .

The formulae derived above can be combined to

lim sup
n→∞

∥x(n) − x̄∥ℓ1 ≤ 4∥x̄∥ℓ1 − 4∥x̄∥ℓ1 = 0,

which can be rewritten as lim
n→∞

∥x(n) − x̄∥ℓ1 = 0.

Under Assumption 2.1 we prove in the following proposition the existence of ℓ1-norm
minimizing solutions for (1.4).
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Proposition 2.3. The nonlinear operator equation (1.4) admits at least one ℓ1-norm
minimizing solution.

Proof. Item (e) of Assumption 2.1 guarantees that

ζ := inf{∥x∥ℓ1 : x ∈ D(F ), F (x) = y} ∈ R.

For every n ∈ N there exists xn ∈ D(F ), F (xn) = y, such that ζ ≤ ∥xn∥ℓ1 ≤ ζ + 1/n.
Since {xn}n∈N is a subset of {x ∈ ℓ1 : ∥x∥ℓ1 ≤ ζ + 1}, which is a weak ∗ sequentially
compact set, there exist a subsequence {xnk

}k∈N and an element x† ∈ X such that
xnk

⇀∗ x† as k → ∞. The Items (c) and (d) in Assumption 2.1 ensure that x† ∈ D(F )
and F (x†) = y, respectively. On the other hand, the weak ∗ lower semicontinuity of
the ℓ1-norm in X implies that ∥x†∥ℓ1 ≤ lim inf

k→∞
∥xnk

∥ℓ1 = ζ, which proves that x† is an

ℓ1-norm minimizing solution of (1.4).
Under Assumption 2.1 we also have the following Proposition 2.4 on the existence of

ℓ1-regularized solutions, their stability with respect to perturbations in the data yδ and
their convergence to some ℓ1-norm minimizing solution x†. Note that existence results
like formulated in Proposition 2.3 above and in Item (i) of Proposition 2.4 below follow
under Assumption 2.1 directly from the general theory of Tikhonov regularization in
topological spaces (see [27, Section 2.4]).

Proposition 2.4.

(i) For all α > 0 and yδ ∈ Y there exist regularized solutions

xδα ∈ argmin
x∈D(F )

{
1

p
∥F (x)− yδ∥pY + α ∥x∥ℓ1

}
.

(ii) Let {y(n)}n∈N ⊂ Y be a data sequence with lim
n→∞

∥y(n)−yδ∥Y = 0. Then, for a �xed

regularization parameter α > 0, every corresponding sequence {x(n)}n∈N ⊂ D(F )
of minimizers x(n) ∈ argmin

x∈D(F )

{1
p
∥F (x)−y(n)∥pY +α ∥x∥ℓ1} has a subsequence which

is norm convergent in ℓ1 to a minimizer of the functional 1
p
∥F (x)−yδ∥pY +α ∥x∥ℓ1

over D(F ).

(iii) Let {yδn}n∈N ⊂ Y be a data sequence with ∥yδn − y∥Y ≤ δn with lim
n→∞

δn = 0. If

αn → 0 and
δpn
αn

→ 0 as n→ ∞ (2.1)

then every sequence {xδnαn
}n∈N ⊂ D(F ) of corresponding regularized solutions has

a subsequence which is norm convergent in ℓ1 to an ℓ1-norm minimizing solution
x† of equation (1.4). Furthermore, it holds

lim
n→∞

∥xδnαn
∥ℓ1 = ∥x†∥ℓ1 . (2.2)

(iv) We have sparsity xδα ∈ ℓ0 of the regularized solutions for all α > 0 and yδ ∈ Y
whenever F is locally Lipschitz at xδα.
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Remarks on proof of Proposition 2.4. For the proof we refer to [11]. In some
points the proof in [11] is only a sketch and in this context we refer also to [14] and
[26, Section 4.1] for more details. An essential point for the proofs of Proposition 2.4
is the fact that the convex functional Ω(x) = ∥x∥ℓ1 is stabilizing with respect to the
weak ∗-topology in ℓ1, i.e., the sublevel sets

Mc := {x ∈ ℓ1 : ∥x∥ℓ1 ≤ c} (2.3)

are weak ∗ sequentially compact for all c ≥ 0 (cf. [26, Remark 4.9]). Then concerning
(iii) under (2.1) the general theory directly provides us (considering subsequences)
with

xδnαn
⇀ ∗ x† in ℓ1 and lim

n→∞
∥xδnαn

∥ℓ1 = ∥x†∥ℓ1 as n→ ∞.

Since ℓ1 satis�es the weak∗ Kadec-Klee property, this yields norm convergence
lim
n→∞

∥xδnαn
− x†∥ℓ1 = 0. The sparsity xδα ∈ ℓ0 holds when F is locally Lipschitz at

xδα (cf. [11, Theorem 1.2]).
The following assumptions are essential for obtaining convergence rates in the sub-

sequent section.

Assumption 2.5.

(a) For an ℓ1-norm minimizing solution x† ∈ D(F ) of equation (1.4) let F ′(x†) :
X → Y be a linear bounded operator with properties like a G�ateaux derivative of
F at x†. Precisely, we suppose for every x ∈ D(F ) that

lim
t→+0

1

t

(
F (x† + t(x− x†))− F (x†)

)
= F ′(x†)(x− x†).

(b) The operator F ′(x†) : ℓ1 → Y satis�es the weak limit condition F ′(x†) ek ⇀ 0 in
Y as k → ∞.

Remark 2.6. From Items (a) and (b) of Assumption 2.5 and (1.8) we have for the
adjoint operator (F ′(x†))∗ : Y ∗ → ℓ∞ the range inclusion R((F ′(x†))∗) ⊆ c0 (see proof
of Proposition 2.4 in [7]). Hence a source condition (1.7) cannot hold if x† /∈ ℓ0, because
then the subgradient ξ† is not in c0 since it contains an in�nite number of components
with values 1 or −1. If, however, the condition (1.8) is satis�ed, then we have that
F ′(x†) is injective. Namely, (1.8) implies that |xk| ≤ ∥fk∥Y ∗∥F ′(x†)x∥Y for all k ∈ N
and all x = (x1, x2, ...) ∈ ℓ1, consequently xk = 0 if ∥F ′(x†)x∥Y = 0. Moreover, for
linear ill-posed problems, i.e. if F : ℓ1 → Y is a bounded linear operator with non-
closed range and we have F ′(x†) = F for all x† ∈ ℓ1, Item (b) of Assumption 2.5 implies
that this operator F is weak ∗-to-weak sequentially continuous (see [7, Lemma 2.7]) as
required for the nonlinear forward operator in Item (d) of Assumption 2.1.

Remark 2.7. A typical situation for nonlinear ill-posed problems occurs if F can be
extended such that F : ℓ2 → Y is a compact and G�ateaux di�erentiable operator. Then
the linear operator F ′(x†) is also compact (cf., e.g., [9, Theorem 4.19]) and ek ⇀ 0 in ℓ2

implies that we even have F ′(x†) ek → 0 in the norm topology of Y , which is a stronger
condition than Item (d) in Assumption 2.1.
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We close the section with a technical lemma that will be used in the subsequent
section, for the proof of which we refer to [7, Lemma 5.1].

Lemma 2.8 (norm estimate in ℓ1). For all x = (x1, x2, ...) ∈ ℓ1, x̄ = (x̄1, x̄2, ...) ∈ ℓ1,
and n ∈ N we have the estimate

∥x− x̄∥ℓ1 ≤ ∥x∥ℓ1 − ∥x̄∥ℓ1 + 2

(
∞∑

k=n+1

|x̄k|+
n∑
k=1

|xk − x̄k|

)
. (2.4)

3 Convergence rates and examples

For choosing the regularization parameter α there are various modi�cations of the
discrepancy principle available. We use a variant (see also [27, p. 137-139]), which we
call sequential discrepancy principle, and which was recently analyzed for Banach space
regularization in detail in [1, 16]. Given 0 < q < 1 and su�ciently large α0 > 0, we let

∆q := {αj > 0 : αj = qjα0, j ∈ N}.

De�nition 3.1 (sequential discrepancy principle). We say that an element α ∈ ∆q is
chosen according to the sequential discrepancy principle (SDP), if for prescribed τ > 1

∥F (xδα)− yδ∥Y ≤ τδ < ∥F (xδα/q)− yδ∥Y . (3.1)

It was shown in [1, Theorem 1] that under weak assumptions α(δ, yδ) chosen accord-
ing to (SDP) exist and satisfy the limit conditions (2.1). The most relevant assumption
for obtaining α(δ, yδ) → 0 as δ → 0 in this context is that exact penalization, in par-
ticular occurring for p = 1 in the mis�t term of (1.5) (cf. [8]), can be avoided. Under
(2.1) we have for α from (SDP) with Proposition 2.4 (iii) that lim

δ→0
∥xδ

α(δ,yδ)
∥ℓ1 = ∥x†∥ℓ1 .

Hence for su�ciently small δ > 0 all regularized solutions xδ
α(δ,yδ)

belong to the sublevel

set Mc (cf. (2.3)) whenever c > ∥x†∥ℓ1 .
Now we are ready to formulate and prove our main result:

Theorem 3.2. Under Assumption 2.1 and condition (1.8) let the ℓ1-norm minimizing
solution x† of equation (1.4) satisfy the nonlinearity condition (1.9) with some concave
index function σ and M = Mc with c > ∥x†∥ℓ1. Moreover, let (SDP) be always
applicable, i.e., for su�ciently small δ > 0 there is a well-de�ned α = α(δ, yδ) in the
sense of De�nition 3.1. Then we have a convergence rate

∥xδα(δ,yδ) − x†∥ℓ1 = O(φ(δ)) as δ → 0 (3.2)

with the concave index function

φ(t) = 2 inf
n∈N

(
∞∑

k=n+1

|x†k|+

(
n∑
k=1

∥fk∥Y ∗

)
σ(t)

)
. (3.3)



The impact of a curious type of smoothness conditions... 37

Proof. From Lemma 2.8 we obtain for all x ∈ ℓ1 and n ∈ N

∥x− x†∥ℓ1 − ∥x∥ℓ1 + ∥x†∥ℓ1 ≤ 2

(
∞∑

k=n+1

|x†k|+
n∑
k=1

|xk − x†k|

)

and from (1.8) and (1.9) for x ∈ M
n∑
k=1

|xk − x†k| =
n∑
k=1

|⟨ek, x− x†⟩ℓ∞×ℓ1 | =
n∑
k=1

|⟨fk, F ′(x†)(x− x†)⟩Y ∗×Y |

≤

(
n∑
k=1

∥fk∥Y ∗

)
∥F ′(x†)(x− x†)∥Y ≤

(
n∑
k=1

∥fk∥Y ∗

)
σ
(
∥F (x)− F (x†)∥Y

)
.

Combining this we have for su�ciently small δ > 0 and xδ
α(δ,yδ)

∈ M the inequality

∥xδα(δ,yδ) − x†∥ℓ1 ≤ ∥xδα(δ,yδ)∥ℓ1 − ∥x†∥ℓ1 + φ
(
∥F (xδα(δ,yδ))− F (x†)∥Y

)
(3.4)

with φ from (3.3). In analogy to [7, Proof of Theorem 5.2] one simply veri�es that φ
is a concave index function. The inequality (3.4) can be considered as a variational
inequality along the lines of Assumption VI in [16] with β = 1 and E(x, x†) = ∥x−x†∥ℓ1 .
Then from [16, Theorem 2] we directly have the convergence rate (3.2).

Remark 3.3. We note that variational inequalities for obtaining convergence rates
were introduced for nonlinear ill-posed operator equations in [15] (see also [3, 5, 13,
17, 25, 26]). The speci�c type used in formula (3.4) was independently developed by
Grasmair (see, e.g., [12]) and Flemming (see, e.g., [10]).

One easily sees that the rate function φ in Theorem 3.2 depends on decay properties
of the solution components |x†k| for k → ∞. The following two examples are presented
to illustrate the assertion of Theorem 3.2 for important cases of decay rates of the

residuals
∞∑

k=n+1

|x†k| as n→ ∞.

Example 3.4 (H�older rates). In this example we assume polynomial decay and growth
as

∞∑
k=n+1

|x†k| ≤ K1 n
−µ,

n∑
k=1

∥fk∥Y ∗ ≤ K2 n
ν , (3.5)

with exponents µ, ν > 0 and corresponding constants K1, K2 > 0. Moreover we assume
that the index function in (1.9) is of the form σ(t) ≤ K3 t

κ, t > 0, for exponents

0 < κ ≤ 1. Then we �nd from Theorem 3.2 by setting n−µ ∼ nνtκ and hence n ∼ t
−κ
ν+µ

the H�older convergence rates

∥xδα(δ,yδ) − x†∥ℓ1 = O
(
δ

µκ
µ+ν

)
as δ → 0 (3.6)

whenever the regularization parameter α = α(δ, yδ) is chosen according to the sequen-
tial discrepancy principle. As expected the best possible rate arises from the limit case
σ(t) ≤ K3t, t > 0, which is characteristic for the tangential cone condition on F .
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Example 3.5 (exponentially decaying solution components). In contrast to Exam-
ple 3.4 we assume now that the decay rate of the nonzero solution components is of
exponential type. This seems to be a realistic situation if the sparsity assumption is
narrowly missed. We take

∞∑
k=n+1

|x†k| ≤ K1 exp (−nγ) ,
n∑
k=1

∥fk∥Y ∗ ≤ K2 n
ν , (3.7)

with exponents γ, ν > 0 and corresponding constants K1, K2 > 0. For simplicity we
consider the limit case σ(t) ≤ K3 t, t > 0, only. Again by Theorem 3.2 we �nd
an associated convergence rate whenever the regularization parameter α = α(δ, yδ) is
chosen according to the sequential discrepancy principle. Precisely, by setting nγ ∼
log(1/t) and hence exp (−nγ) ∼ t the rate

∥xδα(δ,yδ) − x†∥ℓ1 = O

(
δ

(
log

(
1

δ

)) ν
γ

)
as δ → 0. (3.8)

As the function log
(
1
δ

)
tends to in�nity as δ → 0 the factor

(
log
(
1
δ

)) ν
γ lowers the speed

of convergence compared to the rate

∥xδα(δ,yδ) − x†∥ℓ1 = O (δ) as δ → 0, (3.9)

which occurs for sparse solutions x† ∈ ℓ0, but the rate reduction is negligible if the
exponent γ is large.

4 Conclusions

We have shown convergence rates for the ℓ1-regularization of nonlinear ill-posed oper-
ator equations if the smoothness condition (1.8) and the nonlinearity condition (1.9)
are satis�ed. If at least one of both conditions is not available, one has by Lemma 2.2
at least norm convergence of regularized solutions in the sense of Proposition 2.4 (iii) if
the choice of the regularization parameter α satis�es the limit conditions (2.1). It is an
interesting open problem and future work even for linear forward operators to formulate
alternative smoothness conditions yielding convergence rates if (1.8) is violated.
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