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Abstract A problem of constructing a stable approximate solution for a nonlinear irregular
operator equation is investigated. For approximating solutions of the equations regularized by
the Tikhonov-Lavrentiev methods, the Levenberg-Marquardt and Newton type processes are
used, and the linear convergence rate and the Fejér property are proved. An asymptotic stop-
ping rule of iterations is formulated that guarantees the regularizing properties of iterations
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1 Introduction

The inverse problem in the form of the operator equation is considered

A(u) = f, (1.1)

where A is a nonlinear differentiable operator acting on a pair of Hilbert spaces U, F.
Continuity of the operators A−1 and A′(u)−1 is not assumed, therefore, equation (1.1) is
an essentially ill-posed (irregular) problem. Discontinuity of the operator A′(u)−1 does
not allow us to use the traditional Newton, Gauss-Newton, or Levenberg-Marquardt
processes for approximating a solution of equation (1.1). So, in such a case, it is
necessary to pass either to regularized analogues of the mentioned methods on the
basis of the iterative regularization principle or to apply these iterative processes not
to (1.1), but to the Tikhonov regularized equation

A′(u)∗(A(u)− fδ) + α(u− u0) = 0 (1.2)

for an any differetiable operator A or to the Lavrentiev regularized equation

A(u) + α(u− u0)− fδ = 0 (1.3)

for a monotone operator A, where u0 is a trial solution (initial approximation), ||f −
fδ|| ≤ δ. Solvability of equations (1.2) and (1.3) is assumed. Certain sufficient
conditions for solvability of (1.2) and (1.3) are discussed in Remark 5.2
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For approximate solving the regularized equation (1.2), we propose the modified
Levenberg-Marquardt method (MLM)

uk+1 = uk − γ[A′(u0)∗A′(u0) + ᾱI]−1Lα(uk) ≡ T (uk), (1.4)

and, for solving the regularized equation (1.3), the following modified Newton method

uk+1 = uk − γ[A′(u0) + ᾱI]−1Mα(uk) ≡ T (uk), (1.5)

where

Lα(u) = (A′(u)∗(A(u)− fδ) + α(u− u0), Mα(u) = A(u) + α(u− u0)− fδ,

α, ᾱ are positive regularization parameters, ᾱ ≥ α. So, we have two-stage algorithm:
on the first stage the regularizing schemes (1.2) or (1.3) are used, and on the second
stage the iterative processes (1.4) or (1.5) are applied. Having convergence theorems or
error estimates for regularization methods (1.2), (1.3) and the iterative approximation
in the form (1.4), (1.5), we can construct a one-stage regularizing algorithm (RA) for
equation (1.1).

Let us present a brief survey on the Levenberg-Marquardt and the Newton type
methods. It is necessary to note that for solving equation (1.1) by the Levenberg–
Marquardt method (LM)

uk+1 = uk − [A′(uk)∗A′(uk) + αI]−1A′(uk)∗(A(uk)− fδ) (1.6)

one must impose rather heavy structural conditions on the operator A and on the choice
of the regularizing parameter [3, 6, 7, 9, 23]. In [6, 7] (see also [9]), it was suggested the
following rule for choosing the parameter in the method (1.6), namely, the parameter
α = αk would be such that the relation holds

||fδ − A(uk)− A′(uk)(uk+1(α)− uk)|| = q||fδ − A(uk)||, (1.7)

where 0 < q < 1. Under this, existence of a unique solution α = αk for equation (1.7)
is guaranteed if the following inequality holds:

||fδ − A(uk)− A′(uk)(z − uk)|| < q||fδ − A(uk)||,

where z is a solution for equation (1.1) of the minimal norm.
The strong convergence of method (1.6) to a solution of equation (1.1) was proved

under the condition that the operator A satisfies the property

||A(u)− A(ũ)− A′(u)(u− ũ)|| 6 C||A(u)− A(ũ)|| (1.8)

in some neighborhood Sr(u
0) = {u : ||u − u0|| 6 r} of a probe solution u0 [7, 9]. In

paper [23], two variants of the LM were considered. The first one has the form

uk+1 = uk − β[A′(uk)∗A′(uk) + αI]−1A′(uk)∗(A(uk)− f) ≡ T (uk), (1.9)
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i.e., in method (1.6), a positive parameter β is introduced. In the second variant (as
an analogy to the modified Newton method), the derivative in the inverse operator is
calculated at a fixed point u0, namely,

uk+1 = uk − β[A′(u0)∗A′(u0) + αI]−1A′(uk)∗(A(uk)− f) ≡ T0(uk). (1.10)

It was established that operators T and T 0 are pseudo-contracting if the local
condition

||A(u)− f ||2 6 κ〈B−1(u)S(u), u− z〉, (1.11)

is satisfied, where S(u) = A′(u)∗(A(u)−f), B−1(u) = (A′(u)∗A′(u)+αI)−1 for method
(1.9) and the condition

||A(u)− f ||2 6 κ〈S(u), u− z〉 (1.12)

for method (1.10) under β < β0(κ) in some neighborhood Oρ(z) of a solution for
equation (1.1). This property of operators T and T 0 implies a week convergence of
iterations to a solution of this equation for exact input data.

Thus, for the strong or weak convergence of the LM to a solution of equation (1.1),
rather heavy conditions (of the forms (1.8) or (1.11), or (1.12)) must be satisfied for
the operator A. By these reasons, the passage from equation (1.1) to the regularized
equation (1.2) is fruitful since the operator Lα, which is the gradient of the Tikhonov
functional

Φ(u) =
1

2
(||A(u)− fδ||2 + α||u− u∗||2),

has (under some conditions) the better structural properties than A and A′∗A. For
example, if relations (1.17) and (1.18) hold, then the operator Sα has the property of
strong monotonicity [10, 11], but, otherwise, for A an A′∗A this property does not hold.
It is interesting to note that for the linear operator A not only the regularized operator
but and the regularized solutions uα from (1.2) and (1.3) posses improved property
of approximation than the initial guess u0, as it follows from the next lemma.

Lemma 1.1. Let z be a solution of equation (1.2) and z 6= u0. Then for the exact
right-hand side f = fδ and for any α > 0, the strong inequality holds

||uα − z|| < ||u0 − z|| (1.13)

i.e., the regularized solution is closer to the solution of (1.1) than any initial guess.

Proof
For the Tikhonov regularization, we have the evident relation

||uα − z|| = (A∗A+ αI)−1(A∗f + αu0)− z = α(A∗A+ αI)−1(u0 − z). (1.14)

Define B = α(A∗A+ αI)−1 and show that for the operator B the inequality

||Bw||2 ≤ ||w||2 − ||w −Bw||2 (1.15)

is fulfilled for any w ∈ U. Inequality (1.15) is equivalent to the following one:

||Bw||2 ≤< w,Bw >,



Methods for solving nonlinear ill-posed problems 63

which is true because ||B|| ≤ 1 and ||Bw||2 ≤ ||B1/2||2||B1/2w||2 =< w,Bw > . As
w = u0 − z 6= 0, relations (1.14) and (1.15) imply (1.13) since

||uα − z||2 = ||B(u0 − z)||2 ≤ ||u0 − z||2 − ||u0 − z −B(u0 − z)||2 < ||u0 − z||2.

These properties allows us to provide the strong convergence of the iterative processes
for equation (1.2). Together with the Tikhonov regularization, this gives an opportu-
nity to build a regularizing algorithm for the initial problem (1.1), in particular, for
some classes of inverse problems in geophysics [22, 4, 23, 24]. It should be noted that
Lemma 1.1 is also valid for the Lavrentiev regularization (1.3).

In the author’s work [15], the iterative ML–M process is investigated in the form

uk+1
α = ukα − γ[A′(ukα)∗A′(ukα) + ᾱI]−1Lα(ukα) (1.16)

and its modified variant in the form (1.4) for approximation of the solution uα of the
regularized equation (1.2). It was proved there that under the following conditions on
the operator

||A′(u)|| 6 N1, ||A′(u)− A′(v)|| 6 N2||u− v||, (1.17)

γ 6 γ(α, ᾱ) and the sourcewise represented solution

z − u∗ = A′(z)∗v, ||v|| < 1/N2 (1.18)

for iterations ukα of processes (1.5), (1.16) the strong convergence to the solution uα of
equation (1.2) holds. Namely, the following theorems hold [15].

Theorem 1.1. Let conditions (1.17) and (1.18) be satisfied, and, moreover, δ 6
α/(12N2), ᾱ > 3N2

1 , α < (1−N2||v||)N2
1 , r = α/(12N1N2). Then under γ < α/(2ᾱ) for

any initial guess u0
α ∈ Sα(uα), the iterative process (1.16) converges to the regularized

solution uα and the strong Fejér property holds

||uk+1
α − uα||2 6 ||ukα − uα||2 − ν||uk+1

α − ukα||2. (1.19)

where ν = α/(2ᾱγ)− 1.

Theorem 1.2. Let conditions of Theorem 1.1 be satisfied. Then under γ < 2α/(3ᾱ)
for any initial guess u0

α ∈ Sr(uα), the iterative process (1.4) converges to the regularized
solution uα and the strong Fejér property holds under ν = 2α/(γ3ᾱ) − 1. Moreover,
under special dependence α(δ) beginning from some k > k0, all iteration points ukα
belong to some neighborhood Or(z) of a radius r = cδ1/2 of the solution z.

Properties of iteration of processes (1.4) and (1.16) established in Theorems 1.1
and 1.2 are consequences of the strong Fejér property of the step operators in these
methods. Note that (see [20, 21]) the class of operators with such a property is closure
with respect to operations of multiplication and convex summation. This allows one:
1) to build new classes of hybrid iterative processes for solving the initial problem
(1.1);
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2) to construct the step operator of the main process in the form of superposition of
operators responsible for approximation of solutions of some sub-problems that compile
the initial problem;

3) in an economical way, to take into account additional a priori constraints on the
desired solution in the resolving iterative process.

In Section 2 of this paper, it is proved that if the premises of Theorem 1.2 are
satisfied, then for process (1.4) not only the strong Fejér property is valid but, also,
an error estimate holds.

As it is known, for approximate solving equation (1.1) with the monotone operator
the following iteratively regularized Newton method

uk+1 = uk − (A′(uk) + αkI)−1(A(uk) + αk(u
k − u0)− fδ) (1.20)

was proposed and justified [1, 2]. In the author’s work [17], it was shown for process
(1.5) that if conditions (1.17) are equitable and A′(0) is a self-adjoint non-negative
operator, then for an appropriate value of parameter γ, the strong Fejér property
(1.19) and the strong convergence of iterations hold. In Section 3, it is proved that for
the same conditions process (1.5) has the linear rate of the convergence. Section 4 is
devoted to the error estimate for the two-stage methods (1.2)–(1.4) and (1.3)–(1.5).

It should be noted, that along with MLM (1.4) and MNM (1.5) one can use the
method of gradient type. In particular, for approximation of the solution of equation
(1.2), the regularized steepest descent method [16]

uk+1 = uk − γ ||Lα(uk)||2

||A′(uk)Lα(uk)|2 + α||Lα(uk)||2
Lα(uk) (1.21)

or its a modified version [18] (when the operator A′(uk) is replaced by A(u0)) can be
applied. For approximate solving equation (1.3) (as α = ε) with a monotone operator,
the nonlinear variant of α-processes [19] in the form

uk+1 = uk − γ < (A′(u0) + εI)αMε(u
k),Mε(u

k) >

< (A′(u0) + εI)α+1Mε(uk),Mε(uk) >
Mε(u

k) (1.22)

can be used. If in method (1.21) α = 0, we come to the steepest descent method
investigated in work [13]. If in process (1.22) A is a linear operator and ε = 0,
we obtain the classical α-processes [12] for solving well posed linear equations. The
concluding Section 5 contains a brief survey concerning the theorems of the converges
and error estimates for processes (1.21), (1.22).

2 Modified Levenberg-Marquardt method

Theorem 2.1. Let conditions (1.17), (1.18) be satisfied and equation (1.2) have a
solution uα. Let for the parameters α, ᾱ, N1, N2, r and the initial guess u0 the following
relations be fulfilled:

δ ≤ α/12N2, r = α/(12N1N2), ||v|| ≥ 1/24N2, ᾱ ≥ 3N2
1 .
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Then for any initial guess u0 ∈ Sr(uα) :
1) under the condition γ < 4α/27ᾱ, the iterations uk generated by process (1.4) con-
verge to the regularized solution uα and for the iterations the strong Fejér property
(1.19) holds;
2) under γ < 2α/27ᾱ the following error estimate is valid:

||uk − uα|| ≤ qkr, q =

√
1− α2

81ᾱ2.
(2.1)

Proof
Define

B(u0) = A′(uo)∗A′(u0) + αI,

F0(u) = B−1(u0)[A′(u)∗(A(u)− fδ) + α(u− u0)].

First, let us prove certain properties of the operator F0(u) for u from the ball Sr(uα),
using a technique from [15]. We have the following relations:

< F0(u), u− uα >=< F0(u)− F0(uα) >

= α < B−1(u0)(u− uα), u− uα >
+ < B−1(u0)[A′(u)∗(A(u)− fδ)− A′(uα)∗(A(uα)− fδ), u− uα >

= α < B−1(u0)(u− uα), u− uα >
+B−1(u0)[A′(u)∗(A(u)− A(uα))], u− uα >

+ < B−1(u0)(A′(u)∗ − A′(uα)∗)(A(uα)− fδ), u− uα > .

Now estimate each term below. From spectral decomposition of a self-adjoint op-
erator it follows

α < B−1(u0)(u− uα), u− uα ≥ α/(N2
1 + ᾱ). (2.2)

Using the Lagrange formula for operators, we obtain

< B−1(u0)[A′(u)∗(A(u)− A(uα))], u− uα >
=< B−1(u)(B(u0)−B(u))B−1(u0)A′(u)∗(A(u)− A(uα), u− uα >

+ < B−1(u)A′(u)∗
∫ 1

0
[A′(uα + t(u− uα))(u− uα)− A′(u0)(u− u)] dt, u− uα >

+ < B1(u)A′(u)∗A′(u)(u− uα), u− uα >
≥ −[

2N3
1N2||u−u0||

ᾱ2 + N1N2||u−uα||
ᾱ

]||u− uα||2. (2.3)

As it is known [5], condition (1.18) implies the following estimates for the solution uα
of equation (1.2):

||A(uα)− fδ|| ≤ δ + 2α||v||,

therefore,

< B−1(u0)(A′(u)∗ − A′(uα)∗)(A(uα)− fδ), u− u >

≥ −N2(δ + 2α||u− uα||2)

ᾱ
. (2.4)
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Combining (2.2)–(2.4), taking into account the inequality ||u−u0|| ≤ ||u−uα||+ ||uα−
u0|| ≤ 2r and the conditions on the parameters, we arrive to the final estimate

< F0(u), u− uα >≥
α

6ᾱ
||u− uα||2. (2.5)

Besides, the evident inequalities hold

||B−1(u0)Lα|| = ||B−1(u0)Lα(u)−B−1(0)Lα(uα)||
≤ ||B−1(u0)(u− uα)||+ ||B−1(u0)A′(u)∗(A(u)− A(uα))||

+||(A′(u)∗ − A′(uα))(A(uα)− fδ)||
≤ [α

ᾱ
+

N2
1

ᾱ
+ N2(δ+2α)||v||

ᾱ
]||u− uα|| ≤ 3

2
||u− uα||. (2.6)

Joining estimates (2.5)–(2.6), we obtain the relation

||F0(u)||2 ≤ 27ᾱ

2α
< F0(u), u− uα > . (2.7)

The strong Fejér property for an operator means that the inequality

||T (u)− uα||2 ≤ ||u− uα||2 − ν||u− T (u)||2 (2.8)

is fulfilled for certain ν and Fix(T ) = {uα}. Relation (2.8) for the step operator T of
process (1.4) is equivalent to the following one:

−2/(1 + ν)γ) < u− uα, F0(u) > +||F0(u)||2 ≤ 0. (2.9)

Comparing (2.7)–(2.9), we come to the conclusion that for γ < 4α/27ᾱ relation (2.8)
is true for ν = 4/27γ − 1. Substituting u = uk, into (2.8), we obtain the inequality of
the form (1.19).

From (2.5) and (2.7), we have have the following relations

||uk+1 − uα||2 = ||uk − uα − γF0(uk)||2

= ||uk − uα||2 − 2γ < F0(uk), uk − uα > +γ2||F0(uk)||2

≤ (1− 2γ
α

6ᾱ
+ γ2 9

4
)||uk − uα||2

The condition
φ(γ) = (1− 2γ

α

6ᾱ
+ γ2 9

4
) < 1

implies the inequality γ < 4α/27ᾱ that guarantees the convergence of process (1.4).
The minimum condition of the function φ(γ) gives the value γopt = 2α/27ᾱ, for which
(2.1) is fulfilled.

Assume that there is a priori information that uα belongs to Q, where Q is a convex
closed subset of a Hilbert space. Let PQ be a strong Fejér mapping with a constant ν1

and the fixed point Fix(PQ) = Q. Form the iterative process

uk+1 = PQ(T (uk)), u0 ∈ Sr(uα) ∩Q, (2.10)
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where T is the step operator in method (1.4).
Theorem 2.2. Let the conditions of theorem 2.1 be fulfilled, but inequalities (1.17) be
valid only for u, v ∈ Q. Then the sequence {uk} generated by process (1.16) strongly
converges to uα, i.e.,

lim
k→∞
||uk − uα|| = 0 . (2.11)

Proof
Taking into account the Fejér property of mappings, we have the following relations:

||PQ(T (u))− uα||2 ≤ ||T (u)− uα||2 − ν1||T (u)− PQ(T (u))||2

≤ ||u− uα||2 − ν||u− T (u)||2 − ν1||T (u)− PQ(T (u))||2.

Substituting u = uk in the last relation, we have

−||uk+1 − uα||2 ≤ ||uk − uα||2 − ν||uk − T (uk)||2

ν1||T (uk)− PQ(T (uk))||2.

It implies boundedness of the sequence {uk} and the relation

lim
k→∞
||uk − T (uk)|| = γ||F0(uk)|| = 0. (2.12)

The convergence of iteration (2.11) follows from (2.5) and (2.12).
Remark 2.1. Instead of conditions (1.17), where u ∈ Sr(uα), it is sufficient to require
only the second inequality. Actually, from the following inequalities

||A′(u)− A′(u0)|| ≤ N2||u− u0||, ||u− u0|| ≤ ||u− uα||+ ||uα − u0||,

we obtain
||A′(u)|| ≤ |||A′(u0)||+ 2N2r = N1.

3 Modified Newton method

Prove that the MNM has the linear rate of the convergence.

Theorem 3.1. Let A′(u0) be a non-negatively defined self-adjoint operator and con-
ditions (1.17) be fulfilled. Let for the parameters the following conditions be valid:

||u0 − uα|| ≤ r, 0 < α ≤ ᾱ, r = α/6N2, ᾱ ≥ 3N1. (3.1)

Then:
1) for γ < αᾱ/(α + N1)2 process (1.5) converges strongly to the solution uα and for
iterations the strong Fejér property (1.19) is true;
2) for γopt = αᾱ/2(α +N1)2 the following error estimate is valid:

||uk − uα|| ≤ qkr, q =

√
1− α2

4(α +N1)2.
(3.2)



68 Vasin V.V.

Proof
Introduce the notations

B0 = (A′(u0) + ᾱI), F (u) = B−1
0 (A(u) + α(u− u0)− fδ).

Under conditions (3.1) on the parameters, we have the following estimate:

< F (u), u− uα >=< F (u)− F (uα), u− uα >
= α < B−1

0 (u− uα), u− uα > + < B−1
0 (A(u)− A(uα), u− uα >

= α < B−1
0 (u− uα), u− uα >

+ < B−1
0

∫ 1

0
A′(uα + t(u− uα))(u− uα)dt, u− uα >

= α < B−1
0 A′(u0)(u− uα), u− uα > + <

∫ 1

0
[A′(uα + t(u− uα))

−A′(u0)](u− uα)dt, u− uα > +α < B−1
0 (u− uα), u− uα >

≥ α
ᾱ+N1

||u− uα||2 − N2

2ᾱ
(||u− uα||+ 2||u0 − uα||)||u− uα||2

≥ α
2ᾱ
||u− uα||2. (3.3)

Taking into account the evident estimate

||F (u)|| = ||B−1
0 [(A(u) + α(u− u0)− fδ)− (A(uα) + α(uα − u0)− fδ)]||

≤ α||B−1
0 (u− uα)||+ ||B−1

0 (A(u)− A(uα))|| ≤ (α+N1)
ᾱ
||u− uα|| (3.4)

and (3.3), we come to the relation

||F (u)||2 ≤ 2(α +N1)2/(αᾱ) < F (u), u− uα > . (3.5)

The strong Fejér property of the step operator of method (1.5) means that for
certain ν > 0 the following inequality is valid:

||F (u)||2 ≤ 2

γ(1 + ν)
< F (u), u− uα > . (3.6)

From (3.5) and (3.6) it follows that this property holds for γ < αᾱ/(α + N1)2.
Combining (3.3) and (3.4), we find that

||uk+1 − uα||2 ≤ (1− 2γ
α

2ᾱ
+ γ2 (α +N1)2

ᾱ2
)||u− uα||2.

If for the function ψ(γ) = 1 − 2γ α
2ᾱ

+ γ2 (α+N1)2

ᾱ2 the relation ψ(γ) < 1 is true, then
we have γ < αᾱ/(α + N1)2, for which the convergence of iterations to uα holds. The
minimal value of this function is attained for γopt = αᾱ/2(α+N1)2 that implies estimate
(3.2).

4 Error estimate of the two-stage methods

To estimate the error of the two-stage method consisting of the Tikhonov regulariza-
tion (1.2) and MLM (1.4), we should to have an error estimate for the solution uα of
equation (1.2). For this, let us mention one assertion from book [5]
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Theorem 4.1. Let conditions (1.18) be fulfilled. Then for the solution uα of equation
(1.2) the following relations are equitable

||A(uα)− fδ|| ≤ δ + 2α||v||, ||uα − z|| ≤
δ + α||v||√
α(1−N2||v||)

. (4.1)

Put α(δ) = δ/||v||, then from (4.1) we have

||uα(δ) − z|| ≤M
√
δ, M = 2

√
||v||/

√
1−N2||v||. (4.2)

Prove that estimate (4.2) is order optimal. Actually, for a linear operator A on the
class of correctness z − u0 ∈ MR = BSR(0), the linear optimal method Ropt is below
estimated by the module of continuity ω(δ, R) of the inverse operator A−1 (see [8],
Lemma 4.2.3)

ω(δ, R) ≤ sup{||Ropt(fδ)− z|| : ||A(z)− fδ|| ≤ δ, z − u0 ∈MR}. (4.3)

Here, B is a linear bounded operator and the function ω(δ, R) is calculated by the
formula (see [8], theorem 4.9.1)

ω(τ, R) = R
√
g(τ 2/R2), (4.4)

where B1 = g(C1), B1 = B∗B, C1 = C∗C, C = AB. If B = A∗, R = ||v|| (see (1.18)),
then B1 = AA∗, C1 = (AA∗)2, therefore, ω(τ, ||v||) =

√
τ ||v||. On the other hand,

on the class MR and for α(δ) = δ/||v||, the Tikhonov regularization method has the
following upper bound (see [8]):

||uα(δ) − z|| ≤ C(||v||, ||A||)ω(δ, ||v||). (4.5)

For (4.3)–(4.5) it follows that estimate (4.2) is order optimal for the linear operator
A. It means that for the nonlinear operator A this estimate is order optimal, too.

Now let us address to the two-stage algorithm (1.2), (1.4). From (2.1), (4.2) we
have the following inequalities:

||uk − z|| ≤ ||uk − uα(δ)||+ ||uα(δ) − z|| ≤ qkr +M
√
δ. (4.6)

Equating the terms in in the right-hand side of relations (4.6), we obtain the number
of iterations k(δ) = ln(M

√
δ/r)/lnq, for which from (4.6) the order optimal estimate

of error holds
||uk(δ − z|| ≤ 2M

√
δ. (4.7)

To obtain the error estimate of the two-stage algorithm (1.3), (1.5), we use the
result of work [14], according to which, if the solution of (1.1) is source representable
in the form

z − u0 = A′(z)v

and for the derivative of the monotone operator A the Lipschitz condition with constant
N2 holds, then

||uα − z|| ≤
δ

α
+ k0α, k0 = (1 +

N2

2
||v||)||v||. (4.8)
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Minimizing the right-hand side of inequality (4.8) on the parameter α, we find α =√
δ/k0 and the estimate

||uα(δ) − z|| ≤ 2
√
δk0. (4.9)

For the linear self-adjoint non-negatively defined operator A, estimate (4.9) is order
optimal (see [8], Corollary 4.7.2, p. 173), hence, for the nonlinear monotone operator
A this property is valid, too.

Combining (3.2) with (4.9) yields the inequalities

||uk − z|| ≤ ||uk − uα(δ)||+ ||uα(δ) − z|| ≤ rqk(δ) + 2
√
δk0. (4.10)

Equating the terms on the right-hand side of (4.10), we find the iteration number and
the order-optimal estimate

k(δ) = [ln(
2

r

√
k0δ)/lnq(δ)], ||uk − z|| ≤ 4

√
δk0.

5 Gradient type methods

The regularized version of the steepest method is constructed by the following way:

uk+1 = uk − β(A′(u)∗(A(u)− fδ) + α(u− u0). (5.1)

Linearizing the operator A at the point uk

A′(uk)u = G, G = f − A(uk) + A′(uk)uk,

we arrive to the linear equation

A(u) ' A(uk) + A′(uk)(u− uk).

The value of the parameter β in (5.1) is found from the minimum condition of the
regularized discrepancy

min
β
{||A′(uk)(uk − βLα(uk))−G||2 + α||uk − βL(u

k)− u0||2}.

Using the necessary condition of the extremum, we obtain the value of the sought for
parameter β = β(uk)

β(uk) =
||Lα(uk)||2

||A′(uk)Lα(uk)|2 + α||Lα(uk)||2
.

Theorem 5.1. Let conditions (1.17), (1.18) be fulfilled and let for the parameters
the following conditions be valid:

δ < α/6N2, ||v|| ≤ 1/12N2, r = α/(12N1N2).

Then for any initial guess u0 ∈ Sr(uα) and γ < α2/M2, M = N2
1 + (4/3)α process

(1.21) converges strongly to the solution uα of equation (1.2) and the strong Fejér
condition (1.19) holds.
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Proof is given in [16].
For solving equation (1.3) one can apply process (1.22).

Theorem 5.2. Let A be a monotone operator and A′(u0) be a self-adjoint operator
such that

||A′(u0)|| ≤ N0, ||A(u)− A(v)|| ≤ N ||u− v||, u0 ∈ Sr(uα).

Then:
1) for γ < 2ε3/(N0 + ε)(N + ε)2 the iterations generated by process (1.22) converge
strongly to the solution of equation (1.3) as α = ε;
2) for γ < ε3/(N0 + ε)(N + ε)2 the following estimate is valid:

||uk − uε|| ≤ qk||u0 − uε||, q(ε) =

√
1− ε4

(N0 + ε)2(N + ε)2
.

This theorem was announced in work [19].
Remark 5.1. Using technique from the previous sections, it is possible to obtain an
error estimate for the two-stage algorithms (1.2), (1.21) and (1.3), (1.22).
Remark 5.2. In all theorems of Sections 1-5 the existence of a solution for equations
(1.2), (1.3) is assumed . There are certain sufficient conditions, under which solvability
holds.
1. If a nonlinear differentiable operator A is (weakly) closed, then equation (1.2) has
a solution possible non-unique (see [8], theorem 3.3.1).
2. If an operator A is monotone and satisfies the Lipshitz condition, then equation (1.3)
has the unique solution because the operator A(u) +α(u− u0) is uniformly monotone.
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