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Abstract. A parameter identification problem (inverse problem) for some mathematical
models of HIV dynamics and tuberculosis epidemics with experimental observations is in-
vestigated. The inverse problems are reduced to a minimization problem. The optimization
problem is solved with the help of stochastic methods: a genetic algorithm and fast simulated
annealing. The results of numerical calculations are presented.
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1 Introduction

Many mathematical models of biological processes (of pharmacokinetics, immunology,
epidemic spread, etc.) can be described by systems of nonlinear ordinary differential
equations (ODEs). The equations in the system being investigated (varying in number
from two to several tens) are determined by a model. In the general case, the biolog-
ical models have specific parameters describing model characteristics (coefficients of a
system of differential equations Ẋ = PX, where P is a matrix in the linear models).
They have to be identified to obtain important information about the susceptibility
to specific drugs, diseases, immune response, epidemic spread, etc.Those parameters
can be estimated (or sometimes uniquely determined) using some additional informa-
tion about the biological processes (concentration of drugs, viruses, antigens, infected
patients, etc.). The problem of determining the biological parameters using such addi-
tional information is said to be an inverse problem. In the present paper, some inverse
problems for mathematical models of cellular HIV dynamics and tuberculosis epidemics
are investigated.

The HIV was discovered independently in 1983 in two laboratories: at the Pasteur
Institute in France and the National Institute of Cancer in the US. A.S. Perelson et al.
[1], B.M. Adams et al. [2], and G. Bocharov et al. [3] investigated the effects of the virus
on the human body. Currently, there are many mathematical models describing the
dynamics of an HIV infection which contains different types of immune cells. The early
linear models proposed in [4, 5, 6, 7] are approximations to more realistic nonlinear
models for viral and infected cell decay, and thus are applicable, at best, only for short
periods of time. Since these models have been useful in characterizing the short-term
dynamics of the HIV infection after therapy, several researchers attempted to use these
models to estimate the time of virus eradication in individuals. Such predictions need
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time periods that are beyond those needed to appropriately approximate the nonlinear
dynamics by a linear model.

To model data over longer periods of time and make long-term predictions, nonlinear
mathematical models are necessary. The authors of paper [8] reason that more complex
nonlinear models are needed to accurately describe the long-term viral decay.

The viral production of cells infected with HIV depends on the “age” (e.g., the
time elapsed from the start of infection) of the infected cells. There are multiple
biological aspects of this function of age. The intra-cellular delays due to viral reverse
transcription, integration, transcription, and virion formation are described by J.E.
Mittler et al. [9] extending the work in [7]. J.E. Mittler allows the intra-cellular delays
to vary across the cells, and estimates these delays to be more significant than the
pharmacological delays associated with drug absorption.

The above mathematical models of HIV are characterized by parameters that de-
scribe the properties of immunity and disease. It is necessary to estimate these pa-
rameters with known additional information to formulate an optimal treatment plan.
B.M. Adams et al. [2] investigate the problem of parameter identification for a math-
ematical model of HIV dynamics. Using the least squares method, they obtained two
parameters. In the present paper, we consider the mathematical model for HIV dy-
namics from paper [2]. For this model we solve the parameters identification problem
by using a genetic algorithm. We obtain four parameters. And it is shown that the
relative accuracy error of the four-parameter identification is sufficiently small for a
good mathematical model that has a solution close to additional measurements.

A second mathematical model under consideration describes a tuberculosis epidemic
in the Russian Federation. An epidemic of tuberculosis (TB) is typically accompanied
by quantitative and qualitative changes in the character of this disease that are specific
for the region under study. It is necessary to make a prediction of the epidemic spread
in a particular region to create an action plan to identify and treat the patients in this
region. Mathematical simulation, namely, the development of a specific mathematical
model describing the process of infection propagation in the population, is one of the
most efficient methods of epidemic spread prediction.

Hans Waaler et al. [10, 11, 12, 13, 14, 15] were the first to construct and develop
an integral mathematical model of tuberculosis epidemiology (with a description of the
processes of infection, development of latent infection, disease, and its further spread).
In the 1970s-80s the detection and treatment of the patients infected with tuberculosis
were studied within TSRU (Tuberculosis Surveillance Research Unit) [16]. In later
years, a research team headed by Sally M. Blower was engaged in the development
of models of natural dynamics of tuberculosis, medical intervention, interaction with
other deadly diseases, and qualitative estimation of their parameters on the basis of
statistical data, etc.[17, 18, 19, 20, 21]. Several “global” tuberculosis spread models
describing both the processes of spread, chemoprophylaxis, detection and treatment
programs, etc. were developed in the late 20th century [22, 23, 24]. These studies
considered mainly the structure of mathematical models and the results of numerical
experiments. The model parameters determining the tuberculosis spread process were
typically taken from the literature. The predictions and recommendations on how to
organize anti-tuberculosis programs were based on averaged values and did not take
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into account the parameter variations and regional peculiarities.
Recently, new models based on previous studies and real data and taking into

account the peculiarities of populations of Russian regions, have been created [25, 26].
In the present paper, a convenient method of model set-up combined with numerical
methods for some specific populations is proposed. With statistical data processed for
several preceding years, the algorithm yields the degree of deviation from the mean
values of parameters of the infection for each individual population. Thus, public
health organizations can predict the development of epidemics of an infectious disease
in this region by comparing the results of simulations with the available historic data.

2 Inverse problem statement

Let us consider a Cauchy problem for the system of nonlinear ODEs

Ẋ = P (X(t),Θ), X(0) = X0, t ∈ (0, T ), T > 0. (1)

Here X(t) = (X1(t), . . . , XN(t))T is the N -vector of model variables, Θ is a parameter,
an M -vector equal to (Θ1, . . . ,ΘM)T ∈ P , P := {p ∈ RM : pm ≥ 0, m = 1, . . . ,M} is
the space of parameters being considered, P (X(t),Θ) = (P1(X(t),Θ), . . . , PN(X(t),Θ))T

is a vector-function Pn(X(t),Θ) : C2(0, T ) → C2(0, T ), n = 1, . . . , N , // X0 =
(X0

1 , . . . , X
0
N)T is the N -vector of initial data.

The inverse problem for the direct problem (1) is in determining the vector of
model parameters and the initial data q = (Θ, X0)T from the given function P and
some additional information about the vector X(t; q):

Xn(tk; q) = Φn(tk), tk ∈ (0, T ), k = 1, . . . , Kn, n = 1, . . . , N. (2)

Here Φn(tk) := Φ
(k)
n = (Φ

(1)
n , . . . ,Φ

(Kn)
n )T is the vector of inverse problem data of di-

mension K := K1 + . . .+KN . The vector X(t; q) describes the concentration of drugs,
glucose, and insulin in blood and plasma (in pharmacokinetics problems); the concen-
tration of viruses, immune system parameters (plasma cells, antibodies, macrophages,
etc.), characteristics of target organ affection, and others (in immunology problems);
the number of infection carriers, the number of noninfectious patients, etc. (in epidemi-
ology problems). The vector Φ = (Φ

(1)
1 , . . . ,Φ

(K1)
1 , . . . ,Φ

(1)
N , . . . ,Φ

(KN )
N )T is determined

from blood and urine data at times tk, k = 1, . . . , K.
Let us define an operator for the inverse problem (1), (2) as follows: A : q ∈

P → Φ ∈ RK . Thus, the inverse problem (1), (2) can be written in operator form as
A(q) = Φ.

A(q) = Φ will be solved by minimizing the following misfit function:

J(q) = ‖A(q)− Φ‖2 =
K∑
k=0

|X(tk; q)− Φ(k)|2, (3)

that is, solving the problem A(q) = Φ is reduced to solving the problem of finding
min
q
J(q).
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In paper 2009 [27] by H.W. Engl et al., the inverse problem (1), (2) was numer-
ically investigated for well-posedness with gradient methods (Levenberg-Marquardt
and Gauss-Newton ones) using A.N. Tikhonov’s regularization in the numerical calcu-
lations. In paper [28] authors derive the formula for the gradient of misfit function (3)
connected with adjoint problem and apply Landweber iteration approach in numerical
experiments. In the present paper, for the inverse problem (1), (2) an optimization
algorithm based on a stochastic method, namely, a genetic algorithm and a very fast
simulated annealing method, will be presented.

3 Numerical methods

3.1 Genetic algorithm

The problem of functional minimization (3) can be solved by linear programming meth-
ods and gradient methods of zero [29], first [30], and higher orders. A general drawback
of the deterministic methods is that the initial approximation must be close to the exact
solution. It is often a difficult task. We use a stochastic method (genetic algorithm) [31]
for solving the inverse problem described above. This method is as follows:

1. Choosing an initial population : choose arbitrary values of the N vectors of
parameters qi = (qi1, . . . , q

i
M)T , i = 1, . . . , N from the admissible intervals. For

each qi, calculate the misfit function J(qi).

2. Selecting : choose N pairs of parents. The probability that a member of the
population falls into a pair is high if the value of its misfit function has low level.
The probability that the i-th member of the population falls into a pair can be
calculated by using the following formula: P i = J(qi)

N∑
i=1

J(qi)

.

3. Crossing : crossing each pair (qi, qj), i, j = 1, . . . , N by crossing-over, we get N
descendants. For this purpose, we choose two random numbers: one is a random
integer Q ∈ [1, N − 1], and the other is a random integer R which can be either 1
or 2. The number Q characterizes the dividing line of the parents, the number R
shows which part (left or right) from the dividing line descendant inherits from
the mother and father.

• If Q = s, R = 1, s ∈ [1, N − 1]:
mother: (qi1, . . . , q

i
s, |qis+1, . . . , q

i
M)T , father: (qj1, . . . , q

j
s, |q

j
s+1, . . . , q

j
M)T −→

descendant: (qi1, . . . , q
i
s, |q

j
s+1, . . . , q

j
M)T .

• If Q = s, R = 2, s ∈ [1, N − 1]:
mother: (qi1, . . . , q

i
s, |qis+1, . . . , q

i
M)T , father: (qj1, . . . , q

j
s, |q

j
s+1, . . . , q

j
M)T −→

descendant: (qj1, . . . , q
j
s, |qis+1, . . . , q

i
M)T .

4. Mutating : make random changes in the posterity, i.e.

• choose a random volume A of descendants to which the mutation will be
applied. Here A is a random integer from 1 to N ;
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• Then choose random integers Bi ∈ (1, N), i = 1, . . . , A. Bi, i = 1, . . . , A are
the item numbers of descendants that will mutate;

• For each mutating descendant Bi, choose a random volume CBi
, i = 1, . . . , A

of mutating elements. Here CBi
is a random integer from 1 to M ;

• Then choose random integers Dk ∈ (1,M), k = 1, . . . , CBi
, i = 1, . . . , A,

which characterize the item number of mutating elements and replace each
mutating element by a new random value from the allowable period.

5. Forming a new generation : Choose the fittest member among the parents
and descendants, i.e. choose the member that has the lowest value of the mis-
fit function J(qi). Also, choose a few "lucky ones" of the generation members
that badly minimize the functional. They will bring diversity to the subsequent
generations.

6. Checking the exit condition :

• J(qi) < ∆. Here J(qi) is the lowest value of the misfit function in the
population, ∆ is a given number. In the paper, as the value of ∆ we take
0.0001.

• The smallest value of the misfit function in the population changes by less
than 10−8 within 500 consecutive iterations.

If at least one of the conditions is satisfied, the resulting population is found.
Choose from the population a vector with the lowest value of the misfit function.
If not, go to step 2.

If the genetic algorithm is stuck in a local minimum, the step of mutation will help
to get out of it. As practice shows, we can find a global minimum using the genetic
algorithm for the optimization problem. It is important when working with real data.

3.2 Very fast simulated annealing method

A very fast simulated annealing method consists in finding a global minimum using an
ordered random search constructed by analogy with the process of crystalline structure
formation with minimal energy under quenching [32].

The very fast simulated annealing method with a coefficient c for faster decrease in
a temperature T (j+1) = cT (j) [32] (also called the “quenching” method) is used to find
the global minimum domain of the objective functional. In our case, the temperature
T (j) is some function of a natural argument with values in Rm which controls the
iteration number.

Assume that each parameter qi, i = 1, . . . ,m, lies in some interval qi ∈ [Ai, Bi], i =
1, . . . ,m.

Quenching method algorithm:

1. Set maximum and minimum values: T0 = Tmax and Tmin.
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2. Choose arbitrarily a vector q(0) ∈ Rm : q(0)i ∈ [Ai, Bi], and calculate the func-
tional value J(q(0)).

3. Let the values q(j) and J(q(j)) be found. The calculation of q(j+1) is as follows:

4. Specify m independent random numbers αi, i = 1, . . . ,m, uniformly distributed
in the interval [0, 1]. Calculate a new vector q′ by the rule

q′i = q(j)i + zi(Bi − Ai),

where zi is a random quantity of the form

zi = sgn(αi − 0.5)T (j)((1 + 1/T (j))|2αi−1| − 1).

5. Calculate the functional value at the new point, J(q′):

(a) If ∆J = J(q′)− J(q(j)) < 0, go to step 7.

(b) If ∆J = J(q′)− J(q(j)) > 0, go to step 5.

6. Calculate the probability of choosing the new approximation

p(∆J, T (j)) = exp (−∆J/T (j)).

7. Specify a random number α uniformly distributed in the interval [0,1].

(a) If α < p(∆J, T (j)), go to step 7.

(b) If α > p(∆J, T (j)), go to step 3.

8. Choose a new point q(j+1) = q′.

9. Decrease T (j + 1) = cT0 exp (−k1/md), d > 0 is a parameter of the “quenching”
method.

(a) If T (j + 1) < Tmin, end of iteration.

(b) If T (j + 1) > Tmin, go to step 3.

Zhiglyavskii A.A. [33] proved a general theorem of statistical convergence of the
global optimization methods to the global minimum domain. A proof of this theorem
for the very fast quenching method is presented in [33, 34, 35, 36].
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4 Examples

4.1 Inverse problem for a mathematical model of HIV dynam-
ics

A mathematical model of HIV dynamics [2] can be described by the following system
of nonlinear differential equations:

Ṫ1 = λ1 − d1T1 − k1V T1,
Ṫ2 = λ2 − d2T2 − k2V T2,
Ṫ ∗1 = k1V T1 − δT ∗1 −m1ET

∗
1 ,

Ṫ ∗2 = k2V T2 − δT ∗2 −m2ET
∗
2 , t ∈ (0, T ),

V̇ = NT δ(T
∗
1 + T ∗2 )− cV − [ρ1k1T1 + ρ2k2T2]V,

Ė = λE +
bE(T ∗

1 +T
∗
2 )

(T ∗
1 +T

∗
2 )+Kb

E +
dE(T ∗

1 +T
∗
2 )

(T ∗
1 +T

∗
2 )+Kd

E − δEE

(4)

The initial conditions for mathematical model (4) are:

T1(0) = 500000, T2(0) = 4800, T ∗1 (0) = 5000, T ∗2 (0) = 10, V (0) = 10000, E(0) = 15. (5)

Here (T1, T
∗
1 ) are uninfected and infected T-lymphocytes, respectively, (T2, T

∗
2 ) are

uninfected and infected macrophages, V is a free virus, and E are immune effectors.
The mathematical model (4) contains 19 parameters that characterize some features

of immunity and disease: λ1, λ2, d1, d2, k1, k2, δ, m1, m2, NT , c, ρ1, ρ2, λE, bE, dE,
Kb, Kd, δE. In [37] A.S. Perelson shows that the majority of these parameters are
defined accurately, and only four of them, k1, k2, λ1, λ2, need to be clarified: k1, k2,
the infection rates of CD4 T-lymphocytes and macrophages, λ1, λ2, the T-lymphocytes
and macrophages production (source) rates. These parameters are individual for each
person. It is necessary to clarify these four parameters for each patient.

The parameter identification problem (inverse problem) for the mathematical
model (4) with the initial conditions of the form (5) consists in determining the

parameter vector q = (k1, k2, λ1, λ2)
T with known additional information about the

concentrations of T-lymphocytes in the organism T1 + T ∗1 , free virus V and immune
effectors E in a fixed time tk, k = 1, . . . , K:

T1(tk) + T ∗1 (tk) = Φ1(tk), V (tk) = Φ2(tk), E(tk) = Φ3(tk), k = 1, . . . , K. (6)

The inverse problem (4)-(6) can be reduced to a problem of minimizing the misfit
functional J1(q):

J(q) =
K∑
k=1

((T1(tk; q) + T ∗1 (tk; q))− Φ1(tk))
2 + (V (tk; q)− Φ2(tk))

2+

+ (E(tk; q)− Φ3(tk))
2.

(7)

The misfit functional J(q) characterizes the degree of deviation of the model data
from the experimental data. Here T1(tk; q) = T1(tk), T

∗
1 (tk; q) = T ∗1 (tk), V (tk; q) =

V (tk), E(tk; q) = E(tk) is the solution of the Cauchy problem (4)-(5) for a set of
parameters q at a fixed point tk.
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4.1.1 Numerical solution of the inverse problem

In the present paper we use model data for solving the inverse problem. Let us consider
a time period T = 100 days and construct a partition of the domain (0, T ): ω1 = {tj :
tj = jht, ht = T/Nt, j = 1, . . . , Nt, Nt = 10000}. To determine the vector of parameters
q = (k1, k2, λ1, λ2)

T for the problem (4)-(6), let us construct synthetic data (6) using a
standard set of parameters for the infected patient [2]. To do this, let us choose an exact
vector of parameters as follows: qex = (kex1 , k

ex
2 , λ

ex
1 , λ

ex
2 )T = (104, 31.98, 8∗10−7, 10−4)T .

In the present paper, we analyze the frequency of measurements of the concen-
trations of T-lymphocytes (T1 + T ∗1 ), free virus (V ) and immune effectors E. Using
the genetic algorithm, we obtain values of the relative error |q − qex|/|qex| for the fre-
quency of measurements K = 3 (the measurements are carried out once a month),
K = 7 (the measurements are carried out once every two weeks), and K = 14 (the
measurements are carried out once a week). It is shown that if we increase the num-
ber of measurements, the average (arithmetic mean) relative error decreases. Based
on this consideration, we assume that the measurements of concentrations 6 are per-
formed with a frequency of once a week. Thus, we have K = 14 measurements of the
concentrations of T-lymphocytes, free virus and immune effectors during 100 days.

In Figures 1, 2, the relative error |qex − qn|/|qn| (Fig. 1) versus the number of
iterations n and the misfit function J(qn) (Fig. 2) versus the number of iterations n
are presented. By increasing the number of iterations, the relative error and the misfit
functional decrease. This shows that the method is convergent. Since the inverse
problem is reduced to minimizing the functional J(qn), the curve (Fig. 3) of dependence
between the relative error and the misfit function is important for us. This curve shows
that with decreasing functional the relative error decreases too. It means that if we
reduce J(qn), the parameters qn obtained are close to the exact values qex.
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Figure 1: Relative error |qex − qn|/|qn| versus the number of iterations n.
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Figure 2: Misfit functional Log(J(qn)) versus the number of iterations n.
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Figure 3: Misfit function J(qn) versus the relative error |qex − qn|/|qn|.

In Table 1 the numerical results for the parameter identification problem are pre-
sented. These results were obtained using the genetic algorithm. It can be seen that
the two parameters λ1, k1 are determined accurately enough, and the other two, λ2 and
k2, have relative errors of about 10 %.

In Figure 4, the direct problem solutions (4) (solid lines) for the thus-obtained pa-
rameters and measurements of concentrations (6) at fixed times (points) are presented.
The curves show that the relative accuracy error of the four parameters identification
is sufficiently small for a good mathematical model that has a solution close to the
additional measurements of CD4 T-lymphocytes (T1+T1*), immune effectors E, and
free viruses V.

Note that additional information (6) of the concentrations of T-lymphocytes, free
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Table 1: Numerical solution of the parameters identification problem for mathematical
model of HIV-dynamics (4)

Exact pa-
rameters,
qex

Approximate
parameters,
q

Relative
error,
|qiex−qi|/|qiex|

Common rel-
ative error,
|qex − q|/|qex|

Misfit
func-
tional,
J1(q)

λ1(
cells

ml·days) 104 1.0015 · 104 0.00149 0.00226 2.23494

λ2(
cells

ml·days) 31.98 32.7871 0.02527 0.00226 2.23494

k1(
ml

virions·days) 8 · 10−7 7.9802 ·10−7 0.00248 0.00226 2.23494

k2(
ml

virions·days) 10−4 1.1693 ·10−4 0.16933 0.00226 2.23494
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Figure 4: Concentrations of immune effectors E(t) (left), free virus V (t) (center),
and T-lymphocytes T1(t) + T ∗1 (t) (right). Points on the curves are measurements of
concentrations (6) at fixed times

virus and immune effectors can be obtained from blood tests. It is known that above
measurements have a Gaussian noise of about 10%. Let us present the numerical results
of the inverse problem solution (4)-(6) if we have additional (6) measurements with
Gaussian noise of 10%. In table 2 numerical results of inverse problem are presented.
As in the previous case we obtain fairly accurate values only of the parameters λ1
and k1. Note, that the second and forth equations in mathematical model (4) for
functions T2(t) and T ∗2 (t) respectively depend on parameters λ2 and k2. But additional
information (6) for inverse problem (4)-(6) is known only for functions T1(t) + T ∗1 (t),
V (t) and E(t). That is the main reason of a big error in reconstruction of parameters
λ2 and k2. For better accuracy in λ2 and k2 we need to obtain an additional information
about any combinations of uninfected and infected macrophages.

In Figure 5, the direct problem solutions (4) (solid lines) for the thus-obtained pa-
rameters and noised measurements of concentrations (6) at fixed times (points) are
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presented. The curves show that the common relative accuracy error of the four pa-
rameters identification is sufficiently small for a good mathematical model that has
a solution quite close to the additional noised measurements of CD4 T-lymphocytes
(T1 + T ∗1 ), immune effectors E, and free viruses V .

Table 2: Numerical solution of the parameters identification problem for mathematical
model of HIV-dynamics (4) when we have Gaussian noise of 10% in data.

Exact pa-
rameters,
qex

Approximate
parameters,
q

Relative
error,
|qiex−qi|/|qiex|

λ1(
cells

ml·days) 104 0.0989 · 104 0.0107

λ2(
cells

ml·days) 31.98 43.7049 0.3666

k1(
ml

virions·days) 8 · 10−7 7.9949 ·10−7 0.0006

k2(
ml

virions·days) 10−4 0.5024 ·10−4 0.4976

Figure 5: Concentrations of immune effectors E(t) (left), free virus V (t) (center), and
T-lymphocytes T1(t) + T ∗1 (t) (right). Points on the curves are noised measurements of
concentrations (6) at fixed times.

Note that the program runtime on a personal computer with processor Intel (R)
Core (TM) i3 2.13GHz and 4GB of RAM is about 5 minutes.

4.2 Inverse problem for a mathematical model of tuberculosis
transmission with control programs

Consider a Cauchy problem for the following mathematical model of tuberculosis spread
developed by a group of Australian researchers [38] taking into account the treatment
and appearance of new tuberculosis strains during the period of treatment:
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dSA

dt
= (1− l)πN − (λ+ λm + µ)SA,

dSB

dt
= lπN + ϕT + ϕmTm − (λd + λdm + µ)SB,

dLA

dt
= λSA + λd(SB + LB + LBm)− (ε+ k + µ)LA,

dLAm

dt
= λmSA + λdm(SB + LB + LBm)− (ε+ k + µ)LAm,

dLB

dt
= kLA + γI − (λd + λdm + ν + µ)LB,

dLBm

dt
= kLAm + γIm − (λd + λdm + ν + µ)LBm,

dI
dt

= εLA + νLB + (1− ν)ωT − (γ + δ + µi)I,

dIm
dt

= εLAm + νLBm + νωT − (γ + δm + µi)Im,

dT
dt

= δI − (ϕ+ ω + µt)T,

dTm
dt

= δmIm − (ϕm + ω + µt)Tm,

SA(0) = SA0 , SB(0) = SB0 , LA(0) = LA0 , LAm(0) = LAm0 ,

LB(0) = LB0 , LBm(0) = LBm0 , I(0) = I0, Im(0) = Im0 ,

T (0) = T0, Tm(0) = Tm0 .

(8)

Here

λ = βρ(I + oT )/N, λm = βmρ(Im + oTm)/N,

λd = χβρ(I + oT )/N, λdm = χβmρ(Im + oTm)/N.

In equation (8), the population is divided into sensitive unvaccinated (SA) and
vaccinated (SB) patients, latent infection carriers, also having the MDR-TB strain
(with index m), with fast (LA, LAm) and slow (LB, LBm) development of the active
form of the disease, patients with open form of the disease under treatment (T, Tm)
and not under treatment (I, Im).

Some parameters characterizing the peculiarities of the population and the disease
for equations (8) are listed in Table 3.

This is a system of first-order nonlinear ordinary differential equations (1). Here
X = (SA, SB, LA, LAm, LB, LBm, I, Im, T, Tm)T is the vector of unknown functions,
X0 = (SA0 , SB0 , LA0 , LAm0 , LB0 , LBm0 , I0, Im0 , T0, Tm0)

T is the vector of initial data,
F is a given vector-function, and q = (π, µ, ϕ, ϕm, ε, k, γ, ν, η, ω, δ, δm, µi, µt, β, βm,
χ, ρ, o, l)T is the vector of the model parameters to be reconstructed.

Assume that at times tk we know the following additional information about the
functions Xl1(t), . . . , Xld(t), where {l1, . . . , ld} ⊂ {1, . . . , 10}:

Xl1(tk) = Xk
l1
, k = 1, ..., Kl1 ,

. . .

Xld(tk) = Xk
ld
, k = 1, ..., Kld . (9)

This is a problem of reconstructing the parameters of the mathematical model
of equations (8)-(9). It is required to determine a vector of 20 parameters, q =
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Table 3: Parameters of equations (8) for, as an example, some countries of the Asian–
Pacific region.
Symbol Description Units Size

Π inflow of young people to model pop-
ulation

people/year depends on population type

N total population size people depends on population type
1/µ average life expectancy year depends on population type
ϕ tuberculosis treatment rate people/year 2
ϕm MDR-TB treatment rate people/year 0.5
ε disease early progression rate year 0.129
k transition rate to disease late progres-

sion
year 0.821

γ spontaneous self-recovery rate year 0.63
ν development rate of active disease

form under endogenous activation
year 0.075

η probability of MDR-TB strain devel-
opment during treatment

- 0.035

ω reinfection rate people/year 0.25
δ detection rate of individuals with ac-

tive TB form
people/year 0.72

δm detection rate of individuals with ac-
tive MDR-TB form

people/year 0.035

µi tuberculosis mortality without treat-
ment

year 0.37

µt tuberculosis mortality during treat-
ment

year 0.5µi

β contagiousness parameter - depends on population type
βm contagiousness parameter for MDR-

TB
- 0.7β

χ partial immunity parameter - 0.49
ρ infection fraction - 0.7
o transmissibility parameter of individ-

uals during treatment
- 0.6

l BCG vaccination rate - 0.65

(q1, . . . , q20)
T ∈ R20, from the additional information about the solution of the direct

problem:

Φi(tk) := Φ
(k)
i =

(
X1
li
, . . . , X

Kli
li

)T
∈ RKli , i = 1, . . . , d.

The inverse problem (8)-(9) is reduced to finding a minimum of the objective func-
tional

J(q) =
d∑
i=1

Kli∑
k=1

|Xli(tk; q)− Φ
(k)
i |2. (10)

This optimization problem is solved by the very fast simulated “quenching” method.

4.2.1 Numerical calculations

Now let us solve the problem of reconstructing the parameters of equation (1) for the
model of equation (8).
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As a model population, consider the Siberian Federal District (SFD) population.
According to the Russian legislation, infant BCG (Bacillus Calmette-Guerin) vaccina-
tion is obligatory for the Russian citizens with morbidity rates exceeding 80 cases per
100 thousand , and most population of the SFD is vaccinated at the preschool ages.
Therefore, the coefficient l in Table 3 for the SFD is taken equal to 1, and SA(0) = 0.
Since the Cauchy problem has a unique solution [39] and SA ≡ 0 under these conditions,
the group SA can be excluded from consideration.

The initial data taken for the SFD simulation (thousands of people) are as follows
[40, 41, 42]:

SB(0) = 249, LA(0) = 8500, LAm = 1150, LB = 8656, LBm = 1189,
I(0) = 34, Im(0) = 4, T (0) = 51, Tm(0) = 6.

The population increase Π = 266 (thousands of people), the total number of people
in the population N = 19439 (thousands of people), the coefficient of mortality from
all causes except for tuberculosis µ = 0, 016, and the coefficient of contagiousness
β = 0, 025. Also notice that the coefficients ρ and χ in the model are always in
products. Therefore, we can introduce a new coefficient, χ̃ = ρ ∗ χ, and reconstruct it.

The parameters of simulation for the very fast “quenching” method are

Tmax = 1, Tmin = 10−50, c = m ∗ exp (−1/m), m = 7.

Not all parameters of the model need to be determined. We will determine only the
parameters that directly affect the spread of the epidemic, q = (ε, k, ν, δ, δm, χ̃, o). The
initial vector of parameters, q(0) = (ε, k, ν, δ, δm, χ̃, o)

T ∈ R7, is chosen arbitrarily. Since
we know that all q(0)i ∈ [1, 0] (i = 1, . . . , 7), we generate q(0)i as a quantity uniformly
distributed in the interval [0, 1].

Since we plan to work with real data, assume that under the conditions of equa-
tions (1) for the model (8) the statistical data in the form of (9) are known only fort the
number of uninfected people, SB, being treated at times T, Tm. Therefore, taking (8),
(9) as an exact solution of the inverse problem and the parameters from Table 3, we
generate synthetic data for three functions of the model of (8) (l1 = 1, l2 = 8, l3 = 9):
SBk

, Tk, and Tmk
, measured once a year during four years. Subsequently these data are

used as measurements to reconstruct the vector of parameters of the inverse problem
for the model (8), (9).

Solving the inverse problem under the new conditions by the very fast simulated
“quenching” method, we have obtained the following results. One can see in Fig. 6 (the
objective functional of equation (10) versus the number of iterations) that the func-
tional decreases with stochastic jumps. This conforms with the rules of constructing
the method and its properties [33].

Let us introduce a concept of relative error |qj−qexact||qexact| and investigate its behavior.
One can see in Fig 7 that the relative error decreases in a similar way.

Table 4 shows the results of reconstructing the vector of parameters q ∈ R7 from
model measurements of three functions, namely, SB, T , and Tm. One can see that not
all of the parameters have been reconstructed with sufficient accuracy (see the last
column of Table 4).
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Figure 6: Objective function J(qj) versus the number of iterations j.
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Figure 7: Relative error |qj−qexact||qexact| versus the number of iterations j.
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Table 4: Numerical solution of the inverse problem for the model (8) with known
measurements for the number of uninfected people and people under treatment.
Parameters | Combined method |
Symbol Exact value Initial approxi-

mation
Obtained so-
lution

Common rel-
ative error

ε 0.129 0.186554 0.127367

0.3142

k 0.821 0.375305 0.8351
ν 0.075 0.52066 0.0743568
δ 0.72 0.943359 0.729983
δm 0.035 0.617828 0.0352531
χ̃ 0.343 0.709595 0.243029
o 0.6 0.760315 0.996112

Although not all of the parameters have been reconstructed with sufficient accuracy,
the direct problem solution for the functions SB, T , and Tm being measured has been
reconstructed with good accuracy (see Fig. 8) taking into account that the measure-
ments only for the first four years have been taken and the remaining 46 years have
been used as the prediction.
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Figure 8: Number of uninfected people SB(t) and people under treatment for TB
T (t) and MDR-TB Tm(t) (functions being measured) for the exact and reconstructed
solutions for 50 years.

The other functions have been reconstructed with some errors. This can be ex-
plained by the insufficient accuracy of reconstruction of the parameters.

Note, that statistic data are known with some noise. Add to our four-years data (9)
the Gaussian noise with level of 20%, zero expectation and root-mean-square deviation
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Figure 9: Number of latently infected people LA(t), LAm(t), LB(t), LBm(t) and people
infected with TB I(t) and MDR-TB Im(t) (functions not being measured) for the exact
and reconstructed solutions for 50 years.

(is equal to 0.5 for SBk
, to 0.2 for Tk and to 1.5 for Tmk

) and solve numerically inverse
problem (8)-(9). The result of inverse problem solution for noisy data is presented in
Table 5.

Table 5: Numerical solution of the inverse problem (8)-(9) with known 20% Gaussian
noisy measurements for the number of uninfected people and people under treatment.

Parameters Combined method
Symbol Exact value Initial ap-

proximation
Obtained so-
lution

Common rela-
tive error

ε 0.129 0.339386 0.101448

0.661907

k 0.821 0.332489 0.48391
ν 0.075 0.640717 0.0609889
δ 0.72 0.39212 0.908589
δm 0.035 0.993866 0.04179941
χ̃ 0.343 0.467896 0.824467
o 0.6 0.166565 1.2566 · 10−5

Note, that three reconstructed parameters k, χ̃ and o are far from exact values.
Parameter k appears in equations described the dynamic of latent infectious patients
LA, LAm , LB, LBm . The additional information (9) for Tuberculosis inverse problem are
known only for vaccinated SB and infected patients under treatment T and Tm. For
better accuracy for k it is necessary to obtain measurements about numbers of latent
infectious patients in some previous years. The other two parameters χ̃ and o include
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in the second equation for SB(t), but due to stochastic error of 20% level in data for SB
of inverse problem the appropriate accuracy isn’t reached. It happens because misfit
function (10) not account errors in data. For the better parameters reconstruction for
noisy data one should to use function depends on error level in data, for example, GLS
method [43].
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Figure 10: Number of uninfected people SB(t) and people under treatment for TB T (t)
and MDR-TB Tm(t) (functions being measured) for the approximate reconstruction
parameters after inverse problem solving with noisy data of level 20% for 30 years.
The black dots are used noisy statistical information for the previous four years.

The common relative accuracy error for noisy data is sufficiently high but approx-
imation of vaccinated (SB) patients and patients with open form of the disease under
treatment T, Tm is sufficiently good for the first four years and can be considered as
the prediction with good accuracy (see Fig. 10).
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