EURASIAN JOURNAL OF MATHEMATICAL

 AND COMPUTER APPLICATIONSISSN 2306-6172
Volume 5, Issue 1 (2017) 87-94

A NUMERICAL SOLUTION TO A PROBLEM OF CRYSTAL ENERGY SPECTRUM DETERMINATION BY THE HEAT CAPACITY DEPENDENT ON A TEMPERATURE

Tanana V.P., Sidikova A.I., Ershova A.A.

Abstract

The paper consider an important practical problem of determining the phonon spectrum of a crystal by the heat capacity dependent on temperature. The problem reduces to an integral equation of the first kind solvable by the regularizing algorithm. This algorithm involves finite-dimensional approximation of the original problem and allows reducing the problem to a system of linear algebraic equations by use of the Tikhonov regularization method. The approximate solution accuracy accounting for the error of the finite-dimensional problem approximation has been estimated.

Key words: Fredholm integral equation of the first kind, module of continuity, evaluation of inaccuracy, ill-posed problem.

AMS Mathematics Subject Classification: 45Q05

1 Introduction

For applying the numerical methods we use discretization of the problem basic equations which results in an additional error while reducing. To minimize the error effect on the solution, it should be accounted for in the method. The numerical method of the integral equation solution used in the paper was suggested and proved in [1]. The method allowed solving the inverse problem of solid state physics [2],[3] as well as an accuracy estimating of the problem solution.

2 Statement of the problem

Let us consider the integral equation of the first kind

$$
\begin{equation*}
A u(s)=\int_{a}^{b} P(s, t) u(s) d s=f(t), \quad c \leq t<d \tag{1}
\end{equation*}
$$

where operator A is injective, $P(s, t) \in C([a, b] \times[c, d)), \quad d-$ can be equal to $\infty, f(t) \in$ $L_{2}[c, d)$.

Suppose that at $f(t)=f_{0}(t)$ there is a unique exact solution $u_{0}(s)$ of the equation (1), which belongs to a set M_{r}, where

$$
\begin{equation*}
M_{r}=\left\{u(s): u(s), u^{\prime}(s) \in L_{2}[a, b], u(a)=u(b)=0, \quad \int_{a}^{b}\left[u^{\prime}(s)\right]^{2} d s \leq r^{2}\right\} \tag{2}
\end{equation*}
$$

and $u^{\prime}(s)$ is a generalized derivative.
Let the exact value of $f_{0}(t)$ be unknown. Instead of it we are given $f_{\delta}(t) \in$ $L_{2}[c, d)$ and $\delta>0$ such that

$$
\left\|f_{\delta}(t)-f_{0}(t)\right\|_{L_{2}}<\delta
$$

For given $f_{\delta}(t), \delta$ and M_{r}, it is necessary to determine an approximate solution $u_{\delta}(s)$ and estimate it's deviation from the exact solution $u_{0}(s)$ in a space metric $L_{2}[a, b]$.

Let us introduce an operator B which maps of the space $L_{2}[a, b]$ into $L_{2}[a, b]$, by a formula

$$
\begin{equation*}
u(s)=B v(s)=\int_{a}^{s} v(\xi) d \xi ; \quad v(s), B v(s) \in L_{2}[a, b] \tag{3}
\end{equation*}
$$

An operator C will be defined as

$$
\begin{equation*}
C v(s)=A B v(s) ; \quad v(s) \in L_{2}[a, b], C v(s) \in L_{2}[c, d) \tag{4}
\end{equation*}
$$

It follows from (3) and (4) that

$$
\begin{equation*}
C v(s)=\int_{a}^{b} K(s, t) v(s) d s \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
K(s, t)=-\int_{a}^{s} P(\xi, t) d \xi \tag{6}
\end{equation*}
$$

For solving the equation (1) numerically let us approximate the operator C by a finite-dimensional operator C_{n}.

To define the operator C_{n} let us divide the interval $[a, b]$ into n equal parts and introduce the functions $\bar{K}_{i}(t)$ and $K_{n}(s, t)$ by the formulas

$$
\begin{equation*}
\bar{K}_{i}(t)=K\left(\bar{s}_{i}, t\right), \tag{7}
\end{equation*}
$$

where

$$
\bar{s}_{i}=\frac{s_{i}+s_{i+1}}{2}, \quad s_{i+1}=a+\frac{(i+1)(b-a)}{n}, \quad s_{i}=a+\frac{i(b-a)}{n}, \quad i=0,1, \ldots, n-1,
$$

and

$$
\begin{equation*}
K_{n}(s, t)=\bar{K}_{i}(t) ; \quad s_{i} \leq s<s_{i+1}, \quad t \in[c, d), \quad i=0,1, \ldots, n-1 \tag{8}
\end{equation*}
$$

Applying (8) we can define the finite-dimensional operator C_{n} by a formula

$$
\begin{equation*}
C_{n} v(s)=\int_{a}^{b} K_{n}(s, t) v(s) d s ; \quad t \in[c, d) \tag{9}
\end{equation*}
$$

where C_{n} maps of the space $L_{2}[a, b]$ into $L_{2}[c, d)$.

Now let us estimate the value $\left\|C_{n}-C\right\|$. For this purpose, we introduce a function $N(t)$ by a formula

$$
\begin{equation*}
N(t)=\max _{a \leq s \leq b}|P(s, t)| ; \quad t \in[c, d) \tag{10}
\end{equation*}
$$

As $P(s, t) \in C([a, b] \times[c, d))$, then it follows from (10) that

$$
N(t) \in C[c, d)
$$

Suppose in addition that

$$
N(t) \in L_{2}[c, d)
$$

Using the function $N(t)$ defined in (10) we estimate the value of $\left\|C_{n}-C\right\|$.
Lemma 2.1. Let $h=\frac{b-a}{n}$, while the operators C and C_{n} are defined by the formulas (5) and (9). Then the following estimate is true $\left\|C_{n}-C\right\| \leq \sqrt{b-a} \cdot\|N(t)\|_{L_{2}} \cdot h$.

The proof is given in [4] p. 265, formula (1.17).
The value $\sqrt{b-a} \cdot\|N(t)\|_{L_{2}} \cdot h$ here in after is denoted as η_{n}.

3 Regularization method to the equation (1) solution

To solve the equation (1) we apply the finite-dimensional variant of the Tikhonov regularization method,

$$
\begin{equation*}
\inf \left\{\left\|C_{n} v(s)-f_{\delta}(t)\right\|^{2}+\alpha\|v(s)\|^{2} \quad: \quad v(s) \in X_{n}\right\}, \quad \alpha>0 \tag{11}
\end{equation*}
$$

where X_{n} is a subspace of the functions being constant in the intervals $\left[s_{i}, s_{i+1}\right), \quad i=$ $0,1, \ldots, n-1, X_{n} \subset L_{2}[a, b]$.

The existence and uniqueness of the solution $v_{\delta n}^{\alpha}(s)$ to the variational problem (11) follows from [5].

A value of the regularization parameter $\bar{\alpha}=\bar{\alpha}\left(C_{n}, f_{\delta}, \eta_{n}, \delta\right)$ of the problem (11) should be selected from the residual principle [6].

$$
\begin{equation*}
\left\|C_{n} v_{\delta h_{n}}^{\alpha}(s)-f_{\delta}(t)\right\|=r \eta_{n}+\delta \tag{12}
\end{equation*}
$$

It is known that if

$$
\begin{equation*}
\left\|f_{\delta}(t)\right\|>\delta+r \eta_{n} \tag{13}
\end{equation*}
$$

there exists the unique solution $\alpha(\delta, n)$ to the equation (12).
If the condition (13) is satisfied, the problem (11), (12) is equivalent to the problem

$$
\inf \left\{\|v(s)\|^{2} \quad: \quad v(s) \in L_{2}[a, b], \quad\left\|C_{n} v(s)-f_{\delta}(t)\right\| \leq r \eta_{n}+\delta\right\}
$$

(refer [7], theorem 1).

After denoting the solution $v_{\delta n}^{\alpha(\delta, n)}(s)$ of the problem (11), (12) by $v_{\delta n}(s)$, an approximate solution $u_{\delta n}(s)$ of the equation (1) takes the form

$$
u_{\delta n}(s)=B v_{\delta n}(s)
$$

To reduce the problem (11) to a system of the linear algebraic equations, let us introduce an orthonormal basis $\left\{\varphi_{i}(s)\right\}$ in the space X_{n} by a formula

$$
\varphi_{i}(s)=\left\{\begin{array}{l}
\sqrt{\frac{n}{b-a}} ; \quad s_{i} \leq s<s_{i+1} \\
0 ; \quad s \notin\left[s_{i}, s_{i+1}\right), \quad i=0,1, \ldots, n-1
\end{array}\right.
$$

Using the basis we define an isometric operator J_{x} which maps of R^{n} into X_{n}, by a formula

$$
J_{x}[\bar{x}](s)=\sum_{i=0}^{n-1} x_{i} \varphi_{i}(s), \quad \bar{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right),
$$

and reduce the problem (11) to the following one

$$
\begin{equation*}
\inf \left\{\left\|C_{n} J_{x}\left[J_{x}^{-1} v(s)\right]-f_{\delta}(t)\right\|^{2}+\alpha\left\|J_{x}^{-1}[v(s)]\right\|_{R^{n}}^{2} \quad: \quad J_{x}^{-1}[v(s)] \in R^{n}\right\} \tag{14}
\end{equation*}
$$

where J_{x}^{-1} is an operator inverse to J_{x}.
The problem (14) is equivalent to a system of the linear algebraic equations

$$
\begin{equation*}
h \sum_{i=0}^{n-1} b_{i j} v_{i}+\alpha v_{j}=q_{j}, \quad j=0,1, \ldots, n-1, \tag{15}
\end{equation*}
$$

where $b_{i j}=\int_{c}^{d} \bar{K}_{i}(t) \bar{K}_{j}(t) d t \quad$ and $\quad q_{j}=\sqrt{h} \int_{c}^{d} \bar{K}_{j}(t) f_{\delta}(t) d t$.
Theorem 3.1. Let $v_{\delta n}^{\alpha}(s)$ and $\left(v_{i}^{\alpha}\right)$ be the solutions of the problems (11) and (15), respectively. Then the solutions are connected by the relation

$$
\begin{equation*}
v_{\delta n}^{\alpha}(s)=\sum_{i=0}^{n-1} v_{i}^{\alpha} \varphi_{i}(s) \tag{16}
\end{equation*}
$$

The proof of the theorem is given in the theorem 2 in the paper [1].
Let us denote a solution of the system (15) by $\bar{v}^{\alpha}=\left(v_{0}^{\alpha}, v_{1}^{\alpha}, \ldots, v_{n-1}^{\alpha}\right)$. Then by using the formula (16) we write the solution of the problem (1) as $v_{\delta n}^{\alpha}(s)$.

To select a regularization parameter, we use the equation (12)

$$
\left\|C_{n} v_{\delta n}^{\alpha}(s)-f_{\delta}\right\|=r \eta_{n}+\delta
$$

Let us denote the solution of the equation (12) by $\alpha(\delta, n)$, and that of the problem (12), (15) by $\bar{v}^{\alpha(\delta, n)}$.

4 Error estimate of the equation (1) approximate solution $u_{\delta n}(s)$

To evaluate inaccuracy let us introduce a function

$$
\omega(\tau, r)=\sup \{\|u(s)\| \quad: \quad u(s)=B v(s),\|v(s)\| \leq r, \quad\|A u(s)\| \leq \tau\}, \quad \tau, r>0
$$

The theorem formulated in [8] implies
Theorem 4.1. Let $u_{\delta n}(s)$ be the approximate solution of the equation (1) while $u_{0}(s)$ is its exact solution. Then

$$
\left\|u_{\delta n}(s)-u_{0}(s)\right\| \leq 2 \omega\left(r \eta_{n}+\delta, r\right)
$$

5 A numerical solution to a problem of crystal energy spectrum determination by the heat capacity dependent on a temperature

A relation between the energy spectrum of Bose system and its heat capacity dependent on a temperature is described by an integral equation of the first kind

$$
\begin{equation*}
A u(s)=\int_{a}^{b} P(s, t) u(s) d s=\frac{f(t)}{t} ; \quad 0 \leq t<\infty, \quad b>a>0 . \tag{17}
\end{equation*}
$$

where $P(s, t)=\frac{s^{2}}{2 t^{3} \operatorname{sh}^{2}\left(\frac{s}{2 t}\right)}, \quad u(s) \in L_{2}[a, b], \quad \frac{f(t)}{t} \in L_{2}[0, \infty), u(s)-$ is a spectral density of a crystal, and $f(t)$ is its heat capacity dependent on a temperature [2].

Suppose that at $f(t)=f_{0}(t)$ there exists an exact solution $u_{0}(s)$ of the equation (17) which belongs to a set M_{r}, where

$$
M_{r}=\left\{u(s) \quad: \quad u(s), u^{\prime}(s) \in L_{2}[a, b], \quad u(a)=u(b)=0, \quad \int_{a}^{b}\left[u^{\prime}(s)\right]^{2} d s \leq r^{2}\right\}
$$

The uniqueness of the solution results from the research [9].
Let the exact value of $f_{0}(t)$ be unknown. Instead of it we are given $f_{\delta}(t)$ and $\delta>0$ such that $\frac{f_{\delta}(t)}{t} \in L_{2}[0, \infty),\left\|\frac{f_{\delta}(t)}{t}-\frac{f_{0}(t)}{t}\right\|_{L_{2}} \leq \delta$.

On account of $f_{\delta}(t), \delta$ and M_{r} we need to determine an approximate value of $u_{\delta}(s)$ and estimate its deviation from the exact solution $u_{0}(s)$ in a metric of space $L_{2}[a, b]$.

It should be noted that the uniqueness of the equation (17) solution is proved in [9].

Let us introduce an operator B which maps of the space $L_{2}[a, b]$ into $L_{2}[a, b]$ by a formula

$$
u(s)=B v(s)=\int_{a}^{s} v(\xi) d \xi ; \quad v(s), B v(s) \in L_{2}[a, b]
$$

and an operator C

$$
C v(s)=A B v(s) ; \quad v(s) \in L_{2}[a, b], \quad C v(s) \in L_{2}[0, \infty) .
$$

It follows from (3)-(6) that $C v(s)=\int_{a}^{b} K(s, t) v(s)$ where $K(s, t)=-\int_{a}^{s} P(\xi, t) d \xi$.
Now we use a construction described by the formulas (7)-(9) to replace the operator C with the finite-dimensional operator C_{n}.

Consequently,

$$
C_{n} v(s)=\int_{a}^{b} K_{n}(s, t) v(s) d s ; \quad t \in[0, \infty)
$$

where $K_{n}(s, t)$ is defined by a formula (8) while C_{n} maps of the space $L_{2}[a, b]$ into $L_{2}[0, \infty)$.

It follows from (10) and (17) that

$$
\begin{equation*}
N(t) \leq \frac{b^{2}}{2 t^{3} \operatorname{sh}^{2}\left(\frac{a}{2 t}\right)} \tag{18}
\end{equation*}
$$

As a result, we obtain from (18) that, as $t \rightarrow \infty$

$$
\begin{equation*}
\frac{b^{4}}{4 t^{6} \operatorname{sh}^{4}\left(\frac{a}{2 t}\right)} \cong\left(\frac{b}{\sqrt{2} a}\right)^{4} \frac{1}{t^{2}} \tag{19}
\end{equation*}
$$

while as $t \rightarrow 0$

$$
\begin{equation*}
\frac{b^{4}}{4 t^{6} \operatorname{sh}^{4}\left(\frac{a}{2 t}\right)} \rightarrow 0 \tag{20}
\end{equation*}
$$

It follows from (19) and (20) that

$$
\begin{equation*}
\frac{b^{2}}{2 t^{3} \operatorname{sh}^{2}\left(\frac{a}{2 t}\right)} \in L_{2}[0, \infty) \tag{21}
\end{equation*}
$$

while the lemma 2.1, (18), and (21) imply that

$$
\begin{equation*}
\left\|C_{n}-C\right\| \leq \sqrt{b-a} \cdot \frac{b^{2}}{2}\left[\int_{0}^{\infty} \frac{d t}{t^{6} \operatorname{sh}^{4}\left(\frac{a}{2 t}\right)}\right]^{1 / 2} \cdot h \tag{22}
\end{equation*}
$$

Let us denote the value $\sqrt{b-a} \cdot \frac{b^{2}}{2}\left[\int_{0}^{\infty} \frac{d t}{t^{6} \operatorname{sh}^{4}\left(\frac{a}{2 t}\right)}\right]^{1 / 2} \cdot h$ as η_{n}.

According to the paragraph 2, let us consider a variational problem

$$
\begin{equation*}
\inf \left\{\left\|C_{n} v(s)-\frac{f_{\delta}(t)}{t}\right\|^{2}+\alpha \int_{a}^{b}[v(s)]^{2} d s \quad: \quad v(s) \in L_{2}[a, b]\right\} \quad \alpha>0 \tag{23}
\end{equation*}
$$

The problem (23) has a unique solution $v_{\delta n}^{\alpha}(s)$. A value of the regularization parameter α in the solution $v_{\delta n}^{\alpha}(s)$ should be selected from the residual principle

$$
\left\|C_{n} v_{\delta n}^{\alpha}(s)-f_{\delta}(t)\right\|=\delta+r \eta_{n}
$$

Applying the method described in detail in the paragraph 2 to the problem, we reduce it to a system of the linear algebraic equations (15) where the regularization parameter is to be selected from the condition (12).

The lemma 5 in the paper [10] implies that, for the equation (22) on the set M_{r} defined by the formula (2), the following estimate is true for a module of continuity $\omega(\sigma, r)$

$$
\begin{equation*}
\omega(\sigma, r) \leq r\left[1+\frac{1}{\pi} \ln ^{2}\left(\frac{r}{4 \sigma}\right)\right]^{-1 / 2} \tag{24}
\end{equation*}
$$

We obtain the final estimate from the theorem 4.1 and the formula (24)

$$
\left\|u_{\delta n}(s)-u_{0}(s)\right\| \leq 2 r\left[1+\frac{1}{\pi} \ln ^{2}\left(\frac{r}{4\left(r \eta_{n}+\delta\right)}\right)\right]^{-1 / 2} .
$$

6 Conclusion

The paper improves the results of the paper [10] by means of the problem discretization, and reducing the regularization method to a system of linear algebraic equations as well as accounting for the discretization error of an integral equation when selecting a regularization parameter. It is shown that no significant transformation for the physical model of problem is required to apply the numerical methods. This allows considering a priori information effectively while solving the problem. It results from the calculations presented in [10], p. 134, that the method restores the solution closely.

References

[1] V.P. Tanana, A.I. Sidikova., An Error Estimate of a Regularizing Algorithm Based of the Generalized Residual Principle when Solving Integral Equations, Numerical Methods and Programming, Vol. 16 Issue 1 (2015), 1-9.
[2] I.M. Lifshits, On the determination of the energy spectrum on its specific heat Bose system, Journal of Experimental and Theoretical Physics, Vol. 26 Issue 5 (1956), 551 - 556.
[3] V.I. Iveronova, A.N. Tikhonov, P.N. Zaikin, A.P. Zvyagina, The determination of the phonon spectrum of crystals on the heat capacity, Physics of the Solid State, Vol. 8 Issue 12 (1966), 3459-3462.
[4] V.P. Tanana, A.I. Sidikova, On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind, Proceedings of the Institute of Mathematics and Mechanics, Vol. 22 Issue 1 (2016), 263-270.
[5] A.N. Tikhonov, Solution of Incorrectly Formulated Problems and the Regularization Method, Dokl. Akad. Nauk SSSR, Vol. 151 Issue 3 (1963), 501-505.
[6] V.A. Morozov, Regularization of Incorrectly Posed Problems and the Choice of Regularization Parameter, Comput. Math. and Math. Phys., Vol. 6 Issue 1 (1966), 170-175.
[7] V.V. Vasin, Relationship of several variational methods for the approximate solution of ill-posed problems, Mathematical notes of the Academy of Sciences of the USSR, Vol. 7 Issue 3 (1970), 265-272.
[8] V.K. Ivanov, V.V. Vasin,V.P. Tanana, Theory of linear ill-posed problems and its applications, Nauka, Moscow, 1978.
[9] V.P. Tanana, V.V. Boyarshinov, On the uniqueness of the solution of the inverse problem of determining the phonon spectra of the crystal, Deposited in VINITI, no. 892-V87, (1987).
[10] V.P. Tanana, A.A. Erygina, An error estimate for the regularization method of A.N. Tikhonov for solving an inverse problem of solid state physics, Journal of Applied and Industrial Mathematics, Vol. 17 Issue 2 (2014), 125-136.

Tanana V.P.,
South Ural State University, pr. Lenina, 83, 454080, Chelyabinsk, Russia, Email: tananavp@susu.ru, Sidikova A.I., South Ural State University, pr. Lenina, 83,
454080, Chelyabinsk, Russia,
Email: 7413604@mail.ru,
Ershova A.A.,
South Ural State University, pr. Lenina, 83, 454080, Chelyabinsk, Russia, Email: anya.erygina@ya.ru,

