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INTEGRALS OF SPHERICAL HARMONICS
WITH FOURIER EXPONENTS IN MULTIDIMENSIONS

Goncharov F.O.

Abstract We consider integrals of spherical harmonics with Fourier exponents on the sphere
Sn, n ≥ 1. Such transforms arise in the framework of the theory of weighted Radon transforms
and vector diffraction in electromagnetic fields theory. We give analytic formulas for these
integrals, which are exact up to multiplicative constants. These constants depend on choice of
basis on the sphere. In addition, we find these constants explicitly for the class of harmonics
arising in the framework of the theory of weighted Radon transforms. We also suggest formulas
for finding these constants for the general case.
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1 Introduction

We consider the integrals

Imk (p, ρ)
def
=

∫
Sn

Y m
k (θ)eiρ(p,θ) dθ, p ∈ Sn, ρ ≥ 0, n ≥ 1, (1)

where {Y m
k | k ∈ N ∪ {0}, m = 1, ak,n+1} is orthonormal basis of spherical harmonics

on Sn ⊂ Rn+1 (see e.g. [8], [10]), ak,n is defined as follows:

ak,n+1 =

(
n+ k

k

)
+

(
n+ k − 2

k − 2

)
, a0,n = 1, a1,n = n, (2)

where (
n

k

)
=

n!

k!(n− k!)
, n, k ∈ N ∪ {0}. (3)

We recall that spherical harmonics {Y m
k } are eigenfunctions of the spherical Lapla-

cian ∆Sn and the following identity holds (see e.g. [8], [10]):

∆SnY
m
k = −k(n+ k − 1)Y m

k , m = 1, ak,n+1, (4)

where ak,n is defined in (2).
Integrals Imk arise, in particular, in connection with iterative inversions of the

weighted Radon transforms in dimension d = n + 1 = 2; see [7]. In addition, an
exact (up to multiplicative coefficient depending on k) analytic formula for (1) was
given in [7] for d = n+ 1 = 2, k = 2j, j ∈ N ∪ {0}.
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We recall that weighted Radon transform operator RW is defined (in dimension
d = n+ 1) as follows (see e.g. [6], [7]):

RWf(s, θ)
def
=

∫
xθ=s

W (x, θ)f(x) dx, s ∈ R, θ ∈ Sn, (5)

where W is the weight function on Rn+1 × Sn, f is a test-function.
The present work is strongly motivated by the fact that integrals Imk also arise in the

theory of weighted Radon transforms defined by (5) for higher dimensions d = n+1 ≥ 3.
This issue will be presented in detail in the subsequent work [4].

On the other hand, in [9] integrals Imk were considered for the case of n = 2 in con-
nection with vector diffraction in electromagnetic theory and exact analytic formulas
were given for this case.

In addition, for the case of dimension n = 2 more general forms of integrals Imk
were considered in the recent work [1]. In particular, the results of [1] coincide with
the results of the present work for the case of dimension n = 2.

In the present work we prove that

Imk (p, ρ) = c(m, k, n)Y m
k (p)ρ(1−n)/2Jk+n−1

2
(ρ), (6)

where Jr(·) is the r-th Bessel function of the first kind, c(m, k, n) is a constant which
depends on indexes m, k of spherical harmonic Y m

k and on dimension n; see Theorem
1 in Section 2.

This result is new for the case of d = n+ 1 = 2 for odd k and for d = n+ 1 > 3 in
general.

In the framework of applications to the theory of weighted Radon transforms, in-
tegrals Imk arise for the case of even k = 2j, j ∈ N ∪ {0}; see formula (7) of [7] for
n = 1 and subsequent work [4] for n ≥ 2. For k = 2j we find explicitly the constants
c(m, 2j, n) arising in (6); see Theorem 2.1 in Section 2.

It is interesting to note that the constants c(m, 2j, n) are expressed via the eigen-
values of the Minkowski-Funk transform M on Sn, where operator M is defined as
follows (see e.g. [3], [5]):

M[f ](p) =

∫
Sn, (θp)=0

f(θ) dθ, p ∈ Sn, (7)

where f is an even test-function on Sn; see Section 2 for details .
In Section 3 we give proofs of Theorem 2.1.

2 Main results

Theorem 2.1. Let I ik(p, ρ) be defined by (1). Then:
(i) The following formulas hold:

Imk (p, ρ) = c(m, k, n)Y m
k (p)ρ(1−n)/2Jk+n−1

2
(ρ), (8)

Imk (p,−ρ) = (−1)kImk (p, ρ), (9)
p ∈ Sn, ρ ∈ R+ = [0,+∞),
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where Jr(ρ) is the standard r-th Bessel function of the first kind, c(m, k, n) depends
only on integers m, k, n for fixed orthonormal basis {Y m

k }.
(ii) In addition, for k = 2j, j ∈ N ∪ {0}, the following formulas hold:

c(m, 2j, n) =
2(n−1)/2πΓ

(
j + n

2

)
λj,n

Γ
(
j + 1

2

) , (10)

λj,n = 2(−1)j
[√

π
Γ(j + 1

2
)

Γ(j + 1)

]n−1
, (11)

where c(m, k, n) are the constants arising in (8), Γ(·) is the Gamma function, λj,n are
the eigenvalues of the Minkowski-Funk operatorM defined in (7).

In the case of n = 1, k = 2j formulas (8)-(9) arise in formula (7) of [7]. In the case
of n = 2 formulas (8)-(9) and constants c(m, k, n) for general k were given in formula
(1) of [9].

We didn’t success to find in literature the explicit values for the eigenvalues λj,n of
operatorM defined in (14) for n > 2.

In particular, formulas (8)-(11) are very essential for inversion of weighted Radon
transforms; see [7] for n = 1 and the subsequent work [4] for n ≥ 2.

3 Proofs

3.1 Proof of formula (8)

From the Funk-Hecke Theorem (see e.g. [8], Chapter 2, Theorem 2.39) it follows that:∫
Sn

Y m
k (θ)eiρ(pθ) dθ = Y m

k (p)cmk (ρ), m = 1, ak,n+1. (12)

Formula (8) follows from (12), the following differential equation:

1

ρn
d

dρ

(
ρn
dcmk
dρ

)
+

(
1− µk,n

ρ2

)
cmk = 0, cmk (0) = 0 for k ≥ 1, (13)

µk,n = k(n+ k − 1), (14)

where function cmk (ρ) arises in the right hand-side of (12), and from the fact that the
solution of equation (13) with indicated boundary condition is given by the formula:

ckm(ρ) = c(m, k, n)ρ(1−n)/2Jk+n−1
2

(ρ), (15)

where c(m, k, n) is some constant depending on integers m, k, n; Jr(ρ) is the r-th Bessel
function of the first kind (see e.g. [11]).

Formulas (12), (15) imply formula (8).
It remains to prove that formulas (13)-(15) hold. First, we prove that formulas

(13), (14) hold.
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We recall that Laplacian ∆ in Rn+1 in spherical coordinates is given by the formula:

∆u =
1

ρn

(
ρn

d

dρ
u

)
+

1

ρ2
∆Snu, ρ ∈ (0,+∞), (16)

where u is a test function.
From formulas (1), (4), (12), (16) it follows that

∆Imk (p, ρ) = Y m
k (p)

(
1

ρn
d

dρ

(
ρn
dcmk
dρ

)
− µk,nc

m
k

ρ2

)
, (17)

where µk,n is defined in (14).
On the other hand,

∆Imk (p, ρ) =

∫
Sn

Y m
k (θ)∆eiρ(pθ) dθ

= −
∫
Sn

Y m
k (θ) |θ|2 eiρ(pθ) dθ = −Imk (p, ρ), p ∈ Sn, ρ ≥ 0. (18)

Formulas (13), (14) follow from (1), (17), (18). In particular, the boundary condition
in (13) follows from orthogonality of {Y m

k } on Sn and the following formulas:

Imk (0, p) =

∫
Sn

Y m
k (θ) dθ =

{
0, k ≥ 1,

vol(Sn)c, k = 0
, (19)

Y 1
0 (p) = c 6= 0, p ∈ Sn, (20)

where Imk is defined in (1), vol(Sn) denotes the standard Euclidean volume of Sn.
Next, formula (15) is proved as follows.
We use the following notation for fixed k,m:

y(t) = cmk (ρ), t = ρ ≥ 0. (21)

Using differential equation (13) and the notations from (21) we obtain:

ty′′(t) + ny′(t) +
(
t− µk,n

t

)
y(t) = 0, y(0) = 0, for k ≥ 1. (22)

In order to solve (22) we make the following change of variables:

y(t) = t(1−n)/2Z(t), t ≥ 0. (23)

Formula (23) implies the following expressions for y′(t), y′′(t) arising in (22):

y′(t) =
1− n

2
t−(1+n)/2Z(t) + t(1−n)/2Z ′(t), (24)

y′′(t) =
(n2 − 1)

4
t−(1+n)/2

Z(t)

t
+ (1− n)t−(1+n)/2Z ′(t) + t(1−n)/2Z ′′(t), t ≥ 0, (25)
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where Z(t) is defined in (23).
Using formulas (22), (24), (25) we obtain:

tZ ′′(t) + Z ′(t) +

(
t−

(
k + n−1

2

)2
t

)
Z(t) = 0, t ≥ 0. (26)

Differential equation (26) for unknown function Z(t) is known as Bessel differential
equation of the first kind with parameter k + (n − 1)/2 ∈ R (see e.g. [11]). The
complete solution of (26) is given by the following formula:

Z(t) = C1Jk+n−1
2

(t) + C2Yk+n−1
2

(t), t ≥ 0, (27)

where Jr(t), Yr(t) are r-th Bessel functions of the first and second kind, respectively,
C1, C2 are some constants; see e.g. [11]. Boundary condition in (22) implies that

Z(t) = C1Jk+n−1
2

(t), t ≥ 0. (28)

Formulas (21), (23), (28) imply that (15) is the complete solution of (22).
Formula (8) is proved.

3.2 Proof of formula (9)

Formula (9) follows from definition (1) and the following property of the spherical
harmonic Y m

k :

Y m
k (−θ) = (−1)kY m

k (θ), θ ∈ Sn. (29)

Property (29) reflects the fact that Y m
k (θ) = Y m

k (θ1, . . . , θn+1) is a homogeneous poly-
nomial of degree k restricted to Sn.

Formula (9) in Theorem 2.1 is proved.

3.3 Proof of formulas (10), (11)

Formula (10) follows from orthonormality of {Y m
k } (in the sense of L2(Sn)), from for-

mulas (1), (8), (9), the following formula:

M[Y m
2k ] = λk,nY

m
2k (30)
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and from the following identities:

∫
Sn

Y m
2k (p) dp

+∞∫
−∞

Im2k(p, ρ) dρ = 2c(m, 2k, n)

∫
Sn

|Y m
2k (p)|2dp

+∞∫
0

J2k+n−1
2
ρ(1−n)/2dρ (31)

= 2c(m, 2k, n)

+∞∫
0

J2k+n−1
2
ρ(1−n)/2dρ

= c(m, 2k, n)
2(3−n)/2Γ(1

2
+ k)

Γ(k + n
2
)

,

∫
Sn

Y m
2k (p)

+∞∫
−∞

Im2k(p, ρ) dρ = 2π

∫
Sn

Y m
2k (p) dp

∫
Sn

Y m
2k (θ)δ(pθ) dθ (32)

= 2π

∫
Sn

Y m
2k (p)M[Y m

2k ](p) dp

= 2πλk,n

∫
Sn

|Y m
2k |2(p) dp = 2πλk,n, (33)

where c(m, 2k, n) arises in (8), δ = δ(s) is 1D Dirac delta function, Y m
k is the complex

conjugate of Y m
k , M[Y m

k ] is defined in (7), λk,n is given in (11), Γ(·) is the Gamma
function.

Formula (30) reflects the known property of the Funk-Minkowski transformM that
the eigenvalue λk,n of operatorM[·] defined in (7) corresponds to the eigensubspace of
harmonic polynomials of degree 2k on Rn+1 restricted to Sn (see e.g. [5], Chapter 6,
p. 24). Note that, in [5] it was proved that formula (30) holds also for all harmonic
polynomials in R3 (i.e. n = 2) restricted to S2, however these considerations admit a
straightforward generalization to the case of arbitrary dimension n ≥ 1.

Formulas (31), (32) imply formula (10).
Now, it remains to find the explicit value for λk,n in formula (30). We obtain it

according to [5] (Chapter 2, page 24), where the case of dimension n = 2 was considered.
In particular, formula (30) holds for any homogeneous harmonic polynomial P2k of

degree 2k in Rn+1, where P2k is restricted to the sphere Sn ⊂ Rn+1; see [5] (Chapter
2).

We consider the following harmonic polynomial in Rn+1:

P2k(x) = P2k(x1, . . . , xn+1) = (xn + ixn+1)
2k, x ∈ Rn+1. (34)

From formula (34), aforementioned results of [5] (Chapter 6) and their generalizations
to the case of arbitrary dimension n ≥ 1 it follows that P2k being restricted to sphere
Sn is an eigenfunction of operatorM which corresponds to the eigenvalue λk,n.
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We consider the spherical coordinates in Rn+1 given by the following formulas:

x1 = cos(θn),

x2 = sin(θn) cos(θn−1),

· · · (35)
xn = sin(θn) sin(θn−1) · · · sin(θ2) cos(φ),

xn+1 = sin(θn) sin(θn−1) · · · sin(θ2) sin(φ),

θn, θn−1, · · · , θ2 ∈ [0, π], φ ∈ [0, 2π).

Formulas (34), (35) imply that polynomial P2k being restricted to Sn may be rewritten
as follows:

P2k|Sn = P2k(θn, θn−1, . . . , θ1, φ) = ei2kφ
n∏
i=2

sin2k(θi), (36)

where (θn, . . . , θ1, φ) are the coordinates on Sn according to (35).
From formulas in (34), (35), (36) it follows that:

P2k|Sn = P2k(π/2, . . . , π/2, 0) = 1. (37)

From formulas (30), (37), (36) we obtain:

λk,n =M[P2k](π/2, . . . , π/2, 0) = 2(−1)k
n∏
i=2

π∫
0

sin2k(θi) dθi

= 2(−1)k
[√

π
Γ(k + 1

2
)

Γ(k + 1)

]n−1
, (38)

which implies (11).
Formulas (10), (11) are proved.
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Palaiseau, 91128, France,
Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, Moscow Region,
141700, Russian Federation,
Email: fedor.goncharov.ol@gmail.com,

Received 21.12.2016, Accepted 12.01.2017


