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An analog of Chang inversion formula
for weighted Radon transforms in multidimensions1

F.O.Goncharov, R.G.Novikov

Abstract In this work we study weighted Radon transforms in multidimensions. We in-
troduce an analog of Chang approximate inversion formula for such transforms and describe
all weights for which this formula is exact. In addition, we indicate possible tomographical
applications of inversion methods for weighted Radon transforms in 3D.
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1 Introduction

We consider the weighted Radon transforms RW defined by the formula

RWf(s, θ)
def
=

∫
xθ=s

W (x, θ)f(x)dx, (1)

(s, θ) ∈ R× Sn−1, x ∈ Rn, n ≥ 2,

where W = W (x, θ) is the weight, f = f(x) is a test function; see e.g. [1]. Such
transforms arise in many domains of pure and applied mathematics; see e.g. [4], [5],
[6], [8], [10], [12]. In the present work we assume that

W is complex – valued,
W ∈ C(Rn × Sn−1) ∩ L∞(Rn × Sn−1), (2)

w0(x)
def
=

1

|Sn−1|

∫
Sn−1

W (x, θ)dθ 6= 0, x ∈ Rn,

where dθ is the element of standard measure on Sn−1, |Sn−1| is the standard measure
of Sn−1.

If W ≡ 1, then R = RW is the classical Radon transform in Rn; see for example
[6], [9], [11], [15]. Explicit inversion formulas for R were given for the first time in [15].

In dimension n = 2, the transforms RW are also known as weighted ray transforms
on the plane; see e.g. [10], [12]. For several important cases of W satisfying (2) for
n = 2, explicit (and exact) inversion formulas for RW were obtained in [2], [7], [13],
[14], [16].

1The main part of the work was fulfilled during the stage of the first author in the Centre de
Mathématiques Appliquées of Ecole Polytechnique in March-May 2016.
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On the other hand, it seems that no explicit inversion formulas for RW were given
yet in the literature under assumptions (2) for n ≥ 3, if W 6= w0.

In the present work we introduce an analog of Chang approximate (but explicit)
inversion formula for RW under assumptions (2), for n ≥ 3, and describe all W for
which this formula is exact. These results are presented in Section 2.

In addition, we indicate possible tomographical applications of inversion methods
for RW in dimension n = 3. These considerations are presented in Section 3.

2 Chang-type formulas in multidimensions

We consider the following approximate inversion formulas for RW under assumptions
(2) in dimension n ≥ 2:

fappr(x)
def
=

(−1)(n−2)/2

2(2π)n−1w0(x)

∫
Sn−1

H [RWf ](n−1) (xθ, θ)dθ, (3)

x ∈ Rn, n is even,

fappr(x)
def
=

(−1)(n−1)/2

2(2π)n−1w0(x)

∫
Sn−1

[RWf ](n−1) (xθ, θ)dθ, (4)

x ∈ Rn, n is odd,

[RWf ](n−1) (s, θ) =
dn−1

dsn−1
RWf(s, θ), s ∈ R, θ ∈ Sn−1, (5)

Hφ(s)
def
=

1

π
p.v.

∫
R

φ(t)

s− t
dt, s ∈ R. (6)

ForW ≡ 1 formulas (3), (4) are exact, i.e. fappr = f , and are known as the classical
Radon inversion formulas, going back to [15].

As a corollary of the classical Radon inversion formulas and definition (1), formulas
(3), (4) for W ≡ w0 are also exact.

Formula (3) for n = 2 is known as Chang approximate inversion formula for
weighted Radon transforms on the plane. This explicit but approximate inversion
formula was suggested for the first time in [3] for the case when

W (x, θ) = exp
(
−Da(x, θ⊥)

)
, (7)

Da(x, θ⊥) =

+∞∫
0

a(x+ tθ⊥)dt, (8)

where a is a non-negative sufficiently regular function on R2 with compact support, and
θ = (θ1, θ2) ∈ Sn−1, θ⊥ = (θ2,−θ1). We recall that RW forW given by (7), (8) is known
as attenuated Radon transform on the plane and arises, in particular, in the single
photon emission tomography (SPECT). In this case an explicit and simultaneously
exact inversion formula for RW was obtained for the first time in [13].

We emphasize that formulas (3), (4) are approximate, in general. In addition, the
following result holds:
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Theorem 2.1. Let W satisfy (2). Let fappr be defined by (3), (4) in terms of RWf
and w0, n ≥ 2. Then fappr = f (in the sense of distributions) on Rn for all f ∈ C0(Rn)
if and only if

W (x, θ)− w0(x) ≡ w0(x)−W (x,−θ), x ∈ Rn, θ ∈ Sn−1. (9)

Here C0(Rn) denotes the space of all continous compactly supported functions on
Rn.

The result of Theorem 1 for n = 2 was obtained for the first time in [14]. Theorem
1 in the general case is proved in Section 4.

If W satisfy (2), f ∈ C0(Rn), but the the symmetry condition (9) does not hold,
i.e.

w0(x) 6= 1

2
(W (x, θ) +W (x,−θ)) , for some x ∈ Rn, θ ∈ Sn−1,

then (3), (4) can be considered as approximate formulas for finding f from RWf .

3 Weighted Radon transforms in 3D in tomographies

In several tomographies the measured data are modeled by weighted ray transforms
Pwf defined by the formula

Pwf(x, α) =

∫
R

w(x+ αt, α)f(x+ αt) dt, (x, α) ∈ TS2, (10)

TS2 = {(x, α) ∈ R3 × S2 : xα = 0},

where f is an object function defined on R3, w is the weight function defined on
R3 × S2, and TS2 can be considered as the set of all rays (oriented straight lines) in
R3. In particular, in the case of the single-photon emission computed tomography
(SPECT) the weight w is given by formulas (7), (8), where θ⊥ = α ∈ S2, x ∈ R3.

In practical tomographical considerations Pwf(x, α) usually arises for rays (x, α)
parallel to some fixed plane

Ση = {x ∈ R3 : xη = 0}, η ∈ S2, (11)

i.e., for αη = 0.
The point is that the following formulas hold:

RWf(s, θ) =

∫
R

Pwf(sθ + τ [θ, α], α)dτ, s ∈ R, θ ∈ S2, (12)

W (x, θ) = w(x, α), α = α(η, θ) =
[η, θ]

|[η, θ]|
, [η, θ] 6= 0, x ∈ R3,

where [·, ·] stands for the standart vector product in R3.
Due to formula (12) the measured tomographical data modeled by Pwf can be

reduced to averaged data modeled by RWf . In particular, this reduction drastically
reduces the level of random noise in the initial data.

Therefore, formula (4) for n = 3 and other possible methods for finding f from
RWf in 3D may be important for tomographies, where measured data are modeled by
Pwf of (10).
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Remark 1. The weight W arising in (12) is not continuous, in general. However, the
result of Theorem 2.1 remains valid for this W , at least, under the assump-
tions that w is bounded and continuous on R3×S2, and w0(x) 6= 0, x ∈ R3,
where w0 is defined in (2).

4 Proof of Theorem 1

For W satisfying (2) we also consider its symmetrization defined by

Ws(x, θ)
def
=

1

2
(W (x, θ) +W (x,−θ)) , x ∈ Rn, θ ∈ Sn−1. (13)

Using definitions (1), (13) we obtain

RWsf(s, θ) =
1

2
(RWf(s, θ) +RWf(−s,−θ)) . (14)

In addition, if W satisfies (9), then

Ws(x, θ) = w0(x), x ∈ Rn, θ ∈ Sn−1. (15)

4.1 Proof of sufficiency

The sufficiency of symmetry (9) follows from formulas (3), (4) for the exact case with
W ≡ w0, the identities

fappr(x) =
(−1)(n−2)/2

2(2π)n−1w0(x)

∫
Sn−1

H [RWsf ](n−1) (xθ, θ)dθ, (16)

for even n,

fappr(x) =
(−1)(n−1)/2

2(2π)n−1w0(x)

∫
Sn−1

[RWsf ](n−1) (xθ, θ)dθ, (17)

for odd n,

and from the identities (14), (15).
In turn, (16) follows from the identities∫

Sn−1

H [RWf ](n−1) (xθ, θ)dθ

=
1

2

∫
Sn−1

(
H [RWf ](n−1) (xθ, θ) + H [RWf ](n−1) (−xθ,−θ)

)
dθ (18)

=

∫
Sn−1

H [RWsf ](n−1) (xθ, θ)dθ.
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In addition, the second of the identities of (18) follows from the identities:

H [RWsf ](n−1) (s, θ) =
1

2π
p.v.

∫
R

1

s− t
×

× dn−1

dtn−1

[
RWf(t, θ) +RWf(−t,−θ)

]
dt

=
1

2
H
[
RWf

](n−1)
(s, θ) +

(−1)n−1

2π
p.v.

∫
R

[RWf ](n−1) (−t,−θ)
s− t

dt; (19)

(−1)n−1

π
p.v.

∫
R

[RWf ](n−1) (−t,−θ)
s− t

dt = −(−1)n−1

π
p.v.

∫
R

[RWf ](n−1) (t,−θ)
−s− t

dt

= (−1)nH [RWf ](n−1) (−s,−θ) = H [RWf ](n−1) (−s,−θ). (20)

This concludes the proof of sufficiency for n even.
Finally, (17) follows from the identities∫

Sn−1

[RWf ](n−1)(xθ, θ)dθ

=
1

2

∫
Sn−1

(
[RWf ](n−1) (xθ, θ) + [RWf ](n−1) (−xθ,−θ)

)
dθ, (21)

[RWsf ](n−1) (t, θ) =
1

2

dn−1

dtn−1

[
[RWf ] (t, θ) + [RWf ] (−t,−θ)

]
=

1

2

[
[RWf ](n−1) (t, θ) + (−1)n−1 [RWf ](n−1) (−t,−θ)

]
=

1

2

[
[RWf ](n−1) (t, θ) + [RWf ](n−1) (−t,−θ)

]
. (22)

This concludes the proof of sufficiency for odd n.

4.2 Proof of necessity

Using that fappr = f for all f ∈ C0(Rn) and using formulas (3), (4) for the exact case
W ≡ w0, we obtain∫

Sn−1

(
H [RWf ](n−1) (xθ, θ)−H [Rw0f ](n−1) (xθ, θ)

)
dθ = 0 (23)

on Rn for even n,∫
Sn−1

[RWf −Rw0f ](n−1) (xθ, θ)dθ = 0 (24)

on Rn for odd n,

for all f ∈ C0(Rn).



28 F.O.Goncharov, R.G.Novikov

Identities (18), (21), (22), (23), (24) imply the identities∫
Sn−1

(
H [RWsf ](n−1) (xθ, θ)−H [Rw0f ](n−1) (xθ, θ)

)
dθ = 0 (25)

on Rn for even n,∫
Sn−1

[RWsf −Rw0f ](n−1) (xθ, θ)dθ = 0 (26)

on Rn for odd n,

for all f ∈ C0(Rn).
The necessity of symmetry (9) follows from the identities (25), (26) and the following

lemmas:

Lemma 4.1. Let (25), (26) be valid for fixed f ∈ C0(Rn) and W satisfying (2), n ≥ 2.
Then

RWsf = Rw0f. (27)

Lemma 4.2. Let (27) be valid for all f ∈ C0(Rn) and fixed W satisfying (2), n ≥ 2.
Then

Ws = w0. (28)

Lemmas 1 and 2 are proved in Sections 5 and 6.

5 Proof of Lemma 1

We will use the following formulas∫
Rn

eiξx
∫

Sn−1

g(xθ, θ) dθ dx

=

√
2π

|ξ|n−1

(
ĝ

(
|ξ|, ξ
|ξ|

)
+ ĝ

(
−|ξ|,− ξ

|ξ|

))
, (29)∫

Rn

eiξx
∫

Sn−1

g(n−1)(xθ, θ) dθ dx =

∫
Rn

eiξx
∫

Sn−1

(θ∇x)
n−1g(xθ, θ) dθ dx

= (−i)n−1
√

2π

(
ĝ

(
|ξ|, ξ
|ξ|

)
+ (−1)n−1ĝ

(
−|ξ|,− ξ

|ξ|

))
, (30)

ĝ(τ, θ) =
1√
2π

∫
R

eiτsg(s, θ)ds, τ ∈ R, θ ∈ Sn−1, (31)

where g ∈ C(Sn−1, L2(R)), ξ ∈ Rn. The validity of formulas (29), (30) (in the sense of
distributions) follows from Theorem 1.4 of [12].
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5.1 The case of odd n

Using identity (14) we get

g(s, θ) = g(−s,−θ), for all s ∈ R, θ ∈ Sn−1, (32)

where
g(s, θ) = [RWsf(s, θ)−Rw0f(s, θ)] . (33)

From (32), we obtain the same symmetry for the Fourier transform ĝ(·, θ) of g(·, θ):

ĝ(t, θ) =
1√
2π

∫
R

g(s, θ)eitsds

=
1√
2π

∫
R

g(−s,−θ)ei(−s)(−t)ds (34)

=
1√
2π

∫
R

g(s,−θ)e−itsds = ĝ(−t,−θ), t ∈ R, θ ∈ Sn−1.

For odd n, from identities (26), (30) it follows that

ĝ

(
|p|, p
|p|

)
+ ĝ

(
−|p|,− p

|p|

)
= 0 in L2

loc(Rn). (35)

Using (34), (35) we obtain
ĝ

(
|p|, p
|p|

)
= 0,

ĝ

(
−|p|,− p

|p|

)
= 0

⇔ ĝ = 0⇔ g = 0. (36)

Formula (27) for odd n follows from (33), (36).

5.2 The case of even n

We consider
g(s, θ) = H [RWsf −Rw0f ] (s, θ), s ∈ R, θ ∈ Sn−1, (37)

arising in (25). Using the identity

H [RWsf −Rw0f ] (−s,−θ) =
1

π
p.v.

∫
R

RWsf(t,−θ)−Rw0f(t,−θ)
−s− t

dt (38)

=
1

π
p.v.

∫
R

RWsf(−t,−θ)−Rw0f(−t,−θ)
−s+ t

dt

= − 1

π
p.v.

∫
R

RWsf(t, θ)−Rw0f(t, θ)

s− t
dt = −H [RWsf −Rw0 ] (s, θ),
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we obtain
g(s, θ) = −g(−s,−θ), for all s ∈ R, θ ∈ Sn−1. (39)

From (39), similarly with (34), we obtain the same symmetry for the Fourier transform
ĝ(·, θ) of g(·, θ):

ĝ(t, θ) = −ĝ(−t,−θ), t ∈ R, θ ∈ Sn−1. (40)

For n even, from the property of the Hilbert transform

H
[
φ(k)
]

= (H [φ])(k) , φ ∈ Ck
0 (R),

where this identity holds in the sense of distributions if φ ∈ C0(R), and identities (25),
(30) it follows that

ĝ

(
|p|, p
|p|

)
− ĝ

(
−|p|,− p

|p|

)
= 0 in L2

loc(Rn). (41)

Using (40), (41) we again obtain (36) but already for even n. Due to (36), (37) we
have

H [RWsf −Rw0f ] = 0. (42)

Formula (27) for even n follows from (42), invertibility of the Hilbert transform on
Lp, p > 1 and the fact that RWf ∈ C0(R× Sn−1).

Lemma 1 is proved.

6 Proof of Lemma 2

Suppose that
Ws(y, θ)− w0(y) = z 6= 0 (43)

for some y ∈ Rn, θ ∈ Sn−1, z ∈ C. SinceW satisfies (2), then for any ε > 0 there exists
δ(ε) > 0 such that

∀ y′ : |y′ − y| < δ → |Ws(y
′, θ)− w0(y

′)− z| < ε, (44)

for fixed y, θ.
Let f ∈ C0(Rn), f ≥ 0 and satisfies the conditions

f(y′) ≡ 1, y′ ∈ Bδ/2(y), (45)
supp f ⊂ Bδ(y), (46)

where Bδ(y) is the open ball with radius δ, centered at y, δ = δ(ε), 0 < ε < |z|. It
suffices to show that

|RWsf(yθ, θ)−Rw0f(yθ, θ)| > 0, (47)

which contradicts the condition of the lemma.
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The identity (47) follows from the formulas

|RWs(yθ, θ)−Rw0(yθ, θ)| =
∣∣∣ ∫
xθ=yθ

f(x)(Ws(x, θ)− w0(x))dx
∣∣∣

=
∣∣∣ ∫
xθ=yθ

f(x)(Ws(x, θ)− w0(x)− z)dx+ z

∫
xθ=yθ

f(x)dx
∣∣∣

≥ |z|
∫

xθ=yθ

f(x)dx−
∫

xθ=yθ

f(x) |Ws(x, θ)− w0(x)− z| dx

≥ (|z| − ε)
∫

xθ=yθ

f(x)dx > 0, for 0 < ε < |z|. (48)

Lemma 2 is proved.
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