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Abstract Regularizing algorithms developed for joint treatment of gas-phase electron diffrac-
tion and vibrational spectroscopic data and extended to include systems with large-amplitude
oscillatory motion are discussed. The treatment is augmented by the inclusion of microwave
rotational constants. The analysis of data from experimental sources is guided by quantum
mechanical molecular calculations of molecular geometry and force field. The computed force
field matrix can be corrected empirically by using scale factors determined both in Cartesian
and internal coordinates.
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1 Introduction

In previous paper [1] we have described approaches for the molecular force field calcu-
lations based on the theory of regularization. The main idea of our approaches is based
on an understanding that the ill-posed inverse vibrational problem is undetermined.
To find the approximate solutions of such problem we should apply the available ad-
ditional information on problem (experimental data, model assumptions, etc.) and to
formulate certain criteria for choosing the concrete solution. Then on a base of the
formalized criteria we can construct the regularizing algorithms or regularizing opera-
tors for solving the ill-posed problem and formulate a principle for choosing a unique
solution from the set of possible ones. The solution should be close to the given matrix
of force constants and should satisfy all a priori assumptions concerning the force field
model.

In the present paper we perform results on applications of new algorithms to some
practical problems. We also discuss results on development of new physical and math-
ematical models describing the complicated molecular system as well as some technical
details of overcoming difficulties arising in calculations of large molecular systems.

2 Molecular force field models. Regularized quantum mechan-
ical force field

We consider a molecule as a mechanical system of nuclei while all the interactions
due to electrons are included in an effective potential function U(q1, . . . , qn), where
q1, . . . , qn denote the n = 3N − 6 generalized coordinates of the N atomic nuclei of the
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molecule. The potential function minimum (with respect to nuclei coordinates) defines
the equilibrium geometry of the molecule, and the second derivatives of the potential
with respect to nuclei coordinates in the equilibrium

fij =
∂2U

∂qi∂qj

∣∣∣∣
eq

(i, j = 1, . . . , n)

constitute a positive defined matrix F determining all the molecular characteristics con-
nected with small vibrations. The choice of generalized coordinates {qi} determines
the molecular force field model. The so-called internal coordinated which include the
bond stretching, valence bond bending (deformation), out-of-plane bending (deter-
mined by changes of dihedral angles) and torsion are the most popular coordinates
used in vibrational spectroscopy. From set of internal coordinates one can construct
sets of symmetry or local symmetry coordinates, etc. The vibrational frequencies (ob-
tained from IR and Raman spectra) are the main type of experimental information on
molecular vibrations. They are connected with the matrix of force constants by the
eigenvalue equation

GFL = LΛ (1)

where Λ is a diagonal matrix consisting of the squares of the molecular normal vibration
frequencies ω1, . . . , ωn, Λ = diag{ω2

1, . . . , ω
2
n}, and G is the kinetic energy matrix in the

momentum representation. L is a matrix of normalized relative amplitudes. We guess
that the force field of a molecule does not depend on the masses of the nuclei, and for
m isotopic molecular species we have, instead of (1), the system

(GiF )Li = LiΛi, i = 1, 2, . . . ,m. (2)

Rotational-vibrational spectra (Coriolis constants), gas electron diffraction (mean square
amplitudes), etc., can be used as an additional information for finding the force con-
stant matrix F .

The mathematical relation between the molecule vibrational properties ( (1)- (2),
etc.) and its experimental display can be summarized in the form of a single operator
equation

AF = Λδ (3)

where F ∈ Z ∈ Rn(n+1)/2 (Z is a set of possible solutions) is the unknown force constant
matrix (real and symmetrical), Λ ∈ Rm represents the set of available experimental
data (vibrational frequencies, etc.) determined within δ error level: ‖Λ− Λδ‖ ≤ δ. A
is a nonlinear operator which maps matrix F on the Λ.

On a base of formulization of all possible obvious (and not so obvious) model as-
sumptions concerning the character of force fields which are widely used in vibrational
spectroscopy we have formulated a principle for choosing a unique solution from the
set of solutions [2] in terms of the closeness of the solution to the given matrix of
force constants satisfying all a priori assumptions concerning the solution. Inverse vi-
brational problem is formulated as a problem of finding the so-called normal solution
(or normal pseudo-(quasi-)solution in the case of incompatibility of input data) of a
nonlinear operator equation (4) [2–4].
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The desirable solution is a matrix Fα ∈ Z that reproduces experimental data within
given error level and is the nearest in the Euclidean metrics to some given matrix F 0.
All necessary model assumptions (explicit and implicit) concerning the form of force
field may be taken into account by the choice of some given a priori matrix of force
constants F 0 and a preassigned set D of a priori constraints on values of the force
constants. This set defines a form of matrix F in the framework of the desired force
field model (i.e., with specified zero elements, equality of some force constants, etc.).
If no a priori data constrains the form of solution, then D coincides with the set Z.

It was mentioned in Refs [5,6], that in the TikhonovвЂTMs regularizing procedure,
one can increase the stability and accuracy of the calculated solution Fα by using

a) an extended set of experimental data (including, e.g., Coriolis constants, mean
square amplitudes, frequencies of isotopomers or related compounds, etc.);

b) an improved choice of the stabilizer matrix F 0;

c) an improved choice of the constraint set D.

As a particularly effective choice of stabilizer, we have proposed [4–7] to use an ab
initio quantum mechanical F 0 matrix in the regularizing procedure. This leads to the
concept of regularized quantum mechanical force field (RQM FF), defined as the force
constant matrix that is nearest to a corresponding quantum mechanical matrix F 0 and
reproduces experimental frequencies within given error level.

The correct choice of constraint set D is also extremely important. Physically stip-
ulated limitations may either decrease the range of acceptable matrices F , or provide
criteria for selecting a concrete solution from a set of tolerable ones. An incorrect choice
of constraints may lead to increasing incompatibility of the inverse problem, eventually
resulting in a pseudosolution having no physical meaning. A set of a priori constraints
may arise from several types of limitations on force constant values, e.g. [8, 9]:

1. some force constants may be stipulated on a priori grounds to be a zero;

2. some force constants may be stipulated to satisfy inequalities aij ≤ fij ≤ bij,
where aij, bij are certain known values;

3. some force constants may be stipulated to be equal in a series of related molecules
(or conformers);

4. the final solution may be stipulated to conform to Pulay’s scaled force constant
matrix [10], which may also be considered as a kind of constraint.

In the last (Pulay) approach we can specify the set D as: D = {F : F = BF 0B},
B = diag{β1, . . . , βn} (where βi are the scaling parameters) [11].

In this case the following strict mathematical formulation of the inverse scaling
problem has been proposed [11]: the problem of finding scaling factors on the base of
experimental data is treated as an operator equation similar to (4):

AF (β) = Λδ (4)
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where β are scaling factors. Let the following norms in the Euclidean space be intro-
duced:

‖F‖ =

(
n∑
ij

f 2
ij

)1/2

, ‖Λ‖ =

(
l∑
k

λ2kρk

)1/2

,

where ρk > 0 are certain positive weights; fij are the elements of matrix F ; λk(k =
1, . . . ,m) are the components of Λ.

Since problem (4) is also ill-posed, it should be regularized. We formulate the
problem as a requirement to find a solution of (4),Fn,δ, that is nearest (by Euclidean
norm) to the quantum mechanical matrix F 0, satisfies experimental data within a given
error level δ (‖A(F (β))− Λδ‖ ≤ δ) and has a special form proposed by Pulay. If we
consider this problem taking into account its possible incompatibility (within harmonic
model), we come to the following formulation:
to find

Fn,δ = arg min
∥∥F − F 0

∥∥
where

F ∈ {F : F ∈ D = {F : F = B1/2F 0B1/2}, ‖AF − Λδ‖ ≤ µ+ δ}. (5)

Here B is a diagonal matrix of scaling factors β1, and µ is a measure of incompatibility
of the problem [3]. It may arise due to the possible anharmonicity of experimental
frequencies or the crudeness of the chosen model.

Such a solution can be determined by minimization of the Tikhonov functional

Mα(β) = Mα [F ] = ‖AhF − Λδ‖2 + α
∥∥F − F 0

∥∥2 (6)

where F = F (β), and regularization parameter α is chosen in accordance with the
generalized discrepancy principle [12–15].

3 Correction of quantum mechanical force field in Cartesian
coordinates

As a rule, the limitations on the values of force constants of polyatomic molecules
cannot be strictly proved. In this situation, the numerical quantum mechanical results
on molecular force fields can provide useful guidance in choosing realistic force field
models for different types of molecules. The simplicity of the scaling procedure made
it extremely popular in recent years. Results of quantum mechanical calculations have
demonstrated that the scale factors of many molecular fragments (determined within a
given level of quantum-mechanical method) are approximately constant in a wide range
of similar molecules. In the most cases scaling factors of a large number of molecules
obtained for different sets of coordinates and quantum-mechanical methods allow to
approximate experimental frequencies with a reasonable degree of accuracy.

Initially the regularized scaling procedure have been developed [11,16] for the force
fields defined in the internal or symmetry (local symmetry) coordinate systems. In the
course of spectroscopic and structural research, introduction of the complete system of
internal coordinates is the most tedious and time-consuming procedure, especially for
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the large molecular systems. From quantum chemistry we usually obtain force constant
matrix in Cartesian coordinates. Therefore we have proposed the procedure [17] to scale
ab initio force field matrix in Cartesian coordinates and to avoid introducing internal
coordinates on a stage of correction of quantum mechanical force constant matrix.

Within this approach the scaling is still given by Eqs. (4, 5); however, we are not
assuming the matrix B to be diagonal. Force field matrix in Cartesian coordinates is
not automatically independent of the molecular position and orientation as in a case of
using internal coordinates. Physically meaningful force constant matrix should there-
fore satisfy a number of constraints that would eliminate translational and vibrational
degrees of freedom in the expression for the potential energy.

Let the force field matrix in Cartesian coordinates is represented as an array of 3×3
submatrices corresponding to each atom:

F =


f(11) f(12) . . . f(1N)

f(21) f(22) . . . f(2N)

. . . . . . . . . . . .
f(N1) f(N2) . . . f(NN)

 (7)

where N is the number of atoms in a molecule. Independence of potential energy of the
translations and rotation of a molecule as a whole leads to the following requirements
which were introduced in [17]:

N∑
i=1

f(ij) = 0,
N∑
i=1

Vif(ij) = 0, j = 1, 2, . . . , N (8)

where 3× 3 submatrices Vi are defined as

Vi =

 0 −Z0
i Y 0

i

Z0
i 0 −X0

i

−Y 0
i X0

i 0


and X0

i , Y 0
i , Z0

i are Cartesian components of the i-th atom equilibrium position.
Constraints (8) reduce the rank of matrix F to 3N − 6 (or 3N − 5 for linear

molecules), thus leaving only vibrational degrees of freedom.
When scaling procedure is applied to the matrix F in Cartesian coordinates, we

may assume that a priori matrix F 0 satisfies the requirements (8). However, this does
not necessarily mean that the scaled matrix also satisfies these requirements. To ensure
that scaled matrix also contains only vibrational degrees of freedom, the scale matrix
B should also satisfy certain conditions as it was shown in [17]:

1. Matrix B consists of the 3× 3 unit submatrices multiplied by certain factors βij
(i, j = 1, . . . , N) (similarly to force field matrix in Cartesian coordinates):

B =


β11E β12E . . . β1NE
β21E β22E . . . β2NE
. . . . . . . . . . . .
βN1E βN2E . . . βNNE
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2. The factors βij are subject to the following constraints:

βij = βji,

N∑
i=1

β1i =
N∑
i=1

β2i = · · · =
N∑
i=1

βNi = S = const. (9)

Conditions (8) permit matrix B to be diagonal only for all βii equal to each other.
If any extra constraints exist due to the symmetry or model assumptions, they should
be used in addition to (8). In general, matrix B consists of N(N−1)/2+1 independent
parameters, since all diagonal elements may be represented as

βii = S −
∑
j 6=i

βij.

On this way one come to the formulation of inverse vibrational problem in a form (4)
where a set of a priori constraints D on the molecular force field includes conditions (8).
The solution (a set of scaling factors) can be found by minimization of functional (6).
Additionally, a set D can include the constraints such as equality of some off-diagonal
factors to zero, in-pair equalities of factors, symmetry constraints etc.

4 Generalized inverse structural problem

The accumulation of data on molecular constants helps one to predict spectra and other
properties of compounds not yet investigated and assists the development of physical
models in a theory of molecular structure. On this way a method has been proposed
to integrate gas phase electron diffraction, vibrational spectroscopy and modern theo-
retical techniques into coherent computational environment [18].

The numerical framework underlying this method essentially represented the first
example of an effective solution for the general inverse problem of structural chemistry
(IPSC) by imposing suitable constraints for feasible structure and force field "space"
introduced on the basis of theory of non-linear ill-posed problems.

Tested with precise diffraction and spectroscopic frequencies data on benzene, the
developed treatment was aimed at avoiding ill-conditioning in attainment of physically
plausible solution for structure and dynamics of systems undergoing small deforma-
tion of nuclear frame as compared with overall molecular dimensions. The numerical
scheme permitted calculations to be consistently carried out in terms of equilibrium
molecular geometry and force field. This integrated procedure is provided a mutually
augmentative relationship between various methods so that the effect of systematic
errors inherent in each of the individual techniques in isolation could be revealed so
offering an excellent opportunity for critical comparison of data from various methods.

More complicated procedure has been proposed [19] for solving the generalized in-
verse structural problem (GISP) in the case of joint treatment of the experimental data
obtained by different physical methods (vibrational spectroscopy, electron diffraction
(ED) data and microwave (MW) spectroscopy).
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Implementation of an integrated procedure for joint refinement of the force field and
equilibrium geometry is based on the dynamic model of a molecule. Based on the gen-
eral approximation of small vibrations, the model has been extended to include cubic
and quartic anharmonic potential terms for proper description of the large-amplitude
motion. Within this approach, a molecule is described using a set of equilibrium ge-
ometry parameters R, and a molecular force field F represented by the matrices of
quadratic, cubic and possibly quartic force constants defined in the framework of a
certain nonlinear system of internal coordinates. Both parameter sets R and F can be
considered as finite-dimensional vectors.

The model is used to predict experimentally measured values, such as vibrational
frequencies ω, electron diffraction intensity M(s), rotational constants A,B,C ob-
tained from microwave molecular spectra, etc. All of these values are functions of
geometric (R) and force field (F ) parameters. With experimental data and parameters
represented as elements of normalized finite-dimensional spaces, we can formulate the
problem of simultaneous refinement of the force field and equilibrium geometry of the
molecule as a system of non-linear equations

ω(F,R) = ωexp,
M(s, F,R) = Mexp(s),
{A,B,C}(R,F ) = {A,B,C}exp

(10)

on a set of predefined constraints F ∈ DF , R ∈ DR. This system can be extended to
include additional experimental evidence when available (for example, data for isotopic
species of a molecule sharing the same force field and equilibrium geometry).

Due to experimental errors, lack of experimental data and model limitations, this
system of equations (that can be also treated as a finite-dimensional non-linear oper-
ator equation) usually fails to define unique solution, often proves to be incompatible
and does not provide stability with respect to the errors of input data. To avoid these
unfavorable features characteristic to the ill-posed problems, it is necessary to imple-
ment a regularizing algorithm for its solution. This approach based on optimization of
the Tikhonov’s functional in the next form:

Mα(F,R) = ‖ω(F,R)− ωexp‖2 + ‖M(s, F,R)−Mexp(s)‖2 +

+ ‖{A,B,C}(F,R)− {A,B,C}exp‖2 + α{‖F − F 0‖2 + ‖R−R0‖2}
(11)

where in the last ("stabilizer") term F 0 and R0 represent parameters of ab initio force
field and equilibrium geometry, respectively. With the appropriate choice of regular-
ization parameter α (that depends on the experimental errors characterized by some
numerical parameter δ), it proves possible to obtain approximations converging to a
normal pseudosolution of the system (10) when experimental errors tend to zero [2].
These approximations are obtained as extremals {Fα, Rα} of functional (12).

The complexity of molecular models used in the analysis strongly depends on the
availability and quality of the experimental data. Mostly, the molecular models are
based on the assumption of small harmonic vibrations. In some cases of solving GISP
within the scaling approach, it is necessary to include the cubic part of the force
field [19]. In order to get a set of more reliable cubic force constants it is necessary to
improve empirically the ab initio values by means of the Pulay harmonic scale factors.
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Two schemes of cubic constant scaling are were used in our investigations [19,20]. The
ab initio quadratic force constant f 0

ij defined in internal coordinates were scaled as
follows:

fij(scaled) = f 0
ijβ

1/2
i β

1/2
j

where βi and βj are the harmonic scale factors. Then, similarly, the cubic constants
scaling mode can be formulated [20] as

fijk(scaled) = f 0
ijkβ

1/2
i β

1/2
j β

1/2
k

or, alternatively,
fijk(scaled) = f 0

ijkβ
1/3
i β

1/3
j β

1/3
k

where f 0
ijk are the unscaled theoretical cubic constants. Both scaling schemes result in

reduction of the dimension of vibrational problem and, correspondingly, in determina-
tion of a much smaller number of parameters. The examples of the applying the last
procedure to different molecular systems including those with large amplitude motion
are given in [21–23].

5 Molecular systems with large-amplitude motion

New perspectives were open when the previously developed integrated algorithm for
joint treatment of gas-phase electron diffraction and vibrational spectroscopic data has
been extended to include systems with large-amplitude oscillatory motion [19–23].

This motion, often being the central feature of molecular structure, comprises such
phenomena as, for example, hindered internal rotation, angle bending, pseudorotation
in cyclic molecules, inversion, ring puckering, etc. statement is different from earlier
attempts to yield solution for large-amplitude motion dynamics introduced the one-
dimensional approach when molecular vibrations were assumed to be frozen and only
a single large-amplitude degree of freedom plus overall rotation were considered. The
dynamic models defined in this manner have included two rigid parts (referred to as top
and frame) allowed to rotate with respect to each other around a fixed axis. Neverthe-
less, these very simple models, proved to be rather successful in attaining quantitative
agreement between calculated and observed vibrational spectra for molecules with in-
ternal rotation, inversion and angle bending.

The main problems in diffraction analysis of molecules with large-amplitude motion
are complexity of such motion and difficulties connected with separation between the
large- and small-amplitude motions. In our investigations [21] the approach has been
realized based on the integrated analysis: the expansion of potential energy is used
to describe non-linear vibrational distortions of a molecule. This approach with the
expansion of the potential energy function in terms of normal coordinates is best suited
for the integrated analysis provided this expansion meets the requirement to describe
non-linear vibrational distortions of a molecule. In pursuit of numerical technique to
execute various vibrational averages the perturbation theory including terms through
the third-order was chosen. As in [18], the analysis of data from experimental sources
is guided by quantum mechanical molecular geometry and force field optimization re-
sults and, additionally, extended with a number of advances. The suitable scale factors
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can be introduced and adjusted by the least-squares refinement to ensure the best fit
between calculated and observed spectroscopic or diffraction evidence. It allowed to
moderate the effect of systematic errors in the computed force constants matrix. The
treatment is augmented by the inclusion of microwave rotational constants which can
yield substantial support to the structural analysis. Centrifugal distortion corrections
to interatomic distances caused by the rotational motion of a molecule are included.
These corrections would eliminate the source of trouble in the analysis of diffraction
data collected at elevated temperatures. Finally, the standard deviations of the pa-
rameters determined and the corresponding correlation coefficients can be estimated.

An elementary treatment of separability for large-amplitude motion(s) ignores rotation-
vibration coupling, that exists between the large-amplitude and other vibrational mo-
tions or between two or more large-amplitude motions and usually is based on exploiting
Fourier expansion for large-amplitude motion potential combined with an approximate
expression for the kinetic energy containing a constant reduced mass. The average
over large-amplitude motion is carried out by a classical distribution function with a
constant pre-exponential factor. However, this function is not correct unless the large-
amplitude motion is truly rectilinear which generally is not the case. More realistic
representation is based on the assumption that the atoms take curvilinear paths in a
large-amplitude motion.

For large-size molecules, there exists an alternative approach to use more com-
plicated multi-dimensional models accounting for various vibrational interactions. It
was generally assumed that a molecule may involve a single large-amplitude degree
of freedom represented by a structural parameter selected as an independent variable.
The other structural parameters, rather than remaining fixed, were allowed to vary as
certain functions of the chosen variable.

Since the complexity of large-amplitude motion prohibits a comprehensive quan-
tum mechanical treatment for polyatomic molecules, various approximating models
are required to interpret diffraction and spectroscopic data. In conventional electron
diffraction studies of systems which provide the main concern in this study the ambi-
tion of reliable barrier heights determination in large measure seems illusive so it was
thought tempting to follow the well-known simplification of the general vibrational
problem which results from the use of the normal coordinates yielding a simple solu-
tion for the harmonic approximation involving all degrees of freedom. Thus a model
of normal coordinates can be considered as a suitable technique for molecules exerting
large-amplitude oscillatory motion if the set of anharmonicity parameters is not be-
coming intractably large and an appropriate numerical treatment for direct proceeding
from assumed model properties to diffraction and spectroscopic observables is applied.

In the GF matrix treatment of harmonic force field calculations by equation (1)
it is customary to define 3N − 6 linearized internal displacement coordinates. In a
case of molecules with large amplitude motion the potential function must be set up
in terms of the true instantaneous values of internal coordinates rather than their
projections on the equilibrium positions. Such an approach is essentially an attempt
to include non-linear effects into description of vibrational distortions of a molecule
avoiding introducing any additional adjustable parameters.

The curvilinear distance corrections have been introduced advantageously in our
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study [18] where a simplified and computationally easy procedure of the non-linear
transformation from any kind of internal coordinates to normal coordinates was de-
scribed. It was found that this effect lead to a marked decrease of average internuclear
distances and finally resulted in higher values for the equilibrium distances. As ex-
pected, the curvilinear effect was found to be most conspicuously pronounced for the
C− H equilibrium distance owing to fairly large protonic excursions in the benzene
molecule.

One more important factor significantly affecting non-linear vibrational distortions
of a molecule is related to dynamic or intrinsic (over and above that from nonlinear
coordinate transformations) anharmonicity. This is because the potential energy curve
has skewed rather than symmetrical minima or these may be symmetrically deformed
by quartic or higher even-order terms. Second, when too little is known about the
potential function the Morse-like oscillator approach for covalent bonds may give help-
ful insight into the anharmonic portion of bond-stretching vibration. This idea has
been used profitably in our work [18] for appropriate calculation of anharmonic bond
distance corrections.

In the structural analysis the rotational motion of a molecule induces the mean
positions of the component atoms to shift away from the center of gravity of the
molecule (centrifugal stretching or centrifugal distortion effect). A novel expression
more suitable for the purposes of the present analysis and providing fairly accurate
estimates for distance stretching corrections have been proposed in our publication [18].

The quantum mechanical Hamiltonian for a vibrating rotor can be written as follows

Ĥ =
1

2

∑
s

(P̂ 2
s + ω2

sQ̂
2
s) +

1

2
M̂∗σM̂ (12)

where Qs is a normal coordinate, P̂s - the momentum conjugate to Qs, ωs - the s-th
normal frequency, M - a vector of the rotational angular momentum. The elements of
the inverse matrix σ are defined as

σ−1αβ = Iαβ(Q)−
∑
klm

ζαklζ
β
kmQlQm

where ζ are the Coriolis coupling constants, I(Q) is the inertia tensor. Here the sub-
script s denotes the s-th vibrational mode. The Hamiltonian (12) neglecting anhar-
monicity terms and terms involving mixed rotational and vibrational angular momenta
essentially amounts to partial separability of rotational motion from molecular vibra-
tions.

Since the inertia tensor of a molecule depends on normal coordinates, the rotational
energy of a molecule can be expanded in terms of these coordinates. Then, neglecting
in this expansion all terms other than the linear one, the average over rotational motion
can be carried out to yield the effective potential energy function as

Ueff (Q) =
1

2

∑
s

[
ω2
sQ

2
s −

1

2

∑
α

〈M2
α〉

I2αα

∂Iαα
∂Qs

∣∣∣∣
eq

Qs + . . .

]
(13)

where α = {x, y, z} are the Cartesian coordinates, Iαα stands for the diagonal elements
of the inertia tensor,Mα denotes the Cartesian components of a rotational momentum,
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and the derivatives in the second term on the right hand side should be taken at the
equilibrium configuration.

Solution of the vibrational problem with the potential function (13) would yield
non-zero equilibrium values for the normal coordinates. If it is presumed that the
spacings of the rotational energy levels are sufficiently small as compared with kT (k
is the Boltzmann constant), then, except for the case of fairly low temperatures, the
classical law of equipartition of energy can be used to calculate the average value of
the angular momentum leading to 〈

M2
α

〉
= KTI(eq)αα (14)

where diagonal components of the inertia tensor are taken at the equilibrium configura-
tion. Then it can be shown that the following equation holds with a good approximation
for the mean value of the normal coordinate

〈Qs〉rot =
kT

2ω2
s

∑
α

1

I
(eq)
αα

∂Iαα
∂Qs

∣∣∣∣
eq

. (15)

The centrifugal stretch correction is given by transformation of all 〈Qs〉rot values
into the average shifts of individual interatomic distances. Since averaging over all pos-
sible rotations can be supposed not to cause the distortion which alters the molecular
symmetry, the average values given by Eq. (4) for non-totally symmetric species must
all vanish.

7 Numerical calculations

The general procedure for numerical calculations developed on the basis of methods
described above is realized in our computer program which was outlined in previous
paper [1] in the schematic diagram of data processing design. The input information
consists of spectroscopic frequencies of vibration, electron diffraction intensities and
microwave rotational constants. These data are fed into a series of sub-programs lead-
ing ultimately to a regularized least-squares determination of geometrical and force
field parameters. As a prerequisite of the analysis the ab initio optimization results
are included to produce plausible trial model for molecular geometry and force field
and suitable constraining stabilizer. Further restrictions, if necessary, are guessed or
transferred from related molecules. The sequence of operations in a compiled pack-
age is organized in such a manner that output data from one sub-program serve as
input data for the next. All expressions used in electron diffraction, vibrational and
microwave spectroscopy analyses are computed as rigorously as is presently possible.
Provision is also made for the possibility of improving methods of calculation in any
block of the program.

To start operation with the present software package description of the internal co-
ordinates should be given and the Cartesian coordinates and masses of all constituent
atoms be introduced. To calculate molecular scattering intensities, vibrational frequen-
cies and rotational constants several consecutive steps are necessary to follow.
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1. Given the availability of the harmonic force field, the vibrational problem is for-
mulated and solved. The harmonic eigenvalues and eigenvectors are found. The
non-linear transformation is made from the internal coordinates to the normal
coordinates Q.

2. The vibrational Hamiltonian of a molecule is set up as a conventional series
expansion in terms of Q (this expansion is limited by terms of third-order in Q).

3. The average normal coordinate moments are expressed in terms of the potential
function coefficients entering the Hamiltonian of the previous item the necessary
equations being derived by the first-order perturbation theory.

4. The derivatives of the inertia tensor with respect to normal coordinates are evalu-
ated. Eigenvalues of the inverse inertia tensor the elements of which are averaged
over normal coordinates then yield the rotational constants.

5. The normal coordinate moments are transformed into those of internal coordi-
nates. From the latter the cumulants are calculated.

6. The reduced molecular intensity curve is calculated (the definition and explicit
expressions of all relevant quantities and further calculation details is performed
in [18]).

Finally, the Tikhonov functional is generated and comparison between trial model
and experiment is made.

The procedures 1-6 are recycled until the best self-consistent structure and dynamic
molecular model that is in agreement with all input gas phase data. If necessary, the
program allows to treat data from any individual experimental technique. In spite of
the fact that even primary application of the present software package has met with
encouraging success, this package is not considered as a final issue and improvements of
several blocks of the program aiming at reducing the difficulty and cost of the analysis
are permanently under way.

Fast growing computational resources and numerical methods leads to the great
advantage of modern methods of quantum chemistry for the solving many problems of
structural chemistry in application to the large molecular systems such as biological
objects, polymers, giant aggregates etc. But there are existed obvious severe limita-
tions of using purely ab initio methods for the analysis of molecular systems consisting
of a few hundred atoms. This situation and stimulates the development of special
approaches for the describing the physicochemical properties such as molecule geome-
try, vibrational frequencies, and thermodynamic functions in cases where such systems
are organized from separate smaller size units. The most successful approaches for
their analysis are as a rule based on the joint use of theoretical results (e.g. ab ini-
tio or density functional theory (DFT)) data obtained for these chosen unites) with
some empirical approach (e.g. molecular mechanics) and in many cases result in good
descriptions of investigated systems.

The main approach used in molecular force field calculations is based on the so-
called transferability of force constants in a series of related compounds. The schematic
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illustration of such model is performed in Fig.1. Suppose we have calculated regular-
ized force constant matrices (RQMFF) of two molecules: trans- CF3CH2CH2Cl and
CCl3CH2CH2Cl, which were found as the nearest to corresponding matrices optimized
at the same model chemistry (at one level of theory, e.g. within the 2-nd order per-
turbation theory MP2/6-31G**). We can construct the matrix F of CF3CH2CCl3 by
joining the regularized force constants of two substituted methyl groups (CF3 and
CCl3) and CH2-group.

Figure 1: Scheme of synthesis of the unknown CF3CH2CCl3 force constant ma-
trix from previously calculated regularized force constant matrices of related trans-
CF3CH2CH2Cl and CCl3CH2CH2Cl molecules.

Similar approach has been used for the prediction of vibrational spectrum of fullerene
C240 [24] (Fig. 2).

The molecular geometry of C240 was optimized at the B3LYP/6-31G level of the-
ory. The equilibrium configuration of the icosahedral (Ih) symmetry molecule C240 is
completely defined by five bond lengths (Fig. 3).

Calculation of vibrational spectrum of this molecule has been performed with the
list of internal coordinates included 360 bond-stretching and 720 bond angles coor-
dinates. Altogether 1080 redundant coordinates were introduced, only 714 of them
being independent. Internal coordinates were optimized automatically with the help
of special utility in the SPECTRUM program package. The list of 90 different force
constants of C240 was composed from regularized quantum mechanical force fields of
fullerene, C60, and corannulene, C20H10, (obtained with B3LYP/6-31G** results for
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Figure 2: Schematic illustration of C240 molecule.

both model molecules) and was extended by certain model assumptions on intraball
forces on a base of theoretical results.

The 714 normal vibrations of C240 are distributed by irreducible representations as

7Ag + 5Au + 16F1g + 18F1u + 17F2g + 19F2u + 24Gg + 24Gu + 31Hg + 29Hu

The symmetry properties allow one to reduce the complete force constant matrix
of C240 into 10 blocks with orders varying from 6 to 48 in redundant symmetry coordi-
nates. Symmetry coordinates were run by means of the SYMM program included into
the SPECTRUM program package. The vibrational density plots (a distribution of
calculated frequencies by a wavenumber scale) for fullerene C240 are presented in Fig.
4. There are two plots for vibrations with different inversion symmetry (g and u), one
referring to the total number of frequencies active in the Raman spectrum, while the
other to frequencies active in the infrared absorption spectrum.

These frequencies can be used for the calculation of the thermodynamic functions
of C240 in the wide temperature region.

The similar additive model is successful in a case of molecular systems such as
supramolecules, polymers, biological molecules, etc. But in a case of large molecules,
the introduction of internal coordinates is a rather tedious procedure due to the high
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Figure 3: Five types of bond lengths in C240.

dimension of arising mathematical problems and can be a source of possible erroneous
calculations. As it was discussed earlier, the dimension of inverse vibrational problem
can be significantly diminished in a case of working in a space of Cartesian coordinates
which are obviously more convenient in the case of large molecules. The aforesaid
procedure of solving inverse vibrational problem expressed by scaling parameters in
Cartesian coordinates is a promising procedure which allows to get reasonable results
for large molecular systems. Guanine (Fig. 5) is a purine base, one of the four main
nucleobases in the DNA and RNA. Due to intermolecular hydrogen bonding between
four molecules guanine can form G-quartets (Fig. 5) which are involved in sequences
called G-quadruplex structures (Fig. 5). The basic principle in calculations vibrational
spectra and force fields of large molecules is finding bridge between the simple molecules
and more complex ones.
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Figure 4: Vibrational state density for C240 molecule in the infrared absorption region
between 100 and 1650 cm −1.

Molecule of guanine consists of 16 atoms and, correspondingly, has 42 normal vibra-
tions. 64-atomic G-quartet is characterized by 186 normal vibrations . Matrix of force
constants in internal coordinates of guanine includes 903 elements while the number
of force constants in internal coordinates of G-quartet is increased up to 17891. In
practice many elements of force constants in internal coordinates corresponding to the
interactions of far removed atoms can be fixed as equal to zero. Nevertheless the real
number of different force constants remains very large.

In a case of using Cartesian coordinates the number of coordinates is equal to 48
and 192 for guanine and G-quartet, accordingly. The number of scaling factors in
Cartesian coordinates for guanine molecule can be reduced to 24 by fixing some off-
diagonal elements (corresponding interactions of far removed atoms) equal to zero.
The set of 24 regularized scaling factors in Cartesian coordinate for B3LYP/6-31+G**
level of theory was determined from solving inverse problem (4) by minimization of (6)
using experimental frequencies from [25]. The solution has been obtained for α =∼ 2.0·
10−3, ρ =∼ 9.7·10−2, average errors in frequency fitting, ρ , were equal to = 16.7 cm −1.
This set can be used for the correction of theoretical matrices of force constants for
G-quartet, stacked structures and G-quadroplex in accordance with a scheme presented
in Fig. 5.

Many examples of practical calculations carried out within the schemes described
above are presented in Refs [26–33].
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Figure 5: Principal scheme of calculations of molecular force fields and vibrational
spectra of large molecular systems: guanine and its derivatives.
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