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Abstract In this paper a linear ill-posed is considered. Its solution is given in the form of a
sum of two components: one contains breaks and the other is continuous, but admits breaks
of derivative. For stable separate reconstruction of a solution, a modified Tikhonov method is
applied. In this method, the stabilizer is chosen as a sum of two functionals with using total
variation of function and its derivative, where every stabilizing functional depends on one
component only. The convergence of the sum of the regularized components to a solution of
the initial problem is proved. A scheme of finite-dimensional approximations of the regularized
problem is investigated and the results of numerical experiments are presented.
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1 Introduction

An ill-posed problem in the form of an operator equation

A(u) = f (1.1)

is considered, where A is a linear operator acting on a pair of Banach spaces U, F ; the
right-hand side f is approximately given by the element fδ : ||f − fδ|| ≤ δ. Continuity
of the operators A−1 is not assumed, therefore, equation (1.1) is an essentially ill-posed
problem. In some applied ill-posed problems, often there is an additional information
that along with a smooth background the sought for solution has various pecularities,
for example, breaks and fractures. In fact, in this situation the problem of choosing the
stabilizing functional arises for the Tikhonov regularization. Under reconstruction of
a smooth solution, it is reasonable to use the stabilizer with a strong stabilizing effect,
for example, the Sobolev norm. However, under finding a discontinuous solution, high
precision is achieved with the stabilizer in the form of the total or classical variation
[6, 13].

The idea of separate reconstructing solution components with various properties
of smoothness had first appeared in the works devoted to processing noise signals
(images) [2, 3]. For example, in [3], it is assumed that a solution of equation (1.1)
is the sum the smooth component u1 and discontinuous one u2, and the stabilizing
functional is constructed as Ω(u1) + Ω(u2). Since the functional Ω1 responding for the
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smooth component is taking the norm of space L2, the total variation [4] is used for
constructing the functional Ω2. Numerical efficiency was demonstrated in [3], and the
theoretical ground of this algorithm was given in [9].

An intermediate property between differentiability and discontinuity can be con-
tinuity of a solution with discontinuous derivative. In this case, it is necessary to
investigate a solution representable in the form of the sum of three components [10].
For the third component, the stabilizing functional is taken as the norm of the Lipschitz
space that guarantees the uniform convergence of the regularized approximations [10].

In the recently published work [11], the Tikhonov method was investigated for the
three-component case; there the total variation of a function and its derivatives up
to the second order were used as the stabilizing functionals. Note that the stabilizers
based on using the classical variation of the n-th order derivatives of a function were
applied in [7] for construction of the regularizing algorithm converged on variations.

In our work, the problem of constructing a regularizing algorithm (RA) for equation
(1.1) is considered. It is presupposed that the solution of this equation can be presented
as the sum of two components u = u1 + u2, one of which u1 contains the breaks of
the first kind, and the second component u2 admits breaks of the derivative. To solve
this problem, the Tikhonov regularization with the stabilizer in the form of the BV -
norm of a function [1, 4] and its derivative [11] is used. It should be noted that in
this case presence of a smooth (differentiable) component in a solution is not assumed.
However, from the theoretical viewpoint more general three-component case with a
added smooth component in the framework of our approach is similarly investigated
[10, 11].

In Section 2, the componentwise convergence of the regularized solutions not only
in the spaces Lp,W 1

p is proved. But, in contrast to [11], the uniform convergence is
additionally established for the first (discontinuous) component and the derivative of
the second component on the segments, which does not contain the points of breaks.
In Section 3, the finite-dimensional approximation of RA is investigated. In Section 4
the results of numerical experiments are given.

2 Convergence of regularized solutions

Let A be a linear bounded operator, acting from the space Lp[a, b] (p ≥ 1) into the
space L2[c, d]. It is assumed that the solution u of equation (1.1) can be presented as
the sum of two component u = u1 + u2, where the functions u1, u

(1)
2 admit the breaks

of the first kind. It is evident that such presentation of the solution u as a sum of
two components is ambiguous. Since the solution u is non-smooth, then, probably, for
constructing RA, the most appropriate method is the Tikhonov algorithm with the
stabilizer on the base of the total variation in the following form:

min{1

2
||A(u1+u2)−fδ||2L2

+α[||u1||BV +|u2(a)|+||u(1)2 ||BV ] : u1, u
(1)
2 ∈ BV } = Φ∗, (2.1)

where u(1)2 is the derivative of the first order for the function u2, ||u||BV = ||u||L1 +J ba(u)
is the norm the space BV [a, b] = {u : u ∈ L1, J

b
a(u) <∞}, J ba(u) is the total variation
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of the function u defined by formula [4]

J ba(u) = sup{
∫ b

a

u(x)v(1)(x) dx : |v(x)| ≤ 1, v ∈ C1
0 [a, b]}.

Let us show that there exists such a pair of the components (û1, û2), which gives the
solution û = û1 + û2 and delivers minimum in the stabilizer

Ω(u1, u2) = ||u1||BV + |u2(a)|+ ||u(1)2 ||BV .

Theorem 2.1. Let A be linear continuous a operator acting from Lp[a, b] into L2[c, d]
and equation (1.1) have a unique solution û = A−1(f). Then there exists, possibly,
non-unique solution (û1, û2), of the following problem:

min{||u1||BV + |u2(a)|+ ||u(1)2 ||BV : A(u1 + u2) = f, u1, u
(1)
2 ∈ BV } = Ψ∗. (2.2)

Proof
Let (u1k, u2k) be a minimizing sequence in problem (2.2), then in view of boundedness
of the sequences

||u1k||BV ≤ c1, ||u(1)2k ||BV ≤ c2, |u2k)(a)| ≤ c3,

and compactness of embedding operator E of the space BV into Lp ([1], theorem 2.5)
there exists subsequences strongly convergent in Lp . Without loss of generality, one
can consider that they coincide with the original sequences, i.e.,

lim
k→∞
||u1k − û1||Lp = 0, lim

k→∞
||u(1)2k − v̂2||Lp = 0, u2k → ca.

It means that {u2k} is the Cauchy sequence in the space W 1
p . Therefore, there exists a

function û2 ∈ W 1
p such that û(1)2 = v̂2, û2(a) = ca and the following convergence holds

lim
k→∞
||u2k − û2||W 1

p
= 0.

From continuity of the operator A, it follows that the following relations are valid

0 ≤ ||A(û1 + û2)− f ||L2 = lim
k→∞
||A(u1n + u2n)− f ||L2 = 0.

Besides, from weak lower semicontinuity of a norm and the total variation relatively
the Lp-covergence, we have the following inequalities

||û1||BV + |û2(a)|+ ||û(1)2 ||BV ≤ lim inf
k→∞

(||û1n||BV + |û2n(a)|+ ||û(1)2n ||BV ),

i.e., the pair (û1, û2) attains minimum in (2.2).

Theorem 2.2. Let the condition of Theorem 2.1 be fulfilled. Then for any α > 0 there
exists possible non-unique solution (uα1 , u

α
2 ) of problem (2.1) and under connection of

the parameters δ2/α→ 0, α(δ)→ 0 as δ → 0, the following properties are valid:
1) {uα(δ)1 } is relatively compact in Lp, moreover, if uα(δk)1 → ū1 as δk → 0 in Lp, then

lim
δk→0

J ba(u
α(δk)
1 ) = J ba(ū1), u

α(δk)
1 ⇒ ū1, (2.3)
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i.e., uniformly on every subsegment [a′, b′] ∈ [a, b] non-containing break points of the
function u1;
2) {uα(δ)2 } is relatively compact in W 1

p , moreover, if uα(δk)2 → ū2 as δk → 0 in Lp, then

lim
δk→0

J ba((u
α(δk)
2 )(1)) = J ba((ū1)

(1)), (u
α(δk)
2 )(1) ⇒ (ū2)

(1), (2.4)

i.e., uniformly on every subsegment [a′, b′] ∈ [a, b] non-containing break points of the
function ū1;
3) any solution (uα1 , u

α
2 ) of problem (2.1) gives one and the same element uα = uα1 +uα2

for all such pair (uα1 , u
α
2 );

4) if ū1, ū2 are the corresponding limit points of uα(δk)1 , u
α(δk)
2 , then the pair (ū1, ū2) is

a solution of (2.2) and, therefore, ū = ū1 + ū2 = A−1f.

Proof
Denote by Φ the objective functional in the minimization problem (2.1). Similarly to
Theorem 2.1 for minimizing sequence (uk1, u

k
2), we have

Φ(uk1, u
k
2)→ Φ∗, k →∞

that implies boundedness of the sequences {uk1}, {(uk2)(1)} in the space BV. Due to the
theorem on compact imbedding, we can set that

lim
k→∞
||uk1 − ū1||Lp = 0, lim

k→∞
||uk2 − ū2||, uk2(a)→ ca

for certain ū1 ∈ Lp, ū2 ∈ W 1
p . It implies the relation

Φ∗ ≤ Φ(ū1, ū2) ≤ lim inf
k→∞

Φ(uk1, u
k
2) = Φ∗,

from which it follows that (ū1, ū2) is a solution of problem (2.1).
Rename (ū1, ū2) by (uα1 , u

α
2 ). Then for the solution of problem (2.2) and, therefore,

for the solution of equation (1.1), the following inequality is true

Φ(uα1 , u
α
2 ) ≤ Φ(û1, û2),

from which the following estimate holds:

||uα1 ||BV + |uα2 (a)|+ ||(u2)(1)||BV ≤
δ2

α
+ ||û1||BV + |û2(a)|+ ||û2||BV . (2.5)

Due to the conditions on the parameter α(δ) from (2.5), it follows that {uα(δ)1 }, {uα(δ)2 }
are bounded on the BV -norm and there exist the convergent subsequences

lim
k→∞
||uα(δk)1 − ŭ1||Lp = 0, lim

k→∞
||uα(δk)2 − ŭ2||W 1

p
= 0

as δk → 0.
Taking into account (2.5), continuity of the operator A, and lower semicontinuity

BV -norm relatively Lp-convergence, we obtain:
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||A(ŭ1 + ŭ2)− f || ≤ lim inf
k→∞

[||A(ŭ1 + ŭ2)− fδk ||+ ||fδk − f ||]

≤ 21/2 lim inf
k→∞

{[1
2
||A(u

α(δk)
1 + u

α(δk)
2 )− fδk ||2 + α(δk)(||uα(δk)1 ||BV

+|uα(δk)2 (a)|+ ||(uα(δk)2 )(1)||BV )]1/2 + δk} ≤ 21/2 lim sup
k→∞

{1

2
[||A(û1 + û2)− fδk ||2

+α(δk)(||û1||BV + |û2(a)|+ ||û(1)2 ||BV )]1/2 + δk} = 21/2||A(û1 + û2)− f || = 0,

i.e., the pair (ŭ1, ŭ2) is a solution of problem (1.1). In view of (2.5) and the conditions
on the parameter α(δk), we have the following inequalities:

||ŭ1||BV + |ŭ2(a)|+ ||ŭ(1)2 ||BV
≤ lim infk→∞(||uα(δk)1 ||BV + |uα(δk)2 (a)|+ ||(uα(δk)2 )(1)||BV )

+||û1||BV + |û2(a)|+ ||û(1)2 ||BV . (2.6)

Therefore, the pair (ŭ1, ŭ2) is also the solution of problem (2.2). Besides, from (2.6),
we have

lim
k→∞
||uα(δk)1 || = ||û1||BV , lim

k→∞
||(uα(δk)2 )(1)||BV = ||û(1)2 ||BV ,

in particular,

lim
k→∞

J ba(u
α(δk)
1 ) = J ba(û1), lim

k→∞
J ba(u

α(δk)
2 )(1)) = J ba(û

(1)
2 ),

i.e., in (2.3) and (2.4) the first relations are satisfied.
Let us turn to investigation of the uniform convergence of components. Use the

scheme of the proof from [12], where the one-component case for a some other stabilizing
functional was considered. As it is known [1] (Theorem 1.17), for any function ū there
exists a sequence {ūk} such that

lim
k→∞
||ūk − ū||L1 = 0, lim

k→∞
J ba(ūk) = J ba(ū). (2.7)

From the convergence of ūk in L1 it follows that exists subsequence such that
ūki → ū(x) almost everywhere on the segment [a, b]. Let x0 is a point of convergence
of the sequence of ūki . Then we have the estimate

|ūki(x)− ūki(x0)| ≤ V b
a [ūki ] = J ba(ūki) =

∫ b

a

|ū(1)ki |dx ≤ const.

According to the Helly theorem one can select from {ūki} a subsequence converging to
a function ũ ∈ V b

a for every point x ∈ [a, b]. Without loss generality, one can let, that
this subsequence already converges, i.e., ūki → ũki for any x ∈ [a, b]. Then ū(x) = ũ(x)
almost everywhere on [a, b] and

J ba(ū) = J ba)(ũ). (2.8)
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Taking into account (2.7), (2.8) and the property upper semi-continuity of the
classical variation relatively poitwise convergence, we obtain

V b
a (ũ) ≤ lim inf

i→∞
V b
a (ūki) = lim

i→∞
J ba(ūki) = J ba(ū) = J ba(ũ). (2.9)

Because of [4, Property (d”), p. 29]

J ba(ū) = inf{V b
a (g) : g(x) = ū(x) a.e. x ∈ [a, b]}. (2.10)

From (2.10) together with (2.9), we have

V b
a (ũ) ≤ J ba(ū) = J ba(ũ) = inf{V b

a (g) : g(x) = ũ(x), a.e. x ∈ [a, b]} ≤ V b
a (ũ). (2.11)

Thus, from (2.11) it follows that for any function ū there exists a function ũ with the
bounded classical variation V b

a ()̃u coinciding with the total variation J ba(ū); moreover,
ũ(x) = ū(x) almost on [a, b]. In the first part of the proof, it is established that
there exists the solution (uα1 , u

α
2 ) of the extremal problem (2.1) and the converging

subsequences, correspondingly, in Lp and W 1
p

u
α(δk)
1 → ū1, u

α(δk)
2 → ū2, (2.12)

as α(δk) → 0, δ2k/α(δk) → 0, δk → 0, where û1 + û2 = A−1f. As it was proved that for
any function ū ∈ BV there exists an equivalent function ũ ∈ V b

a such that (2.11) is
fulfilled, then it one can admit that for any α

J ba(u
α
1 ) = V b

a (uα1 ), J ba((u
α
2 )(1)) = V b

a (u
α(δk)
2 )(1)).

In view of relation (2.12) one can set

u
α(δk)
1 (x)→ ū1(x), u

α(δk)
2 (x))(1) → (ū2(x))(1)

almost everywhere on [a, b]. Applying argumentation, which was above used for the se-
quence ūk, property (2.11) and the Helly theorem, we can select from {uα(δk)1 }, {uα(δk)2 }
subsequences converging at every point x ∈ [a, b] . Without loss of generality, one can
let that for any x ∈ [a, b]

u
α(δk)
1 (x)→ ū1(x), (u

α(δk)
2 (x))(1) → (ū2(x))(1). (2.13)

From the lower semicontinuity of the classical variation V b
a (u) and above established

convergence the total variation for {uα(δk)1 , (u
α(δk)
2 )(1)}, we obtain

V b
a (ū1) ≤ lim inf

k→∞
V b
a (u

α(δk)
1 ) ≤ lim inf

k→∞
.J ba(u

α(δk)
1 ) = J ba(ū1), (2.14)

This together with property (2.10) provides

V b
a (ū1) = J ba(ū1). (2.15)

Similarly the following equality is proved

V b
a (ū

(1)
2 ) = J ba(ū

(1)
2 ). (2.16)

On the basis of the result from the monograph [8] (Theorem 1 and Corollary 1, p. 258)
and relations (2.13)-(2.16) it follows that for the sequences {uα(δk)1 , (u

α(δk)
2 )(1)} the

uniform convergence holds on every subsegment [a′, b′] ∈ [a, b] which does not contains
points of breaks.
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3 Finite-dimensional approximation of the regularization method

Let us define for simplicity, a uniform grid in the segment [a, b] with the width h :

∆n : a = x0 < x1 < ... < xn = b, xi − xi−1 = h, 1/h = n.

According to (2.1), let us consider the set of the of finite-dimensional problems

min{1

2
||A(u1 +u2 = fδ||2L2

+α[||u1||BV + |u2(a)|+ ||u(1)2 ||BV ] : u1, u
(1)
2 ∈ BV ∩Un} = Φ∗,

(3.1)
where Un is the subspace of the piecewise-linear functions constructed on the grid ∆n.

Theorem 3.1. Let the condition of Theorem 2.2 be fulfilled. Then problem (3.1) has
a solution (û1n, û2n), for which the following properties hold:
1) {û1n} is relatively compact in Lp and all its limit points are the first components for
the solution of problem (2.1);
2) {û2n} is relatively compact in W 1

p and all its limit points are the second components
for the solution of problem (2.1).

Proof
Let (um1n, u

m
2n), be a minimizing sequence in problem (3.1) for fixed α > 0 and n. Then

it is evident that the following components are uniformly bounded on m :

||um1n||BV ≤ c1, ||(um2n)(1)|| ≤ c2, |um2n| ≤ c3.

From compactness of the embedding operator from BV into Lp, it follows that there
exist converged subsequences

lim
k→∞
||umk

1n − û1n||Lk
, lim

k→∞
||(umk

2n )(1) − v̂2n||

and umk
2n → c2. From this it follows that {umk

2n } is the Cauchy sequence in W 1
p . Hence,

there exists û2n such that

v̂2n = û
(1)
2n lim

k→∞
||umk

2n − û2n||W 1
p

= 0.

and û1n, û
(1)
2n ∈ BV ∩ Un. Taking into account the properties of the operator and BV -

norm, we arrive to the relations:

Φn
∗ ≤ Φ(û1n, û2n) ≤ lim inf

k→∞
Φ(umk

1n , u
mk
2n ) ≤ lim sup

k→∞
Φ(umk

1n , u
mk
2n ) = Φn

∗ .

It means that the pair (û1n, û2n) is a solution of problem (3.1).
On the basis of Theorem 1.17 from [4] (see, also, relation (2.7)) there exist the

functions uε1, uε2 ∈ C∞ such that

Φ(uε1, u
ε
2) ≤ Φ∗ + ε.

Let us denote by pn the projector that acts as pn(u) = un, where un is piecewise linear
function constructed on the grid ∆n. Then, in the view of the uniform convergence
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of the piecewise linear approximation to a smooth function, we come to the following
relations:

Φ∗ ≤ lim inf
n→∞

Φn
∗ ≤ lim inf

n→∞
Φ(pnu

ε
1, pnu

ε
2)

≤ lim sup
n→∞

{1

2
||A(pnu

ε
1 + pnu

ε
2)− fδ||2}

+α[||pnuε1||BV + |pnuε2(a)|+ ||(pnuε2)(1)||]} = Φ(pnu
ε
1, pnu

ε
2) ≤ Φ∗ + ε

for arbitrary small ε > 0, i.e.,
lim
n→∞

Φn
∗ = Φ∗. (3.2)

From (3.2) it follows that solutions of the finite-dimensional problem (3.1) are
bounded

||û1n|| ≤ c̄1, |û2n(a)| ≤ c̄2, ||û(1)2n || ≤ c̄3.

As in the proof of solvability of problem (3.1) one can select subsequences converging
in Lp

û1nk
→ ū1, û2nk

→ ū2, û
(1)
2nk
→ v̄2, k →∞,

where v̄2 = ū
(1)
2 . It implies the following relations

Φ∗ ≤ Φ(ū1, ū2) ≤ lim inf
k→∞

Φ(û1nk
, û2nk

) = lim
k→∞

Φn
∗ = Φ∗.

Thus, all limit points (ū1, ū2) of the solutions (û1n, û2n) of the finite-dimensional
problem (3.1) are the solutions of the infinite-dimensional problem (2.1). Here for
the first component the strong convergence in Lp and for the second component in W 1

p

hold.
Remark 3.1 After piecewise linear approximation of problem (3.1), the stabilizing

functional takes more simple and suitable for computation form, in particular,

J ba(u1n) = sup{
∫ b
a
u1nv

(1)(x) dx : |v(x)| ≤ 1, v ∈ C1
0}

= sup{−
∫ b
a
u
(1)
1n (x)v(x) dx : |v(x)| ≤ 1, v ∈ C1

0}

= sup{−
∑n

i=1

∫ xi
xi−1

ui1n−u
i−1
1n

h
v(x) dx : |v(x)| ≤ 1, v ∈ C1

0}∑n
i=1 |ui1n − u

i−1
1n |, (3.3)

J ba(u
(1)
2n ) = sup{

∫ b
a
u2n(x)v(1)(x) dx : |v(x)| ≤ 1, v ∈ C1

0}

= sup{
∑n

i=1

∫ xi
xi−1

ui2n−u
i−1
2n

h
v(1)(x) dx : |v(x)| ≤ 1, v ∈ C1

0}

= sup{
∑n

i=1
ui2n−u

i−1
2n

h
(vi − vi−1) : |v(x)| ≤ 1, v ∈ C1

0}

= sup{
∑n

i=1
(ui2n−u

i−1
2n )−(ui+1

2n −ui2n)
h

vi : |v(x)| ≤ 1, v ∈ C1
0}

=
∑n

i=1 h|
ui+1
2n −2ui2n+u

i−1
2n

h2
|, (3.4)

∫ b

a

|u1n(x)| dx =
n∑
i=1

h

2
|ui1n + ui−11n |,

∫ b

a

|u(1)2n (x)| dx =
n∑
i=1

h|u
i
2n − ui−12n

h
|.
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4 Newton method and numerical experiments

For solving the minimization problem (3.1) and finding the regularized components,
the Newton method is used. For this in the stabilizer the non-differentiable BV-norms
are preliminary approximated by the following smooth functionals (cf. [1], [13]):

||uβ||L1 =

∫ d

a

√
u2(x) + β2dx, J ba(u

β) =

∫ b

a

√
u(1)(x))2 + β2,

and ||u(1)||L1 , J
b
a(u

(1)) are replaced by the functionals

||(uβ)(1)||L1 =

∫ b

a

√
u(1)(x))2 + β2 dx, J ba((u

β)(1)) =

∫ b

a

√
(u(2)(x))2 + β2 dx,

where β is a small parameter and u(2)(x) = d2u(x)/dx2.
Further, for the smooth BV - norms the discrete approximation is applied, i.e., the

derivatives are replaced by difference relations as in (3.3), (3.4), and the integrals are
changed by sums on the basis of the quadrature formula of rectangles. Introduce the
following notations:

ψ(t) =
√
t+ β2, ui = u(xi).

After the discrete approximation the functionals ||uβ||L1 , J
b
a(u

β) have the form:

||uβ||L1 ∼
n∑
i=0

ψ(u2i )h, J ba(u
β) ∼

n∑
i=1

ψ((< D
(1)
i , u >)2)h,

where D1
i = (0, ..., 0,−1/h, 1/h, 0, ..., 0) ∈ Rn+1, the element 1/h has the i-th position.

Using these relations, we obtain the formulae for the gradients:

grad (
n∑
i=0

ψ(u2i )h) = L1(u)u, L1 = diag1 (ψ(1)(u)),

grad (
n∑
i=1

ψ(< D1
i , u >

2)h) = L2(u)u,

where L2(u) = DT
1 diag2 (ψ1(u))D1, D1 is the matrix n × (n + 1), the i-th row of

which is D(1)
i , diag2(ψ

(1)(u)) is the matrix n× n with i-th diagonal element is equal to
ψ(1)(< D

(1)
i , u >2).

Since ||uβ(1)||L1 = J ba(u
β), the gradient of the discrete variant of this norm has the

form

grad (
n∑
i=1

ψ((< D1
i , u >)2)h) = L3(u)u,

where L3(u) = L2(u). Discrete approximation of J ba(uβ(1)) brings to the relation

J ba(u
β(1)) ∼

n−1∑
i=1

hψ(< D2
i , u >

2),
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where D2
i = (0, ..., 0, 1/h2,−2/h2, 1/h2, 0, ..., 0) ∈ Rn+1, i = 1, 2, ..., n− 1. The relation

for the gradient takes the form

grad (
n−1∑
i=1

hψ(< D2
i , u >

2)) = L4(u)u,

where L4(u) = hDT
2 diag4 (ψ(1)(u))D2, D2 is the matrix of dimension (n− 1)× (n− 1),

the i-th row of which is D2
i , diag4 (ψ(1)(u)) is the matrix of dimension (n−1)× (n−1),

the i-th element which is equal to ψ(1)(< D2
i , u >

2).
The functional |uβ(u)| = ψ((u0)

2), therefore,

grad (|uβ(a)|) = L5(u)u, L5(u) = diag5(ψ
(1)(u));

here diag5 (ψ(1)) is the matrix of dimension (n+ 1×)(n+ 1), in which the element with
the index (0, 0) is equal ψ(1)(u0) and the rest ones are equal to zero. For the discrepancy
functional, we have

grad (
1

2
||Au− fδ||2L2

) = A∗(Au− fδ)).

After discrete approximation, A,A∗ are replaced by the matrices An, A∗n and fδ is
changed by a vector of the corresponding dimension. Let us retain the notation
Φ(u1, u2) for the objective functional also and in the discrete variant. Then with taking
into account of the obtained formulae for the gradients, the minimization problem is
reduced to the following system of equations:

grad (Φ(u1, u2)) =

(
ATn (An(u1 + u2)− fn) + α1(L1(u1) + L2(u1)) = 0

ATn (An(u1 + u2)− fn) + α2(L3(u2)u2) + L4(u2)u2 + L5(u2)u2) = 0.

)
Introduce the notation B(u1, u2) = grad (Φ(u1, u2)). For formation of the Newton

method, it is necessary to calculate the derivative of the operator B(u1, u2). It should
be noted that each of gradients of the functionals entering in the stabilizer, has the
form Fi(u) = Li(u)u. Therefore, for its derivative the following formula holds:

(Li(u)u)(1) = Li(u) + L1
i (u)u. (4.1)

Numerical experiments show that without essential loss of precision the second term
in (4.1) can be neglected. After this simplification, the derivative of the operator
B(u1, u2) adopts the form

B(1)(u1, u2) =

(
ATA+ α1(L1(u1) + L2(u1)) ATA

ATA ATA+ α2(L3(u2) + L4(u2) + L5(u2))

)
and the Newton method can be written as

(uk+1
1 , uk+1

2 )T = (uk1, u
k
2)T − [B(1)(uk1, u

k
2)]−1grad (Φ(uk1, u

k
2)), (4.2)

where u1, u2 are vectors of dimension n+ 1.
For testing the Newton method, iterative process (4.2) is applied to the integral

equation, which arises under continuation of a gravitational field on the depth H [5]

Au ≡ 1

π

∫ 1

−1

H

(x− s)2 +H2
u(s)ds = f(x).
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The operator A is approximated by the matrix An with component {aij}, where

aij =
Hh

(xi − sj)2 +H2
, h = 2/101, n = 101, i, j = 0, 1, ..., n, H = 0.3.

In the first experiment, the Newton method is used to reconstruct the solution
u, which contains only one peculiarity: either a break of the solution, or a break
of the solution derivative. As the stabilizing functional either ||u1||BV , (u2 = 0), or
||u2||BV , (u1 = 0) in problem (2.1) are used. As the model solutions the following
functions are taken:

u1(x) =



0, if −1 ≤ x < −0.8;
3, if −0.8 ≤ x ≤ −0.5;
0, if −0.5 < x < 0;
2, if 0 ≤ x ≤ 0.25;
1, if 0.25 < x ≤ 0.75;
0, if 0.75 < x ≤ 1.

u2(x) =



0, if −1 ≤ x < −0.5;
4x+ 2, if −0.5 ≤ x < −0.25;
−2x+ 0.5, if −0.25 ≤ x < 0;
2x+ 0.5, if 0 ≤ x < 0.25;
−4x+ 2, if 0.25 ≤ x < 0.5;
0, if 0.5 ≤ x ≤ 1.

In Fig. 1 the exact u1(x) (solid line) and reconstructed uN1 (dotted line) solutions
are presented. Here, the parameter of regularization is α = 0.5 10−5, the number of
iterations N = 50, the relative error of the right-hand side is ∆ = 0.012, the relative
error of the solution is uN1 is ∆̄ = 0.227.

Fig. 2 shows the results obtained under reconstruction of the model solution u2(x)
for the same error level of the right-hand side. Here α = 0.5 10−5, N = 50. The relative
error of the numerical solution ∆ = 0.101. In the second experiment the model solution
contains both peculiarities: a break and a fracture (break of derivative). The model
solution has the form u(x) = u1(x) + u2(x), where

u1(x) =


0, if −1 ≤ x < 0.25;
1, if 0.25 ≤ x ≤ 0.75;
0, if 0.75 < x ≤ 1.

u2(x) =


0, if −1 ≤ x < −0.8;
10
3
x+ 8

3
, if −0.8 ≤ x < −0.5;

−10
3
x− 2

3
, if −0.5 ≤ x < −0.2;

0, if −0.2 ≤ x ≤ 1.

Fig. 3 contains the exact and numerical solutions for such model. In this case α =
0.5 10−5, N = 50, ∆ = 0.003, ∆̄ = 0.22. In contrast to the first experiment, here we
have more smoothed the numerical solution.
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Figure 1: The exact component u1 (solid line) and reconstructed one uN1 (dotted line).

Figure 2: The exact component u2 (solid line) and reconstructed one uN2 (dotted line).
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Figure 3: The exact model solution u = u1 + u2 (solid line) and reconstructed one
uN = uN1 + uN2 (dotted line).

Conclusion. From the theoretical view point for the modified Tikhonov method,
the Lp-convergence and the piecewise uniform convergence was proved for the regular-
ized components responding to approximation of the discontinuous component of the
solution. Also, the Wp-convergence for the second component and the piecewise uni-
form convergence for its derivative were ascertained. The numerical results obtained
with using the Newton method show that in the case when there is only one type of
peculiarity the constructing RA provides the quite good results with preservation of the
subtle structure of a solution. In finding a solution with both peculiarities the quality of
a solution is some worse. In this case there is oversmoothing the approximate solution.
Probably, here it is necessary to choose more carefully the control parameters.

Acknowledgement

The work was supported by Russian Foundation for Basic Research (projects no 15-
01-00629).

References

[1] R. Acar and C.R. Vogel, Analysis of bounded variation penalty methods for ill-
posed problems, Inverse Problems 10 (1994),1217-1229.

[2] E.J. Gandes, J. Romberg and T. Tao, Stable signal recovery from incomplete and
inaccurate measurments, Pure Appl. Math. 59 (2006), 1207-1223.



Modification of the Tikhonov method under separate reconstruction of components 79

[3] A. Gholami and S.M. Hosseini, A balanced combination of Tikhonov and total
variation regularization for reconstruction of piecewise- smooth signal, Signal Pro-
cessing 93 (2013), 1945-1960.

[4] E. Giusti, Minimal Surfaces Functions of Bounded Variation, Monogr. Math. 80,
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