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AN INVERSE PROBLEM FOR A LAYERED FILM
ON A SUBSTRATE

Romanov V.G.

Abstract We consider a heat interaction of a layered film laying on a solid substrate with
laser modulated with frequency ω. Under the assumption that the thickness of the film is much
smaller than 1/

√
ω while heat conductivity of the film is very high, we derive an approximate

far field solution to the heat equation and demonstrate that the found asymptotics of the
solution can be used for finding averaged parameters of the film.
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1 Introduction

Let a layered film be on a homogeneous substrate which coincides with half-space
R3

+ := {(x, y, z)| z > 0}. Suppose that the film consists of n layers Ωj := {(x, y, z)| zj <
z < zj−1}, j = 1, . . . , n, where 0 = z0 > z1 > . . . > zn = −h, hj := zj−1 − zj is the
thickness of Ωj and h > 0 is the total thickness of the film. We assume that h << 1.
Let T (x, y, z, t) be a temperature at point (x, y, z) at a time t. The heat conduction
equation is

γ
∂T

∂t
− div(λ∇T ) = 0,

where γ = cρ and c, ρ, λ are the specific heat of the medium, its density and the
thermal conductivity, respectively. Values of γ and λ in Ωj and R3

+ are assumed to be
positive constants and be γj, λj and γ0, λ0, respectively.

Assume that a heat source is a laser modulated with the frequency ω > 0, which is
applied on the boundary of the film at point (x, y, zn). It corresponds to the boundary
condition

λn
∂T

∂z
= I0δ(x, y) exp(iωt), z = zn,

where I0 is the intensity of the laser beam. Steady-state temperature can be represented
in the form T = u(r, z) exp(iωt), where r =

√
x2 + y2 and u(r, z) is a solution to the

equations

div(λ∇u)− iωγnu = 0, (1)

satisfying to the boundary condition

λn
∂u

∂z
= I0

δ(r)

2πr
, z = zn, (2)
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and the radiation condition at infinitely. Because parameters γ and λ are piecewise
constant functions of z, equation (1) can be rewritten inside Ωj and Ω0 := R3

+ in the
form

∆u− iωµju = 0, j = 0, 1, . . . , n, (3)
where µj = γj/λj is the value that is inverse to the thermal diffusivity in Ωj. It is also
required that the following conditions must be satisfied on the boundary interfaces
between Ωj−1 and Ωj:

u|z=zj−0 = u|z=zj+0, λj+1
∂u

∂z

∣∣∣∣
z=zj−0

= λj
∂u

∂z

∣∣∣∣
z=zj+0

, j = 0, 1, . . . , n− 1. (4)

Let F (r) := u(r, 0). In next section we derive an asymptotic formula for this
function as r → ∞, i.e., the far field asymptotics, under the condition that 1

γj
<<

ω << 1
µjh2

. This formula contains parameters λ0 and µ0 of the substrate and the

following integral parameters of the film: a =
n∑
j=1

hjλj, b =
n∑
j=1

hjγj. Values a/h and

b/h are the averaged conductivity λf and specific heat γf of the film, respectively, and
a/b := 1/µf is its averaged thermal diffusivity.

We consider the following inverse problem: knowing parameters of the substrate
and the far field asymptotic on plane z = 0, find the parameters a and b of the film.
This problem is important for applications.

In this paper we demonstrate that if aµ0 − b = 0, i.e., a(µf − µ0) = 0, then far
field asymptotics of F (r) corresponds the field of the substrate. In this case having
asymptotics of function F (r) as r → ∞, one can only conclude that b − aµ0 ∼ 0.
In opposite case, if µ0 6= µf , the far field asymptotics contains two terms, the first of
these terms presents a surface heat wave [1] and the second one is related with a branch
point determined only by parameters of the substrate. The first term depends on a
and b while the second one depends on the combination b − aµ0 only. We show that
under the condition µ0 > µf the first term dominates for sufficiently large frequencies,
namely, if λ0 << 2a

√
|µ0 − µf |

√
ω << 2abω/λ0. In this case one can uniquely find

both parameters a and b. If the second term dominates (it is always if µ0 < µf ), then
one can find only the combination b− aµ0, in general.

2 Far field asymptotics

Introduce the Bessel transform of function u(r, z) with respect to r:

v(ξ, z) =

∞∫
0

u(r, z)J0(rξ)r dr.

Applying this transform to relations (1) – (4), we find that function v(ξ, z) satisfy the
equations and a boundary and interface conditions of the form

v
′′ − (ξ2 + iωµj)v = 0, z ∈ (zj, zj−1), j = 0, 1, . . . , n, (5)
λnv

′ = I0/2π, z = zn, (6)
v|z=zj−0 = v|z=zj+0, λj+1v

′|z=zj−0 = λjv
′|z=zj+0 , j = 0, 1, . . . , n− 1, (7)
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where v′ means derivative of v with respect to z and z−1 :=∞.
According to these relations, function v can be represented in the form

v(ξ, z) =

{
aje−βjz + bjeβjz, z ∈ (zj, zj−1), j = 1, . . . , n,
a0e−β0z, z > 0,

(8)

where βj =
√
ξ2 + iωµj, j = 0, 1, . . . , n. Here the such branch of the square root is

taken that accepts positive values on real positive semi-axis. Constants aj, bj satisfy
the relations

−βnλn
(
ane−βnzn − bneβnzn

)
= I0/2π, (9)

aje−βjzj−1 + bjeβjzj−1 = aj−1e−βj−1zj−1 + bj−1eβj−1zj−1 ,
λjβj

(
aje−βjzj−1 − bjeβjzj−1

)
= λj−1βj−1

(
aj−1e−βj−1zj−1 − bj−1eβj−1zj−1

)
,

j = 1, . . . , n,
(10)

where b0 = 0. Denote

cj := aje−βjzj + bjeβjzj , dj := λjβj
(
aje−βjzj − bjeβjzj

)
.

Then

aj =

(
cj
2

+
dj

2λjβj

)
eβjzj , bj =

(
cj
2
− dj

2λjβj

)
e−βjzj , (11)

and relations (10) can be written as follows

cj cosh(hjβj)− dj sinh(hjβj)/(λjβj) = cj−1,
cjλjβj sinh(hjβj)− dj cosh(hjβj) = −dj−1,

j = 1, . . . , n,

Hence, (
cj
dj

)
= Sj

(
cj−1

dj−1

)
, j = 1, . . . , n, (12)

where the matrix Sj is determined by the formula

Sj = cosh(hjβj)

(
1 tanh(hjβj)/(λjβj)

λjβj tanh(hjβj) 1

)
. (13)

Note that c0 = a0, d0 = a0λ0β0. Therefore,(
cn
dn

)
= a0S

(
1

λ0β0

)
, S = SnSn−1 . . . S1.

Denote elements of the matrix S by sik(ξ), i, k = 1, 2. Then relation (9) implies

a0 = − I0

2π[s21(ξ) + λ0β0(ξ)s22(ξ)]
. (14)
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The collection of formulae (8), (11) – (14) determines function v(ξ, z) completely. Then
function u(r, z) is found as the inverse Bessel transform

u(r, z) =

∞∫
0

v(ξ, z)J0(rξ)ξ dξ. (15)

Consider the function
f(ξ) := s21(ξ) + λ0β0(ξ)s22(ξ),

which coincides with the denominator in formula (14). Suppose that

λj|βj(ξ)| >> 1,

i.e., γjω >> 1 for j = 1, 2, . . . , n. Then matrix Sj can be uniformly for all ξ approxi-
mated by the matrix

Sj = cosh(hjβj)

(
1 0

λjβj tanh(hjβj) 1

)
.

Hence,

S =
n∏
j=1

cosh(hjβj)

(
1 0∑n

j=1 λjβj tanh(hjβj) 1

)
and

f(ξ) =
n∏
j=1

cosh(hjβj)

[
n∑
j=1

λjβj tanh(hjβj) + λ0β0

]
.

Denote real and imaginary parts of βj by χj, σj, respectively. Note that χj ≥
√
ωµj/2 >

0, 0 < σj ≤
√
ωµj/2, and tanh(hjβj) is determined by the formula

tanh(hjβj) =
2 sinh(hjχj) cosh(hjχj) + i sin(2hjσj)

2[cosh2(hjχj) + sin2(hjσj)]
.

Assume that h√ωµj << 1, i.e., hjσj << 1 for all j = 1, . . . , n. Then the real and
imaginary parts of tanh(hjβj) are positive. Therefore

Im

[
n∑
j=1

λjβj tanh(hjβj) + λ0β0(ξ)

]
> 0

and |f(ξ)| > 0 for all ξ ∈ R. Moreover, function |f(ξ)| exponentially increases as
|ξ| → ∞. Hence, integral in (15) exists for every z and r.

Consider the asymptotics of the function

F (r) := u(r, 0) =

∞∫
0

v(ξ, 0)J0(rξ)ξ dξ = − I0

2π

∞∫
0

J0(rξ)ξ dξ
f(ξ)

. (16)
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as r → ∞. Then only small neighborhood of the point ξ = 0 is important when the
latter integral is computed. Therefore, one can use the following approximation for
function f(ξ):

f(ξ) =
n∑
j=1

hjλjβ
2
j + λ0β0(ξ), (17)

which is valid for ξ << 1/h and h is small by the assumption. Hence, F (r) is well
determined by the approximate formula

F (r) = − I0

2π

∞∫
0

J0(rξ)ξ dξ
n∑
j=1

hjλjβ2
j (ξ) + λ0β0(ξ)

. (18)

as r → ∞. To evaluate the last integral, use a deformation of the integration path in
the complex plane ζ = ξ + iη. First of all consider the function

f(ζ) :=
n∑
j=1

hjλjβ
2
j (ζ) + λ0β0(ζ) = aζ2 + ibω + λ0

√
ζ2 + iωµ0,

where

a =
n∑
j=1

hjλj, b =
n∑
j=1

hjγj.

On real axis this function coincides with denominator of the integrand in formula (18).
Function f(ζ) is analytic on two-sheeted Riemannian surface corresponding to square
root

√
ζ2 + iωµ0. Define the upper sheet by the condition Re

√
ζ2 + iωµ0 ≥ 0 and

consider function f(ζ) on this sheet in the half-plane Re ζ ≥ 0. In the fourth quadrant
on the ζ-plane, there is a branch line which correspond to

√
ζ2 + iωµ0 and coincide

with the part of the hyperbole 2ξη + µ0ω = 0 on which ξ2 − η2 < 0. It is determined
by the parametric equations ζ = ζ(τ) = ξ(τ) + iη(τ), where

ξ(τ) =
µ0ω√

2
(
τ +

√
τ 2 + (µ0ω)2

) , η(τ) = −

√
τ +

√
τ 2 + (µ0ω)2

√
2

and parameter τ ∈ [0,∞). The branch point is ζb := (1 − i)
√
µ0ω/2. Consider two

sides of the branch cat: Γ+ := {ζ(τ) = ξ(τ) + 0 + iη(τ)| τ ∈ [0,∞)} and Γ− :=
{ζ(τ) = ξ(τ) − 0 + iη(τ)| τ ∈ [0,∞)}. Then

√
ζ2 + iωµ0 = −i

√
τ along Γ+ and√

ζ2 + iωµ0 = i
√
τ along Γ−.

In the case b = aµ0, function f(ζ) can be represented in the form

f(ζ) =
√
ζ2 + iωµ0

(
a
√
ζ2 + iωµ0 + λ0

)
.

Hence, in half-plane Re ζ ≥ 0 function f(ζ) vanishes only at the branch point. Assume
now that b 6= aµ0, i.e., µf 6= µ0, (recall that µf := b/a). Then in that half-plane there
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exists an unique point ζ0 such that f(ζ0) = 0 and ζ0 belongs to the fourth quadrant.
Indeed, the equation

aζ2 + ibω + λ0

√
ζ2 + iωµ0 = 0

is equivalent to the equation

a2ζ4 + (2iabω − λ2
0)ζ2 − b2ω2 − iλ2

0µ0ω = 0

under the condition that Re ζ2 ≤ 0. Hence,

ζ0 =

√
λ2

0 − 2iabω − λ0

√
λ2

0 + iν

/(
a
√

2
)

is the unique simple root of function f(ζ) in half-plane Re ζ > 0. Here ν := 4aω(aµ0−
b) = 4a2ω(µ0−µf ). Check that the point ζ0 = ξ0 + iη0 belongs to the fourth quadrant.
Indeed, we have Im

√
λ2

0 + iν > 0 if ν > 0. Hence, Im ζ2
0 < 0 if µ0 ≥ µf . However,

it is still negative even if µ0 < µf because in this case we can use the representation
−2abω = −2a2µ0ω + ν/2 and find that Im ζ2

0 = −µ0ω + ν3A, where A =
(
λ0

√
2 +√

λ2
0 +

√
λ4

0 + ν2
)(
λ2

0 +
√
λ4

0 + ν2
)
/(4a2) and ν < 0. So, it is always Im ζ2

0 < 0 and
Re ζ2

0 < 0. Hence, Im ζ0 < 0. Thus 1/f(ζ) is analytic function in the first quadrant
and has simple pole at point ζ0 in the forth quadrant if µf 6= µ0.

Give a more detail location of ζ0 in the fourth quadrant. Using the previous equality
Im ζ2

0 = −µ0ω+ ν3A, we conclude that the sign of Im ζ2
0 +µ0ω = 2ξ0η0 +µ0ω coincides

with the sign of ν. We also have that Re ζ2
0 = ξ2

0 − η2
0 < 0. These facts imply, that

ζ0 is located in the domain bounded by the branch line, the strait line ξ = −η, and
axis η if µ0 > µf ; and ζ0 belongs to the domain located below the branch point ζb
and bounded by the branch line and the diagonal ξ = −η if µ0 < µf . Note that
the branch point ζb belongs to the diagonal ξ = −η. If 4aω|aµ0 − b| << λ2

0, i.e.,
4(hλf )

2|µ0 − µf |ω << λ2
0, then ζ0 is close to ζb. If ω is high enough, namely, if it

satisfies the inequalities λ0 << 2a
√
|µ0 − µf |

√
ω << 2abω/λ0, then ζ2

0 ∼ −iµfω,
hence ζ0 is close to the diagonal ξ = −η. Moreover, Im ζ0 > Im ζb if µ0 > µf and
Im ζ0 < Im ζb if µ0 < µf .

We return now to calculation the asymptotics of F (r) for large r. Bessel function
J0 can be expressed by the first and second Hankel functions H(1)

0 , H(2)
0 as

J0(rζ) =
1

2

(
H

(1)
0 (rζ) +H

(2)
0 (rζ)

)
.

Because function H(1)
0 (rζ) exponentially decreases as |ζ| → ∞ and Im ζ > 0, and the

integrand is an analytic function in the first quadrant, one has
∞∫

0

H
(1)
0 (rξ)ξ dξ
f(ξ)

= −
∞∫

0

H
(1)
0 (irη)η dη
f(iη)

.

For calculating the integral of H(2)
0 , take the closed path of integration in the fourth

quadrant which goes along real axis ξ from the origin to∞, along the infinitely circular
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arc in clockwise direction and then along the side of the branch cat Γ+ := {ζ(τ) =
ξ(τ) + 0 + iη(τ)| τ ∈ [0,∞)} from τ = ∞ to τ = 0 and then along the other side
Γ− := {ζ(τ) = ξ(τ) − 0 + iη(τ)| τ ∈ [0,∞)} from τ = 0 to τ = ∞ and along the
imaginary axis η from −∞ to the origin (see, e.g., the similar path in [2], p. 246).
Then the integral along this closed path can be calculated by the residue theorem
(if µf 6= µ0) and the integral along the circular path vanishes because the function
H

(2)
0 (rζ) exponentially decreases as |ζ| → ∞ and Im ζ < 0. Therefore,
∞∫

0

H
(2)
0 (rξ)ξ dξ
f(ξ)

= −
∞∫

0

H
(2)
0 (−irη)η dη
f(−iη)

− 2πi
H

(2)
0 (rζ0)ζ0

f ′(ζ0)
−
∫
Γ

H
(2)
0 (rζ)ζ dζ
f(ζ)

,

where f ′ means the derivative of f with respect to ζ and Γ = Γ+

⋃
Γ−. Because

f(−iη) = f(iη) and H(2)
0 (−irη) = −H(1)

0 (irη), we find

F (r) =
iI0H

(2)
0 (rζ0)ζ0

2f ′(ζ0)
+
I0

4π

∫
Γ

H
(2)
0 (rζ)ζ dζ
f(ζ)

:= F1(r) + F2(r), (19)

Noting that

f ′(ζ0) = 2aζ0 +
λ0ζ0√
ζ2

0 + iµ0ω
=
ζ0[2a

√
ζ2

0 + iµ0ω + λ0]√
ζ2

0 + iµ0ω
,

we find that

F1(r) =
iI0H

(2)
0 (rζ0)

√
ζ2

0 − ζ2
b

2
[
2a
√
ζ2

0 − ζ2
b + λ0

] . (20)

This function presents the heat surface wave which occurs as consequence of the layered
medium (see also [1], [3], [4]). If 4aω|aµ0 − b| << λ2

0, i.e., 4(hλf )
2|µ0 − µf |ω << λ2

0,
then ζ0 is close to ζb and function F1(r) becomes small. If aµ0 − b = 0 then F1(r)
vanishes and the asymptotics of F2(r) coincides with the asymptotics of the function

F 0
2 (r) =

I0

4πλ0

∫
Γ

H
(2)
0 (rζ)ζ dζ√
ζ2 + iµ0ω

,

which corresponds the field of the solid substrate.
Transform the integral over Γ to a more convenient for calculation form. Noting

that
f(ζ) = aζ2(τ) + i (bω − λ0

√
τ), ζ(τ) ∈ Γ+,

f(ζ) = aζ2(τ) + i (bω + λ0

√
τ), ζ(τ) ∈ Γ−,

we find that

F2(r) =
I0

4π

∫
Γ

H
(2)
0 (rζ)ζ dζ
f(ζ)

= − I0

2π

∞∫
0

H
(2)
0 (rζ(τ))

iλ0

√
τ ζ(τ) ζ ′(τ) dτ

[a ζ2(τ) + i bω]2 + λ2
0τ

(21)

= − I0

2π

∫
Γ+

H
(2)
0 (rζ)

λ0

√
ζ2 + iµ0ω ζ dζ

[a ζ2 + i bω]2 − λ2
0(ζ2 + iµ0ω)

,
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where and ζ(τ) determines the branch line and ζ ′(τ) stands for the derivative of ζ with
respect to τ . In the last integral the integration direction along Γ+ is taken towards to
the branch point.

When r is large, we have the asymptotic expansion of the Hankel function such as

H
(2)
0 (r) =

√
2

πr
e−i(r−π/4)

[
1 +O(r−1)

]
, (22)

where O(r−1) means the first order term with respect to 1/r. Taking into account
formulae (20), (22), we find that

F1(r) =
1√
r
e−irζ0

[
p0 +O(r−1)

]
, r →∞, (23)

where

p0 =
I0(−1 + i)

√
ζ2

0 + iµ0ω√
πζ0 [2a

√
ζ2

0 + iµ0ω + λ0]
. (24)

To determine the asymptotics of F2(r), consider δ-neighborhood of the branch point
and inside its the segment L := {ζ = ζb− iτ | τ ∈ (0, δ)} of the straight line along which
the integrang exponentially decreases. For ζ ∈ L we have the following representation
of the integrand:

− I0

2π
H

(2)
0 (rζ)

λ0

√
ζ2 + iµ0ω ζ

[a ζ2 + i bω]2 − λ2
0(ζ2 + iµ0ω)

≈ e−irζb−rτ√
r

√
τ
[
g0 +O(τ)

]
,

where

g0 =
I0(1− i)λ0

√
ζb

2
√
π3ω2(b− aµ0)2

. (25)

Then the contribution from the neighborhood of the branch point ζb as r → ∞ is as
follows(see, e.g., [2], p. 228, where the similar calculations are made):

F2(r) ≈ g0
e−irζb√

r

δ∫
0

e−rτ
√
τ dτ =

e−irζb

r2

[
q0 +O(r−1)

]
,

where q0 = g0

√
π/2.

Finally, we obtain the far field asymptotics of F (r) as r →∞ of the form

F (r) =
1√
r
e−irζ0

[
p0 +O(r−1)

]
+

1

r2
e−irζb

[
q0 +O(r−1)

]
, b 6= aµ0. (26)

Note that the latter formula holds good if b− aµ0 is not very close to zero. Recall also
that formula (26) is derived under the condition that

1

γj
<< ω <<

1

µjh2
j = 1, 2, , . . . , n.

We see that asymptotics of F (r) consists of two terms. Depending on the location
of ζ0 and ζb, the first or the second term can dominate. The most interesting case for
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our goal is when the first term is leading. It is happened if and only if µ0 > µf . It
was shown above that in this case 0 < −Imζ0 < Imζb for sufficiently large frequencies,
hence, the first term in (26), which corresponds to the surface heat wave, dominates
for large r.

If µf = µ0 then the integrand in formula (21) has the following expansion for ζ ∈ L:

− I0

2π
H

(2)
0 (rζ)

λ0

√
ζ2 + iµ0ω ζ

[a ζ2 + i bω]2 − λ2
0(ζ2 + iµ0ω)

≈ e−irζb−rτ√
r

1√
τ

[
g∗ +O(τ)

]
,

where

g∗ =
I0(−1 + i)

√
ζb

2
√
π3λ0

.

Therefore the far field asymptotics of F (r) is found then by the formula

F (r) ≈ q∗

r
e−irζb , r →∞, q∗ = g∗

√
π, b = aµ0, (27)

and coincides with the far field asymptotics for the solid substrate.

3 Recovering averaged parameters of the film

Now consider the problem of determining the parameters a and b via function F (r)
given for large r. We assume here that λ0, µ0 and ω, I0 are known. Then the expression
in right-hand side of (27) can be calculated. If the calculated function coincides with
given function F (r) enough good for large r, then we can conclude only that aµ0 −
b is close to zero. In opposite case, function F (r) must be good approximated by
the expression in the right-hand side of (26). Let us consider the function F̂ (r) :=
r2 F (r) exp(irζb). If this function is good approximated by a constant for large r, then
this constant necessary coincides with q0. It means also that in this case the second
term in (26) is leading. Then we can find q0 and g0 = 2q0/

√
π and calculate the

combination b − aµ0 using formula (25). In this case it is impossible to determine a
and b separately, in general, since the first term can decrease very strongly as r →∞
and be lower a noise.

If function F̂ (r) has no a finite limit as r →∞, it means that the first term in (26)
dominates and function F (r) must be good approximated by the formula

F (r) =
p0√
r
e−irζ0 , r →∞. (28)

Then one can find ζ0 = ξ0 + iη0 and, hence, calculate

aζ2
0 + ibω = −λ0

√
ζ2

0 + iµ0ω.

This relation is uniquely determines a and b, because ξ2
0 − η2

0 6= 0 and 2ξ0η0 + µ0ω 6= 0
(the latter was proved in the previous section).

To determine ζ0 one can use the following algorithm. Take the function χ1(r) :=
log(|F (r)|

√
r). According to formula (28), function χ1(r) is a linear function with its

slop equal to η0. So, η0 can be found by the least-squares method. Then the function
χ2(r) := F (r)

√
r exp(−η0r) must be closed to the periodical function p0 exp(−irξ0),

therefore one can easily find ξ0.
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