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Abstract Inverse problems of molecular force field calculation arising as a result of data
processing in vibrational spectroscopy belong to the class of nonlinear ill-posed problems. In
this paper we discuss the main mathematical results obtained within the theory of regular-
ization for solving these problems. Different algorithms on the basis of regularizing methods
were proposed for solving nonlinear ill-posed problems of molecular force field calculations
and implemented in the software package SPECTRUM.
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1 Introduction

We consider the inverse problems of vibrational spectroscopy related to calculations of
the molecular force field parameters on the basis of experimental data (obtained from
analysis of the vibrational, infrared and Raman, spectra). These problems lead to an
operator equation of the standard form

A z = u (1)

where z ∈ Z is the set of properties of the object to be determined, u ∈ U is
the set of experimental data, Z and U are certain spaces (we assume that they are
normed), and A is an operator, determined by the choice of the mathematical model
of the phenomenon. Problems of the form of (1) are called inverse problems and are
often ill-posed. A well-posed problem, as defined by Hadamard [1] should have the
next properties:

1) equation (1) is solvable for any u ∈ U ;
2) the solution is unique;
3) the solution is stable, i.e., small perturbations of u result in small perturbations

of z.
If any of the conditions 1 - 3 is not satisfied, the problem is called ill-posed. In

this case the classic methods are not suitable for solving (1) because errors of the
experimental data (e.g. example, small changes in the data) may yield too large or
arbitrary large perturbations in the solution. The goal of this review is to describe
the stable methods of solving inverse problems in vibrational spectroscopy developed
in our group. From the viewpoint of analyzing experimental data (obtained by means
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of infrared and Raman spectroscopy) a number of inverse problems arise. One of the
most important is the so-called inverse vibrational problem of determining parameters
of the molecular force field from given experimental data (vibrational frequencies, iso-
tope frequency shifts, Coriolis constants, centrifugal distortion constants, etc.). The
accumulation of data on molecular constants helps us to predict spectra and other
properties of compounds not yet investigated, especially, in the last years for bulky
molecular systems including biological molecules and assists the development of ad-
vances physical models in a theory of molecular structure. The molecular force field
(the second derivatives of potential energy with respect to the nucleus coordinates)
plays the key role in determining the properties of a molecule, in particular, its vi-
brational spectrum. Many approximations have been proposed for the calculation of
a complete quadratic force field and have realized as computational programs used in
practice [2-9]. Usually, the ill-posed character of inverse vibrational problems has led
to some degree of subjectivity, related basically to constraints imposed on the solution
to ensure physically meaningful results. In this way various models of the molecular
force fields have been proposed and a great number of force field matrices have been
calculated for various series of compounds. All these matrices were chosen to satisfy
either experimental data or a priori known, but not explicitly formulated, criteria of the
physically meaningful solutions. As a result, a situation existed (in particular, for com-
plicated polyatomic molecules) when various so-called spontaneous methods for solving
inverse problems lead to inconsistent force fields due to different criteria for the phys-
ical feasibility of solutions used by various investigators, and to the instability (with
respect to small perturbations in the input information) of numerical methods used to
solve the inverse problem. The investigations of the correctness of inverse problems of
vibrational spectroscopy have been started in Lomonosov Moscow State University in
early of 1980s [10]. In our publications [11 - 25] we have made an attempt to formulate
and formalize all possible obvious (and not so obvious) model assumptions concerning
the character of force fields which are widely used in vibrational spectroscopy and can
be applied in empirical calculations of molecular force fields. On the basis of this for-
malization in the framework of Tikhonov’s regularization theory we have constructed
a principle for choosing a unique solution from the set of solutions. We have formu-
lated such a principle in terms of closeness of the solution to the given matrix of force
constants which satisfies all a priori assumptions concerning the model characteristics
of the solution. A further development of investigations have been stimulated by the
tremendous development of quantum mechanical calculations and their applications in
a practical chemistry accompanying by an appearance of new very effective approaches
of computational chemistry [26-33]. It was very natural approach to include the results
of quantum mechanical calculations in our algorithms of solving inverse vibrational
problems [34] and related fields of structural chemistry and to join the modern stable
numerical methods with modern approaches of theoretical chemistry. In this paper we
present our results on construction of stable numerical methods based on Tikhonov’s
regularization method for computing the force fields of polyatomic molecules on a base
of experimental data and results of quantum chemical calculations and provide some
numerical illustrations with real data.
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2 Experimental sources of information and molecular force fields

Vibrational spectrum of a molecule appears is a result of change of the vibrational
component of molecular total energy. This change arises due to interaction of infrared
electromagnetic radiation with the substance, and in general vibrational spectrum is a
complicated function of molecular geometry, nuclei masses and electron density distri-
butions. Vibrational spectrum is a unique physical property, very important source of
knowledge on molecular structure and can be used as an important tool for molecular
identification. The positions and intensities of infrared (IR) bands and Raman lines are
considered as indicators of the presence of specific functional groups in the molecule
[6]. Important fields of vibrational spectroscopy applications are related to the iden-
tification of reactive intermediates, species in interstellar space, etc. Two approaches,
classical and quantum mechanics, can be used for the consideration of vibrational
spectra. In principle, one can describe a molecule as a quantum system but in certain
cases consider the molecular properties within the classical model. To solve vibrational
problem one can use approximations of classical mechanics. But e.g. the intensity of
vibrational bands, appearance of overtones or combined bands can be appropriately
explained only by quantum mechanics. The most important fact is that within the
harmonic approximation both classical and quantum mechanical approaches result in
the same equation of molecular vibrations. Theoretical vibrational frequencies are cal-
culated with a help of so-called force constants (second derivatives of the molecular
potential energy in respect to atomic displacements), either by direct diagonalization
of the (mass-weighted) Cartesian force constant matrix or force constant matrix in
some generalized coordinate system. The idea of the force field arises from the attempt
to consider a molecule as a mechanical system of nuclei while all the interactions due
to the electrons are included in an effective potential function U (q1, q2, ..., qn) where
{q1, q2, ..., qn} denote n = 3N -6 generalized coordinates describing nuclei positions of N
atomic molecule. Together with the nuclear masses, this function determines the most
important properties of a molecule. It is important that the equilibrium configuration
of the molecule should satisfy to the relation

∂U
∂q

= 0,

and if we define coordinates as (q1 = q2 = ... = qn = 0) in the equilibrium configu-
ration, the potential function can be performed as the series:

U (q1, ..., qn) = U0 +
1

2

n∑
i,j=1

fijqiqj + O
(
‖q‖3

)
(2)

where U0 is a certain constant, and parameters fij (the so-called force constants)
fij = ∂2U

∂qi∂q j
, i, j = 1, ..., n in the point of equilibrium constitute a positive definite

matrix F which determines all molecular characteristics related to small vibrations.
Mathematically, the concept of the force field can be obtained through the adiabatic
theory of perturbations with the use of a small parameter related to the ratio of electron
mass to the mass of nuclei. It can be shown that in a certain approximation the nuclei
may be treated as particles moving in the force field determined by the potential energy
function (2).
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The main purposes of using a molecular force field can be determined as: (a)
checking validity of various model assumptions commonly used by spectroscopists for
approximation of the potential function; (b) predicting the vibrational properties of
certain molecules (e.g. not yet observed) on a base of fundamental properties of the
force field such as its isotopic invariance and the approximate transferability of force
constants in a series of related compounds.

The measured infrared and Raman spectral frequencies ωi are the main type of
experimental data on molecular vibrations. They are connected with the matrix of
force constants F by the eigenvalue equation

GFL = LΛ, (3)
where Λ =diag {ω2

1, ..., ω2
n} is a diagonal matrix consisting of the squares of

the molecular normal vibrational frequencies, G is the kinetic energy matrix in the
momentum representation which depends only on nuclear masses and the equilibrium
configuration (assumed to be known within specified limits of error). The eigenvec-
tors matrix L characterizes the relative amplitudes of vibrations in terms of classical
mechanics (the form of each normal vibration).

While (3) is the main source of data determining the force constants, it is evi-
dent that (except for diatomic molecules) the n(n+1)/2 parameters of F cannot be
determined from n frequencies ω1, ..., ωn. We need to use certain model assumptions
concerning the structure of the matrix F and additional experimental data, e.g. fre-
quencies of molecular isotopomers. Within the approximations considered, the force
field of a molecule is independent of the nuclear masses, and hence in a case of m
molecular isotopic species, instead of (3), we have the system

(GiF )Li = LiΛi (4)

where i = 1,2, ..., m is a number of molecule isotopomers. Usually, introduction of
the additional data of isotopomers leads to a limited number of independent equations
in system (4) thus leaving the inverse problem underdetermined. Important additional
information on the molecular force field is provided by Coriolis constants ζ which char-
acterize the vibrational-rotational interaction in the molecule possessed high symmetry.
They are connected with matrix F in terms of the eigenvectors L of the problem (3):

ζ =
1

M2
L∗AMA∗L (5)

where ζ is a matrix with vector elements consisting of the Coriolis constants, M is
a diagonal matrix consisting of the nuclear masses, M is the sum of nuclear masses
of the molecule, and A is a matrix with transpose A* connecting the Cartesian
displacements of atoms with coordinates q, which can be found from the equilibrium
configuration of the molecule. In a similar manner we can write the dependencies of
other measured values on the matrix F, such as the mean-square amplitudes of the
vibrations (determined from gas-phase electron diffraction) which may be calculated
from the eigenvalues and eigenvectors of (3). Those additional experimental quantities
(frequencies of isotopomers, Coriolis constants, mean-square amplitudes) while not so
easily obtainable, are particularly important because these data do not depend on
additional unknown parameters of any kind.
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3 Quantum mechanical calculations of force fields

Methods of theoretical chemistry based on the Schrцdinger’s equation allow us, at
least in principle, to calculate all properties of a molecular system without using ex-
perimental data. Such methods are called ab initio (from the beginning or from first
principles), they are based entirely on quantum mechanics and fundamental physical
constants. The information necessary for such calculations includes initial geometry
of a molecule (positions for the nuclei) and atomic masses, the electronic wave func-
tions are described by a set of mathematical functions. Regretfully, to make such
computations technically possible one needs to use very restrictive assumptions. These
restrictions as well as an increasing number of atoms in a molecule (and, correspond-
ingly, of the number of vibrational degrees of freedom for nuclear motion) have very
strong effect on the accuracy of results. In relatively few cases it is feasible to carry out
ab initio calculations which can predict frequencies within the limits of experimental
error (say, e.g., within the 1% errors of the usual harmonic approximation) [9, 32]. Nev-
ertheless, we expect further rapid progress of ab initio calculations. Very impressive
results obtained in the last decades allow us to consider new ways of applications of
ab initio calculations and we shall consider below some new ways of utilizing even the
no-so-accurate results of quantum mechanical calculations that are routinely available
at the present.

The development of ab initio force field calculations in the past two decades has been
extremely rapid. The approaches in the modern theoretical chemistry are depended
on the goal of investigation and the size of considered molecular system. Within the
very popular Hartree-Fock (HF) self-consistent-field framework (representing a mod-
erate level of nonrelativistic theory), calculations at this level of theory are routinely
possible for very large molecules (containing hundreds and thousands atoms and more)
at moderate basis set levels. But this method does not take into account an electron
correlation, so the problem of obtaining improved theoretical results (with errors com-
parable to those of experiment) remains a major challenge for theoretical chemists.
The accuracy of HF calculations is rather far from experimental limits, and these cal-
culations often give rather appreciable errors in geometry (˜0.05 in bond lengths, ˜5◦
in bond angles) and in molecular force constants (˜10% error) determined by the shifts
of calculated frequencies in a comparison with experimental frequencies.

Rapid progress in the extending force constant calculations to higher levels of the-
ory has been associated with the introduction of analytic derivative methods (initially,
for gradients, later for second order and higher derivatives [29] to replace the older nu-
merical methods and with appearance of the so-called post-HF methods such as config-
uration interaction (CI), multi configuration self-consistent field (MCSF) and Mшller
Plesset perturbation theory methods (MPn). Limitations are related to computational
cost and rather strong restrictions on the size of a molecule. New possibilities for calcu-
lations of various molecular systems were opened with the development of approaches
of Density Functional Theory (DFT) [30, 31]. Rapid progress in quantum mechani-
cal calculations of harmonic force field calculations for moderate-size molecules with
inclusion of electron correlation at the second order Mшller Plesset perturbation the-
ory (MP2) and density-functional theory DFT levels [28-31] implemented in modern
software packages [33] provides fundamental new possibilities for more accurate inter-
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pretation of experimental data as well as improved methods for empirical force field
calculations.

Calculations of moderate size molecules performed at high theoretical level (tak-
ing into account electron correlation, etc.) can satisfactorily reproduce patterns of
experimental data on molecular structure and vibrations. However, in a case of large
molecular systems the best ab initio results significantly differ from observed data. The
problem is that experimentally vibrational frequencies can be easily determined with
wavenumber accuracy, which for the so-called fingerprint spectral region (specific for
the given compound) implies an accuracy of 1:1000 - unattainable for modern quan-
tum mechanical methods. This situation results in using special empirical corrections
of theoretical results with a help of so-called scale factors [27] which lead ab initio
results to the level of semi-empirical ones and cause the loss of important physical in-
formation. Despite significant progress in computational power as well as an existence
of very effective quantum mechanical approaches, the accurate calculation of vibra-
tional frequencies and intensities is not routine procedure for the most of molecular
systems and is considered as a task for the expert. Obviously, the approach guarantee-
ing that solutions are obtained which reflect the most important properties of quantum
mechanical potential surfaces is therefore preferable. The goal of our study was to use
the modern stable numerical methods and to create an approach for data processing
in vibrational spectroscopy and calculation of molecular force field which includes the
results of quantum mechanical calculations and can guarantee solutions reflecting the
most important properties of ab initio potential surfaces.

4 The mathematical formulation of the inverse vibrational prob-
lem

We consider equations (3) - (5), or some part of them, depending on the available
experimental data, as a single operator equation

AF = Λ (6)

(6) where the nonlinear operator A maps the real symmetrical matrix F to the set
of eigenvalues of (3) (or (4)), the Coriolis constants, ζ (5), the mean square amplitudes,
etc. This set of data may be represented as a vector in the finite-dimensional space Rl,
where l is a number of known experimental data. The matrix F is also considered as a
vector in the finite-dimensional space Z, consisting either of the elements of the matrix
F or of the quantities by means of which this matrix can be parametrized. Note that
any of the conditions of the well-posedness are not satisfied for operator equation (6):

1) Solvability.
It is easy to see that within harmonic model the system (4) (determined for dif-

ferent molecular isotopomers) is compatible only when the condition DetGi/DetΛi
=

const, i = 1, 2,m (m is the number of isotopomers) is satisfied.
This may be violated both by virtue of errors in measurements of Λi, and due

to inaccurate specification of the molecular geometry Gi, or when exact experimental
data are not available, because of the anharmonicity of the vibrations ignored by the
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operator of (6). Therefore, a matrix F reproducing the frequencies of all isotopomers
within the limits of experimental errors does not exist.

2) Uniqueness of the solution of the problem.
If we know only the vibrational frequencies of one isotopomer of the molecule,

equation (6) reduces to the inverse eigenvalue problem (2); and when G is not singular
it follows that as solution of (6) we may take any matrix of the form

F = G−
1
2C∗ΛCG−

1
2 (7)

where C is an arbitrary orthogonal matrix. To choose a definite solution it is nec-
essary to use additional information or to take into account some model assumptions.

3) Stability of the solution with respect to the perturbations of Λ and A.
For a system of the form (4), instability may be easily exemplified.
Therefore, the inverse vibrational problem is an example of an ill-posed problem

since the three conditions of well-posedness are not satisfied in general. The difficulties
which arise during the force field calculations (which are related to the non-uniqueness
of solutions and the instability of the solution with respect to the perturbations of
experimental data) have been discussed elsewhere and various special model assump-
tions have been proposed based on the intuition of the investigator. The absence of
stability and uniqueness of the solution has often led to significant differences of force
field parameters of the same molecules determined in different investigations. This has
caused difficulties in the comparison and transferability of the force fields in series of
related compounds and has made the physical interpretation of the experimental data
much more obscure.

In our opinion, it is very important in the elucidation of any arbitrariness in the
calculated force constants to use stable solutions of the inverse vibrational problem
which have some specific properties. What is meant by “specific properties”? In practice
chemists and spectroscopists often use certain model assumptions arising from the
classical theory of chemical structure, involving the monotonic changing of the physico-
chemical properties in a series of related molecules and the preservation of the properties
of separate molecular fragments in the different compounds taking into account the
nearest surrounding. It is the transferability of the force constants which related to
these properties.

Now we consider possible ways to formalize these model considerations in order to
use them in the force constant calculation. For example, model assumptions may be
taken into account a priori by special choice of a given matrix F 0. In the framework of
the so-called valence force field some off-diagonal elements of the matrix F may be taken
to be equal to zero, reflecting the assumption on insignificance of some intramolecular
interactions. For related molecules we can introduce some in-pair equalities of force
constants for similar fragments, some elements of F may be known from preliminary
calculations, etc. Therefore, we can formulate the inverse vibrational problem in the
following way [10, 25].

We need to find, among the set of force constant matrices satisfying (6), the matrix
which will be the nearest to some a priori given matrix F 0 (i.e., to find the so-called
normal solution). In a case of an inconsistent problem (within harmonic approximation,
this may happen in a joint treatment of the spectra of isotopomers, or by including
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additional experimental data), it is possible to find the matrix F for which the distance
from AF to Λ is minimal, i.e., to find the so-called pseudosolution of the problem.
When the pseudosolution is also non-unique, we must proceed as in the case of non-
uniqueness of the solution - i.e., we choose from all possible pseudosolutions the one
which is nearest to the given force field F 0 (the normal pseudosolution).

We now arrive at the following formulation of the inverse problem taking into ac-
count the principle formulated above for choosing the solution. Suppose we are given
operator equation (6) and the operator A. which maps the symmetric, and positive-
definite matrix F to the set of molecular vibrational frequencies squared (possibly
including data for isotopomers of the molecule), and the mean vibrational amplitudes,
Coriolis constants, etc., which may be taken from experiments. The dimension of the
vector Λ is determined by the number of experimental data. Since the symmetric
matrix F is determined by n(n+1)/2 elements we can consider the unknown force
constants as a vector of dimension n(n+1)/2. Then the operator A acts from the Eu-
clidean space Rn(n+1)/2 into the Euclidean space Rl. In these spaces we can introduce
the following norms:

‖F‖ =

(
n∑
ij

f 2
ij

) 1
2

; ‖Λ‖ =

(
l∑

k=1

λ2kpk

) 1
2

,

where ρk > 0 are the positive weights; fij are the elements of matrix F; λk (k=
1,...l) are the components of Λ.

The operator A is continuous for all problems considered. However, equation (6)
may have non-unique solution, or no solution at all, due to the anharmonicity of ex-
perimental frequencies. Suppose, we are given the matrix F 0 (vector of dimension
n(n+1)/2). It is necessary to find the normal pseudosolution of (6): that is, we find an
element F =Fn for which min ||F -F 0||is reached provided that ||AF - Λ||=µ , where
µ = inf

F∈D
‖AF − Λ‖ and D is the closed set of a priori constraints on the values of the

force constants. If no constraints are imposed, then D = Rn(n+1)/2.
The element F 0 should be specified from a priori considerations of the possible

solutions, including both the approximate quantum mechanical calculations and other
ideas (for example, the transferability of the force constants among similar fragments
in a series of related compounds).

Let us denote the solution (vector) to be found as Fn, if this vector is non-unique
then a set of such vectors will be denoted as Fn . It is easy to see that if (6) is solvable
then µ = 0, and it remains to find the solution of (6) which is the nearest to the given
vector F 0. But we do not know the exact form of either the vector Λ or operator A (the
matrix G or matrices Gi). We only have the vector Λδ, determined from experimental
data such that ||Λδ − Λ||≤δ (where δ > 0 is the experimental error) and the operator
Ah approximates the operator A; h ≥ 0 is a parameter characterizing the proximity of
Ah to A. The uncertainty in operator A is related to errors of the determination of
matrix G (or Gi) calculated using experimental data on the geometrical parameters
of the equilibrium configuration quoted with errors. Therefore, the problem of the
solution of (6) arises when we do not know exact forms of A and Λ, but only their
approximations Ah and Λδ and their errors (h, δ) and it is necessary to find the vector
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Fh,δ approximating the exact solution −Fn. The difficulties in solving this problem
are related to its ill-posed character.

When designing stable methods for solving ill-posed problems there is the under-
standing that ill-posed problems are generally underdetermined. To solve such prob-
lems one has to use additional information and formulate the criteria for choosing
approximate solutions. If such criteria are formulated and mathematically formalized,
it is possible to construct stable methods of solving ill-posed problems - so-called reg-
ularizing algorithms [35-43].

5 Nonlinear ill-posed problems

In this section we consider ill-posed problems in (for simplicity) the finite-dimensional
case. And then we give the formal statement of inverse vibrational problem as nonlinear
ill-posed problem. At first consider the next example of operator equation

Az = u, z ∈ D ⊆ Z, u ∈ U (8)

where D is a set of constraints, Z and U are metric spaces. Let D = Z = U = R,
where R is the space of real numbers with the norm || z || = |z |. Fix positive numbers
α0, z0, u0 , and define the continuous nonlinear operator A: Z→U :

Az =


[a0 (z20 − z2 + z (z0 − z))]

1/2
+ u0, if 0 ≤ z ≤ z0;

[a0 (z20 − z2)]
1/2

+ u0, if z > z0;

a
1/2
0 z0 + z2 + u0, if z < z0.

(9)

Let’s consider (8) with the exact data (A, u). It has the unique solution . We
introduce Tikhonov’s functional

Ma [z] = |Az − u|2 + a ‖z‖2 , z ∈ D ⊆ Z, a > 0, (10)

and consider the variational problem: for fixed α>0, find an element such that

Ma [za] = inf{Ma [z] : z ∈ D} (11)

Then problem (11) with data (A, u0) from (9) has the solution zα ={z0 for 0 < α
< α0; [0, z0] for α = α0; 0 for α > α0

Hence, the discrepancy

β (α) = ‖Azα − u0‖ =

{
0 for 0 <α<α0;
u0 for α > α0.

And the equation

β(α) = δ (12)

for choosing the regularization parameter α by the discrepancy principle [40] has
no solution in the ordinary sense for any δ, satisfying 0 < δ < u0.

This example shows that the discrepancy principle generally gives no possibility
of choosing the value of the regularization parameter for nonlinear problems. Similar
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difficulties arise in other strategies involving an a posteriori choice of the regularization
parameter. These difficulties are connected with the non-uniqueness of the solution
of (11) for the nonlinear case. This non-uniqueness leads to another difficulty. Let us
assume that the regularization parameter α (δ) > 0 is chosen and problem (11) has
more than one minimizer for α = α (δ). The question is whether it is possible to take
an arbitrary element zα(δ) as an approximate solution or if a special choice of such an
element is needed. Our example shows that if we choose α (δ) as a solution of (12) in
a general sense, i.e., as a "jump" point of a monotone function β(α) over δ, then the
"unsuccessful" choice of zα(δ) : zα(δ) = 0, from the set of the extremals corresponding
to this α(δ) can result in the approximate solutions zα(δ) not converging to the exact
solution z = z0 . Thus, the algorithm of Tikhonov’s regularization method of solving
nonlinear problem (8) should in in general contain, along with the rule for choosing
the parameter α (δ), also a rule for selecting zα(δ) from the set of solutions of (11) for
α = α (δ)

Let us give the general formulation of Tikhonov’s scheme for constructing a regu-
larizing algorithm to solve the main problem: for the operator (8) on D find z∗ ∈ D
for which

ρ(Az∗, u) = inf{ρ(Az, u) : z ∈ D} ≡ µ (13)

(ρ is the distance in the metric space U ). We call such z∗ a quasi-solution for
problem (8). In the case of D = Z, problem (13) gives a pseudo-solution of (8). If the
measure of incompatibility is equal to zero, then the solutions of (13) are the solutions
of (8) on D. The quasi-solution problem (13) may be ill-posed. Namely, problem (13)
may not be solvable, and if a solution of (13) exists, it may be non-unique or unstable
(with respect to perturbations of the data (A, u)) in the metric of Z.

We assume that to some elementu = u there corresponds a nonempty set Z* ⊆ D
of quasi-solutions and that Z* may consist of more than one element. Furthermore,
we suppose that a functional Ω(z ) is defined on D and bounded below:

Ω(z) ≥ Ω∗ ≡ inf{Ω(z) : z ∈ D} ≥ O.

The Ω-optimal quasisolution problem for (8) is as follows: find a such that

Ω(z) = inf{Ω(z) : z ∈ Z∗} ≡ Ω̄. (14)

We denote the set of Ω-optimal quasisolutions of (8) by Z . If D = Z, then Z is
the set of the Ω-optimal pseudosolutions of (8). For simplicity we use only the term
"pseudo-solution" below.

We suppose that, instead of the unknown exact data(A, ū), we are given approxi-
mate data (Ah, uδ) which satisfy the following conditions:

uδ ∈ U, ρ (ū, uδ) ≤ δ, Ah ∈ A, ρ (Az,Ahz)≤ψ (h,Ω (z))∀z ∈ D.

Here the function ψ represents the known measure of approximation of the pre-
cise operator A by the approximate operatorAh, and Ah ∈ A, a class of admissible
operators. We are given also numerical characterizations h, δ ≥ 0 of the "closeness"
of (Ah, uδ) to (A, u). The main problem is to construct from the approximate data
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(Ah, uδ, h, δ) in (8) an element zη = zη (Ah, uδ, ψ, h, δ) ∈ D which converges to a mem-
ber of the set Z̄ of Ω-optimal solutions as η = (h, δ)→ 0.

Let us formulate our basic assumptions:
1) The class A consists of the operators A continuous from D to U.
2) The functional Ω (z ) is lower semicontinuous (e.g., continuous) on D :

∀z0 ∈ D,∀ {zn} ∈ D : zn → z0 ⇒ lim
n→∞

infΩ(zn) ≥ Ω(z0).

3) IfK is an arbitrary number such thatK ≥ Ω∗ , then the set ΩK = {z ∈ D : Ω(z) ≤ K}
is compact in Z.

4) The measure of approximation ψ(h,Ω) is assumed to be defined for h ≥ 0,Ω ≥ Ω∗

, to depend continuously on all its arguments, to be monotonically increasing with
respect to Ω for any h > 0, and to satisfy the equality ψ(0,Ω) = 0, ∀Ω ≥ Ω∗.

Conditions 1-3 guarantee that Z is nonempty. Tikhonov’s scheme for constructing
of a regularizing algorithm is based on using the smoothing functional [36]

Mα [z] = f [ρ (Ahz, uδ)] + αΩ (z) , z ∈ D,α > 0 (15)

in the conditional extreme problem (11). Here f(x) is an auxiliary function. A
common choice is f(x) = xm,m ≥ 2.

We denote the set of extremals of (11) which correspond to a given α > 0 by Zα.
Again, conditions 1 - 3 imply that Zαis nonempty. The scheme for constructing an
approximation to the set Z includes: (a) the choice of the regularization parameter
αη = αη (Ah, uδ, ψ, h, δ) ; (b) the specification of the set Zαη corresponding to αη , and
a special selection of an element zαη in this set. We take the element zαη chosen in
this way as a solution of the main problem. Procedures a and b must be accomplished
so as to guarantee the convergence zαη → Z as η → 0. Thus, Tikhonov regularizing
algorithms differ from each other by the method of choosing αη and by the method of
selecting zαη . Sometimes the latter procedure is not necessary, and one can take an
arbitrary element zαη from Zαη as an approximate solution.

It is in this way that the generalized analogs of a posteriori parameter choice strate-
gies are used. They were introduced in [40], their descriptions may also be found in [36].
For their formulations we define some auxiliary functions and functionals for α > 0,
and zα ∈ Zα:

γ(α) = Ω(zα), β(α) = f [ρ (Ahz
α , uδ)] ≡ I (zα) ,

φ (α) = Mα [zα] ,
π (α) = f [ψ (h, γ (α)) + δ + µη] ≡ Π (zα) ,
γ(α) = Ω(zα), β(α) = f [ρ (Ahz

α , uδ)] ≡ I (zα) ,
φ (α) = Mα [zα] , π (α) = f [ψ (h, γ (α)) + δ + µη] ≡ Π (zα) ,
ρ (α) = β (α)− π (α) ≡ P (zα) ,

ε (α) = φ (α)− f
{
µη + [ψ (h, γ (α)) + δ]P

}
≡ E (zα) ,

p = const, 0 < p < 1;∀zα ∈ Zα;α > 0.

(16)

Here µη = inf {ρ (Ahz, uδ) + ψ (h,Ω (z)) + δ : z ∈ D} is a generalized measure of
incompatibility for nonlinear problems having the properties:µη > µ, µη → µ as η →
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0$ [36]. All the functions (9) (except φ) are generally many-valued. They have the
following properties.

Lemma [36]. If the functions γ, β, π, ρ, ε are single-valued and continuous every-
where for α > 0 except perhaps for a countable set of their common points of discon-
tinuity of the first kind, which are points of multiple-valuedness, then there exists at
least two elements zα+ and zα−in the set Zα such that

γ (α± 0) = Ω
(
zα±
)
, ρ (α± 0) = Π

(
zα±
)
, ε (α± 0) = E

(
zα±
)

The functions β, ρ, ε are monotonically non-decreasing and γ, π are non-increasing.
The function ϕ is single-valued, continuous, and non-decreasing.

The generalized discrepancy principle (GDP) for nonlinear problems consists of the
following steps.

1. The choice of the regularization parameter as a generalized solution α > 0 of
the equation

ρ(α) = 0 (17)

Here and afterwards we say that α is the generalized solution of (17) for a monotone
function ρ if α is the ordinary solution or if is the "jump"-point of this function over
0.

2. An approximate solution zαη from the set Zαη is selected by means of the
following rule: let q >1 and C>1 be fixed constants α1=

αη/q, and α2 = αη ·q are auxiliary
regularization parameters, and let zα1 and zα2 be extremals of (11) for α = α1,2. If the
inequality

I (zα2) ≥ CΠ (zα1)− (C − 1) f (µη) (18)

holds for zα1 and zα2 , then any elements zα1 ∈ Zαη , subject to the condition
P (zαη) ≤ 0 can be taken as the approximate solution. For instance we can take
zαη = z

αη
− . But if

I (zα2) < CΠ (zα1)− (C − 1) f (µη) (19)

then we choose zαη so as to have P (zαη) ≥ 0 , for example zαη = z
αη
+ ,

Note that we do not need any selection rule if αη is an ordinary solution of (10). In
this case the equality P (zαη) = ρ (αη) = 0 holds, and an arbitrary element zαη ∈ Zαη

can be taken as an approximate solution.
Theorem 1 [36]. Suppose that for any quasisolution of (8) the inequality

Ω (z∗) > Ω∗ = inf {Ω (z) z ∈ D}
holds. Then (a) (17) has a positive generalized solution; (b) for any sequence ηn =

(hn, δn) such that ηn → 0 as n→∞ , the corresponding sequence {zn} of approximate
solutions, which is found by GDP has the following properties: zn → Z̄,Ω (zn)→ Ω̄ as
n→∞ .

In many practical cases it is very convenient to take Ω (z) = ‖z‖r(r is a constant, r
>1 ). If it is known in addition that (8) has a solution on D, then the value µη can be
omitted. It can be shown that the GDP in linear and nonlinear cases has a number of
optimal properties [36].
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6 Regularizing algorithms for solving the inverse vibrational
problem

The inverse vibrational problem under investigation is nonlinear. Let us consider again
(6) in the standard form

AF = Λ, F ∈ Rn(n+1)/2,Λ ∈ Rl. (20)

The existence of the normal (relative to a given a priory estimate F 0 ) pseudoso-
lution F̄n of the exact problem (20) may be guaranteed if the operator A includes the
operator of the direct vibrational problem for a single molecule. The uniqueness of
F̄n cannot be guaranteed.How may the error of the approximate operator Ah be esti-
mated? The estimation ‖A− Ah‖ ≤ h is impossible because the nonlinear operators
have no norm. It is obvious that for the operator of the inverse vibrational problem
this error is related to errors of the G matrix. It is possible to obtain an estimate in
the form [15, 16]
‖AF − AhF‖ ≤ ψ (h, F ) ,

where ψ is a known continuous function, which approaches 0 as the errors of the
equilibrium geometry of the molecule decrease to zero. In particular, the estimates
may be obtained in the form

ψ (h, F ) = ψ (h, ‖F‖) ;ψ (h, F ) = h(AhF )

The error in the right part of (20) is determined as previously.
We arrive at the following formulation of the inverse problem.
Problem I. Suppose we are given (20) where F ∈ D ⊆ Z,Λ ∈ U , Z and U are

finite-dimensional spaces, D is a closed set of a priori constraints of the problem, and A
is a nonlinear operator continuous in D. It is required to find an approximate solution
of (20) when instead of A and Λ, we are given their approximations Ah and Λδ such
that ‖Λ− Λδ‖ ≤ δ, ‖AF − AhF‖ ≤ ψ (h, F ) for F ∈ D ; here ψ (h, F) is a known
continuous function, which approaches zero as h→0 uniformly for all F ∈ D ∩ S̄ (0, R)
, where S̄ (0, R) is a closed ball with center at F = 0 and an arbitrary radius R. The
error in specifying the operator A involves an error in determining the equilibrium
configuration of the molecule, the parameters of which can be found experimentally.
Note that Problem I satisfies none of the conditions of correctness of the problem.

We shall consider now the problem of constructing a normal pseudosolution of
Problem I with exact right side and operator.

Problem II. It is required to obtain

F̄n = argmin
∥∥F − F 0

∥∥ , F : F ∈ D , ‖AF − Λ‖ = µ ,

where µ = ‖AF − Λ‖ , F ∈ D .
The element F 0 ∈ Z should be specified from a priori requirements on the solution,

using both approximate quantum mechanical calculations and other ideas (for example,
the transferability of the force constants to similar fragments of molecules). In the case
when a unique solution of (20) exists, it is clear that its normal pseudosolution is
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identical with the solution itself. Taking all the above mentioned into account we can
formulate the following problem.

Problem III. Suppose we are given (20); it is required from the approximate data
{Ah,Λδ, h, δ} to obtain approximations Fη ∈ D to the solution F̄n of Problem II such
that Fη →

η→0
F̄n i.e., the algorithm for finding F should be Tikhonov regularizing.

Now we shall consider the simplest formulation of Problem I.
Problem I’. The vibrational spectrum of a single molecule is known, and in (20) the

operator A corresponds to the vector F ∈ Rn(n+1)/2 which is made up of the elements
of the symmetric matrix F of order n, the ordered set of eigenvalues of the matrix GF.
We shall use the ordered set of squares of the molecular vibrational frequencies as the
right-hand side Λ ∈ Rl.

Problem II’. It is required to find the normal solution

F̄n = arg min
∥∥F − F 0

∥∥ , F ∈ {F : AF ∈ Λ} ,

since Problem I is always solvable and as well as solutions are non-unique (except
the case when n = 1 ).

Since the operator A in (20) is completely defined by the specification of the matrix
G, we shall estimate the deviation of the approximately specified operator Ah (corre-
sponding to certain Gξ ) from the exact operator A (corresponding to G) by the error
in specifying matrix G. We suppose that in a certain matrix norm ‖G−Gξ‖ ≤ ξ .

In the space Rl of the right-hand sides we shall introduce the Euclidean norm with
positive weights, while in Rn(n+1)/2 we use the Euclidean norm. Suppose that instead
of the accurate value of the right-hand side Λ we specify Λδ , such that ‖Λ− Λδ‖ ≤ δ

The following theorems on the stability of Problems I and II hold [15].
Theorem 2. Problem I is stable in the Hausdorff metric with respect to the

perturbations of the operator and the right-hand side.
Here the Hausdorf distance (metrics), ρ(A,B), is determined in the following way:

for any closed set A and B in normed space

ρ(A,B) = sup
x∈A

inf
y∈B
‖x− y‖+ sup

y∈A
inf
x∈B
‖x− y‖ .

Theorem 3. If Problem II has a unique solution, then it is stable to perturbations
of the operator and the right-hand side.

The proofs of these theorems are given in [15].
Most existing methods of solving inverse problems in vibrational spectroscopy are

intended for (3) and (4), i.e., for the cases when only the frequencies of the vibrations
of the molecules are used as experimental data. As regards the inverse vibrational
problem for one molecule, i.e., solutions of (3), it follows from (7) that the choice of
the unique solution from their set corresponds to the choice of a certain orthogonal
matrix C. Such selection can be made from a priori considerations (e.g., we can use as
C the unit matrix or the matrix of eigenvectors of G). This approach suffers from the
following drawbacks:

it is impossible to take into account the a priori limitations imposed on the elements
of the matrix F ;
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the results of the calculations are almost never transferable to isotopic varieties of
the molecule.

The least-squares method which consists of minimizing on a set of a priori con-
straints is the one most often encountered. However, in the view of the ill-posed na-
ture of the problem, this method cannot be applied directly to solving problems with
approximate data. Rather, the method must be regularized by taking into account the
possible inconsistency of the problem and also the non-uniqueness of its solutions. If
we attempt to find the normal pseudosolutions (with respect to a certain F0 ) we arrive
at the formulation of the problem described above.

Which regularizing algorithms can be proposed for finding a normal pseudosolution?
One of them is the generalized discrepancy principle [36]. Many other approaches one
can find in [35-40]. We have also proposed a modification of the GDP based on the
possibility of estimating the error of the operator in the form

‖AF − AhF‖ ≤ h ‖AhF‖ , h < 1, (21)

which corresponds to specification of the relative error AF and is a more convenient
estimate for the problem considered than the monotone function ψ .

Suppose Fα
η is an extremum (possibly non-unique) of Tikhonov’s functional

Mα [F ] = ‖AhF − Λ‖2 + α
∥∥F − F 0

∥∥2 (22)

in the set D. The existence of an extreme can be proved (see [15]). We shall
introduce the function

ρα (α) =
∥∥AhFα

η − Λδ

∥∥− 1

1− h
[µ̂+ k (δ + h ‖Λδ‖)]

where k > 1 is a constant and

µ̂ = inf
F∈D
{‖AhF − Λδ‖+ δ + h ‖AhF‖}

If the condition ∥∥AhF 0 − Λδ

∥∥ > 1
1−h [µ̂+ k (δ + h ‖Λδ‖)] (23)

is satisfied, then the equation ρη(α) = 0 has a generalized solution αη > 0 (i.e.,
αη is such that ρη(α) > 0 when α > αη; ρη(α) < 0 when α < αη). If αη is a point of
continuity of ρη(α), we have ρη(αη) = 0. This assertion follows from the monotonicity
of ρη(α) and the limit relations (as α→ 0 and α→ + ∝ ).

Now we shall formulate the algorithm for finding approximations to the normal
pseudosolutions of (20) . If condition (23) is not satisfied, we take Fη = F 0 as an
approximate solution; in the contrary case we find αη > 0 (the generalized solution of
the equation ρη(α) = 0), and assume Fη = Fαη . If the extreme of the functional (23)
is non-unique, we choose the one for which ‖AhFαη − Λδ‖ ≤ 1

1−h [µ̂+ k (δ + h ‖Λδ‖)]
(the possibility of the making such a choice was shown in [15]).

Theorem 4. The algorithm formulated above is Tikhonov regularizing.
The proof is given in [15].
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For versions of Problem I in which the estimate of the error of the operator cannot
be written in the form (21), but the requirements of Problem I are satisfied we can use
the following version of the generalized discrepancy method.

Problem 4. It is required to obtain

inf ‖F − F 0‖ ,
F ∈ F η = {F : F ∈ D, ‖AhF − Λδ‖ ≤ δ + ψ (h, F ) + µ̂ (Ah,Λδ)}

where the estimate of the measure of incompatibility of the exact problem from
above is

µ̂ = inf
F∈D
{‖AhF − Λδ‖+ ψ (h, F ) + δ} .

Lemma 2. Suppose the conditions of Problem I are satisfied.
Then µ̂η > µ, and µ̂η → µ = inf

F∈D
‖AF − Λ‖ as η → 0.

Lemma 3. Problem IV is solvable for any Λδ ∈ U such that ‖Λ− Λδ‖ ≤ δ and for
a continuous operator A such that ‖AhF − AF‖ < ψ (h, F ).

The proof of this lemma relies on the fact that for all η > 0, the set Fη is nonempty
(since F̄η ∈ Fη), closed and bounded.

Theorem 5. The algorithm defined by the extremal Problem IV, is Tikhonov
regularizing for Problem I.

Details of proofs, estimates of the error of the operator and some details of the
numerical realization of the methods are given in [15, 24, 25].

7 Computer implementation

The software package SPECTRUM [18, 24, 25] for processing spectroscopic data in-
cludes all regularizing algorithms described above. The structure of SPECTRUM
is shown below. The package allows calculation of normal vibrations in the arbi-
trary system of internal coordinates as well as in Cartesian coordinates. Redundant
coordinates are also allowed. Input force constant matrices may be represented in
different ways (in Cartesian, internal or symmetry coordinates) and different units (
106cm−2,mdyn/Ȧ,Hartree/Bohr2) ; the package provides automatic transformation
of matrices in various coordinate systems and units. Force constants may be fitted to
experiment in the standard way (when matrix elements are directly defined) and using
Pulay scaling approach, when the set of scale factors is defined for an a priori given
force constant matrix. It is possible to impose constraints fixing certain force constants
at the pre-defined values. The software allows to introduce any coordinates that are
represented as linear combinations of the internal coordinates. The user can use differ-
ent systems of coordinates including internal, symmetry and some special coordinate
system - arbitrary user coordinates.

It is also possible to simultaneously simulate several isotopic species of a molecule
for calculation of the single molecular force field. Different molecules can also be treated
simultaneously under condition that certain sets of force constants in both molecules
are assumed equivalent. The package also provides experimental frequencies fitting
when some of the frequencies are not available from the experiment.
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The package contains three distinct software modules. The first module (mol-
graph) is developed for graphic visualization of molecular 3D model; the second module
(symm) is the symmetry analyzing routine which includes the symmetry point groups
up to Oh and is very useful in a case of large molecules with high symmetry. It provides
the allows the automatic construction of symmetry and local symmetry coordinates,
The third module is related to the solving direct or inverse vibrational problems. The
current version of a package is implemented advantages of 64-bit processing and vir-
tual memory management with increasing both the processing rate and the limit size
of molecules (more than 1000 atoms) possible in a reasonable time of calculations. The
package allows the input of different kind of data and the imposing different constraints
on the solution of the inverse problem. Various examples of practical applications of
regularizing algorithms to data processing in vibrational spectroscopy and structural
chemistry are presented in our publications [41-54]. Now the software SPECTRUM is
a part of information system ISMOL [55-57], the general scheme of this database is
performed in Figure 1.
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Input data
General structural data Force constants data
1. Equilibrium geometry
(Cartesian coordinates
and masses of all atoms)
2. Experimental data on frequencies,
including isotopomers, Coriolis
constants, mean amplitudes, etc
3. Description of internal coordinates
4. Definition of symmetry coordinates

Possible choices:
1. Matrix in symmetry coordinates.
2. Matrix in internal coordinates.
3. Matrix in Cartesian coordinates.

Choice of numeric method Model constraints on matrix F

Possible choices:
1. Conjugate gradient method of minimiz-
ing Tikhonov’s functional
2. Monte-Carlo method

Possible choices:
1.Preserving values of certain elements
2.Setting zero values of certain elements
3. (Auto) Setting zero values of elements
corresponding to distant coordinates
4. Maintaining equivalence between cer-
tain elements in force field matrices for dif-
ferent
molecules processed simultaneously

Data processing sequence
1. Conversion of input matrices given in Cartesian or internal coordinates to matrices
in symmetry coordinates. Verification of matrix symmetry (adjusting, if necessary).
2. Creating, preprocessing and applying specified constraints on matrix F.
3 (Inverse problem only). Minimizing Tikhonov functional for the problem with the
specified numerical method and appropriate choice of regularization parameter.
4. Solving direct problem for resulting matrix in symmetry coordinates.
5. Constructing force field matrix in internal coordinates.
6. Solving direct problem in internal coordinates.
7. Calculating additional characteristics of interest, such as mean square amplitudes
of vibrations and potential energy distribution.
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Figure 1:Hybrid information system ISMOL

It should be noted that the package allows the processing of more than one molecule
simultaneously (each of them possessing several isotopic species) in a case when the
force field model includes equivalencies of certain force matrix elements throughout
the optimization process. This option is of special value for verifying transferability
properties of force constants. Additional features of the package include the following:
possible model constraints applied to matrices in internal coordinates; using redundant
internal coordinates in all implemented algorithms; automatic inclusion of redundancy
conditions; choice of the regularization parameter in accordance with the generalized
discrepancy principle.

Note also that conversion from Cartesian to internal coordinates may be not unique
if coordinates are redundant. In this case, the software package allows two ways [34]:

a) to generate a canonical matrix F (that is, with minimal rank sufficient to repre-
sent all vibrational degrees of freedom, 3N -6 where N is number of atoms);

b) to generate a matrix F with the minimal off-diagonal norm (this is a commonly
used model assumption).

Results of practical applications for molecular systems including biological ones will
be published in the next paper.
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