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N -BIT PARITY NEURAL NETWORKS WITH
MINIMUM NUMBER OF THRESHOLD NEURONS

M.Z. Arslanov

Abstract In this paper ordered neural networks for the N -bit parity function containing
log2(N + 1) threshold elements are constructed. The minimality of this network is proved.
The connection of minimum perceptrons of Gamb for the N -bit parity function wint one
combinatorial problems is established.
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1 Introduction

In this article, developing the letter [1], the well known XOR/parity problem is consid-
ered. The N -bit parity function is a mapping defined on 2N distinct Boolean vectors
that indicates whether the sum of the N components of a Boolean vector is odd or
even. In [1-11] many solutions of this problem by various neural networks are suggested.
Some of these solutions apply complicated activation functions for using neurons. We
think, that a choice of different activation functions for solving this problem is non
constructive, as it is possible, e.g. to take the network with only one output neuron,
the non monotone activation function of which is equal

f(x) =


0 [b]3exifx < 0

0.5− 0.5 cos(πx) [b]3exif0 ≤ x ≤ 2N/2 + 1
1 [b]3exifx > 2N/2 + 1,

(1)

where N is the number of incoming bits to the output neuron.
The complexity of realizing a Boolean function by some neural network is estimated

by the number of neurons. As the threshold element [3] has the most simple structure,
the complexity of realizing a Boolean function can be estimated by the number of the
threshold elements necessary for its realization.

The threshold element with n incoming bits x1, x2, ...xn, n weights w1, w2, ..., wn,
and the threshold T is defined as follows [3]: its output is equal 1 if

∑n
i=1wixi ≥ T

and 0 otherwise. By using the function

θ(x) =

{
1 [b]3exifx ≥ 0
0 [b]3exifx < 0

the output of the threshold element can be written as θ(
∑n

i=1wixi − T ).
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The XOR problem was solved by threshold neural networks in [4, 5, 8]. In [8] the
XOR problem is solved by perceptrons of Gamb, i.e. two-layer neural networks with
one output threshold neuron in the second layer, and m threshold neurons in the first
layer (see Fig.1.). The thresholds of neurons are in their top part and an input vector
x = (x1, x2..., xN) is presented by one circle.

Figure 1. Perceptron of Gamb

Analytical formulas are:

si = θ(
N∑
j=1

wi,jxj − Ti), i = 1, 2, ...,m (2)

s0 = θ(
m∑
i=1

visi − T0). (3)

In [8] the perceptron of Gamb having N neurons in an intermediate layer for the N -bit
parity function is presented. Moreover, in [8] next estimations are presented

log2N ≤ m(N) ≤ N (4)

for the minimum number m of neurons in the first layer of the perceptron of Gamb
for the N -bit parity function. There the problem about exacter estimations of m(N)
is posed. It is possible to show, that for N = 2, 3, 4 m(N) = N. Nevertheless, the
problem about the minimum on number of neurons perceptrons of Gamb for the N -bit
parity function remains open.

In [4, 5] neural networks which generalize perceptrons of Gamb are considered. In
these networks an input vector can be direct into an output neuron (Fig.2)
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Figure 2. Generalized perceptron of Gamb

Analytical formulas are:

si = θ(
N∑
j=1

wi,jxj − Ti), i = 1, 2, ...,m (5)

s0 = θ(
N∑
j=1

w0,jxj +
m∑
i=1

visi − T0). (6)

In [4, 5] such a neural network for the N -bit parity function is constructed. It contains
N/2 neurons in an interior layer, that twice is less then upper estimation (4) for the
perceptron of Gamb. However, the minimality on number of neurons of this network
is not proved too. Thus for the architecture (5)-(6) of neural networks there is an open
problem about the minimum number of neurons in an intermediate layer for the N -bit
parity function.

We consider solving the XOR problem by the ordered neural network [6]. In the
ordered neural network neurons are numbered, and any neuron n1 (including input
units) can be connected to any other neuron n2 (including output units), as long as
n1 < n2. Ordered networks generalize feedforward neural networks. In Fig. 3 the
structure of the ordered neural network is presented.
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Figure 3. Ordered neural network

Analytical formulas are

b1 = θ(
N∑
i=1

w1,ixi − T1), (7)

bl = θ(
N∑
i=1

wl,ixi +
l−1∑
j=1

vj,lbj − Tl), l = 2, 3, ...,m, (8)

where m is the number of neurons in the network and the last neuron is an output
of the network. In [6] solving the XOR problem is offered for the N -bit input by
the ordered neural network with N threshold neurons. In Section 2 the ordered neural
network with log2(N+1) threshold neurons is offered, that is less, than in [4, 5, 6]. It is
shown also that there are no ordered neural networks for the N -bit parity function with
smaller number of threshold neurons. In Section 3 some remarks about the minimality
problem for the perceptron of Gamb and its connection with one combinatorial problem
are given.

2 Ordered neural networks for solving the XOR prob-
lem

The construction of the ordered neural network for solving the XOR problem is founded
on representing the sum of all inputs in the binary notation and the possibility for each



8 M.Z. Arslanov

digit in such a representation, beginning from the top digit, to construct the threshold
element, output of which is this digit, and inputs are N initial bits and outputs of
previous threshold elements, i.e. major digits. It is easy to see, that the value of
the N -bit parity function is equal to the latest digit. The structure of such a neural
network for N = 15, containing 4 threshold elements, is in Fig. 4, where the neuron’s
threshold is in the top part of the neuron and for convenience all 15 bits are presented
by the Boolean vector x = (x1, ..., x15).

Figure 3. Ordered neural network for 15-bit parity function

Analytical formulas are:

b1 = θ(
15∑
i=1

xi − 7.5), b2 = θ(
15∑
i=1

xi − 8b1 − 3.5),

b3 = θ(
15∑
i=1

xi − 8b1 − 4b2 − 1.5), b4 = θ(
15∑
i=1

xi − 8b1 − 4b2 − 2b3 − 0.5). (9)

It is easy to see, that b1b2b3 is the binary notation of
∑7

i=1 xi. The simple generalization
of this example gives the following neural network, which calculates the parity function
of N input bits x = (x1, x2, ..., xN), and contains k = log2(N + 1) threshold elements:

b1 = θ(
N∑
i=1

xi − 2k−1 + 0.5), (10)
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bl = θ(
N∑
i=1

xi −
l−1∑
j=1

2k−jbj − 2k−l + 0.5), l = 2, 3, ..., k. (11)

It is easy to see, that b1b2...bk is the binary notation of
∑N

i=1 xi. Really, let c1c2...ck,
added by zeros at the left if necessary, be the binary notation of the number y =∑N

i=1 xi. Obviously c1 = 1 if and only if y ≥ 2k−1, i.e. b1 = c1. Thus, y − 2k−1 · c1
is less than 2k−1 and it is possible to apply an induction to the binary notation for
y − 2k−1 · c1.

There is a natural question about the minimality of constructed neural network,
in other words, are there ordered neural networks for the N -bit parity function with
smaller number of threshold neurons? The further part of this paper is devoted to the
negative answer to this question. The idea of the decision is based on the geometrical
fact about the structure of a boolean cube BN placed in RN . It turns out, that for
every hyperplane in RN one of N/2-facets of BN lays on one side from a hyperplane.

Definition 1. The facet of the dimension n of a boolean cube

BN = {x = (x1, x2, ..., xN)|xi ∈ {0, 1}, i = 1, 2, ..., N}

or n-facet is the set of all boolean vectors with N − n fixed components.
Lemma 2. For arbitrary threshold function b(x) from N boolean variables x =

(x1, x2..., xN) there exists the N/2-facet of a boolean cube BN on which this function
is constant.

Proof. Let the threshold function

b(x) =

{
1, [b]5exif

∑n
i=1wixi ≥ T,

0, [b]5exif
∑n

i=1wixi < T
(12)

be given. If some weights wi are negative, then by the standard substitution xi = 1−x′i
for all such i and xi = x′i for others we receive the threshold function

c(x
′
) =

{
1,

∑n
i=1 |wi|x

′
i ≥ T +

∑
i∈J − |wi|

0,
∑n

i=1 |wi|x
′
i < T +

∑
i∈J − |wi|

(13)

where J− = {i|wi < 0}, such that b(x) = c(x′). So, without loss of generality we can
consider, that all wi ≥ 0, i = 1, 2, ..., N. Let

N/2∑
i=1

wi ≥ T. (14)

It is easy to see, that on the following facet of the dimension N −N/2 ≥ N/2

F1 = {x ∈ BN |x1 = x2 = ... = xN/2 = 1} (15)

the function b(·) is equal 1. If, on the other hand,

N/2∑
i=1

wi < T, (16)



10 M.Z. Arslanov

then on the N/2-facet

F2 = {x ∈ BN |xN/2+1 = xN/2+2 = ... = xN = 0} (17)

the function b(·) is equal 0. The lemma is proved.
Note that it is impossible to increase the dimension of the facet on which the

threshold function is constant. An example is the threshold function b(x) = θ(
∑N

i=1 xi−
N/2 − 0.5). It is easy to show, that on any facet of the dimension greater than N/2
this function is not constant.

Now we can prove the minimality of the ordered neural network (10)-(11) on number
of threshold neurons.

Theorem 3. Let N = 2m. Then the N -bit parity function and its negation can
not be submitted by the ordered neural network with m threshold neurons.

Proof. We prove this theorem by an induction. For m = 1 the theorem asserts
the well known fact of threshold logic [3, 8] that the function of ”exclusive-or“ x1 ⊕ x2
and its negation x1 ⊕ x2 ⊕ 1 are not threshold functions. Let the theorem is valid for
m = k. On the other hand, let for m = k + 1 and N = 2k+1 the N -bit parity function
can be received by the ordered neural network with k + 1 threshold neurons, in the
analytical form

b1 = θ(
N∑
i=1

w1,ixi − T1), (18)

bl = θ(
N∑
i=1

wl,ixi +
l−1∑
j=1

vj,lbj − Tl), l = 2, 3, ..., k + 1. (19)

The contradiction turns out as follows. Consider the first neuron of the given ordered
neural network. Its output b1 depends only from N input bits, i.e. it is the boolean
threshold function b1(x) from the boolean vector x = (x1, x2..., xN). According to
Lemma 1 there exists the facet of the dimension N/2 = 2k on which the given function
is constant. By the permutation of variables one can achieve that this facet is defined
by fixing the variables x2k+1, x2k+2, ..., x2k+1 or this facet is defined by equations

F = {x ∈ BN |x2k+1 = α1, x2k+2 = α2, ..., x2k+1 = α2k}. (20)

If to fix variables x2k+1, x2k+2, ..., x2k+1 in such a way, the given ordered neural net-
work can be considered as the realization of the boolean function from N/2 variables
x1, x2, ..., x2k . Clearly, an output of this network is the boolean function ⊕2k

i=1 xi ⊕ α,
where α = ⊕2k

i=1 αi. Thus if α = 0 we have ordered neural network for the parity
function from x1, x2..., x2k , or if α = 1 for its negation. It is easy to see, that we can
reorganize this network by omitting the first neuron as it is constant and decreasing
the thresholds T2, T3, ..., Tk+1 of other neurons by multiplying this constant by appro-
priate weights. So, we receive the network with k threshold neurons which calculates,
contrary to the assumption of the induction, 2k-bit parity function or its negation by
the formulas:

b2 = θ(
N∑
i=1

w2,ixi − (T2 − v1,2b1)), (21)
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bl = θ(
2k∑
i=1

wl,ixi +
l−1∑
j=2

vj,lbj − (Tl − v1,lb1)), l = 3, 4, ..., k + 1, (22)

in which the first neuron has an index 2 etc. This contradiction proves the theorem for
the N -bit parity function. Analogously the theorem is proved for the negation of the
N -bit parity function.

From the proved theorem the minimality on number of threshold neurons of de-
signed ordered neural network (10)-(11) for the N -bit parity function follows. Really,
if for some N there is an ordered neural network for the N -bit parity function with
smaller than k = log2(N + 1) number of threshold neurons, then, as N ≥ 2k−1, from
here follows an existence of the ordered neural network with k − 1 threshold neurons
for the 2k−1-bit parity function. This contradicts with Theorem 1.

3 Some notes about minimum perceptrons of Gamb

Let’s consider the problem of synthesis the perceptron of Gamb

si = θ(
N∑
j=1

wi,jxj − Ti), i = 1, 2, ...,m (23)

s0 = θ(
m∑
i=1

visi − T0) (24)

for the N -bit parity function with minimum number of intermediate threshold neurons,
which we denote by m(N). The upper estimation in (4) is obtained by a construction
of the concrete perceptron of Gamb. An example is the following perceptron:

si = θ(
N∑
j=1

(−1)i+1xj − (i− 0.5)(−1)i+1), i = 1, 2, ..., N (25)

s0 = θ(
N∑
i=1

si −N/2− 0.5). (26)

The lower estimation in (4) is accompanied by words ”it’s not hard to show, that
log2N ≤ m(N)“. However, the lower estimation easily follows from Theorem 1. The
bibliographic searching has shown, that other estimations for m(N) are absent. We
shall connect this problem with the more common combinatorial problem.

Let’s consider the problem of the dissection of all edges of a Boolean cube BN

located in RN by the minimum number of hyperplanes, which do not pass through
vertices of BN . Let’s denote this minimum number of hyperplanes by m1(N). Next
lemma is valid.

Lemma 4. m(N) ≥ m1(N).
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Proof. Let (23)-(24) be the minimum perceptron of Gamb for the N -bit parity
function. The thresholds in it can be taken such, that hyperplanes

N∑
j=1

wi,jxj = Ti, i = 1, 2, ...,m (27)

do not pass through vertices of BN . Let’s show, that a set of hyperplanes (21) dissects
all edges of BN . If it is not so, there is an edge in BN

((α1, α2, ..., αi, αi+1, ..., αN), (α1, α2, ..., 1− αi, αi+1, ..., αN))

which is not dissected by all hyperplanes from (27). Then both boundary points of
this edge are on one side from each of hyperplanes (27). This means, that all neurons
of the perceptron (23)-(24) are constant on this edge. From (24) it follows that an
output neuron s0 is constant on this edge. But the parity function is not constant on
any edge. This inconsistency proves the lemma.

It is easy to see, that for N = 2, 3 one have m1(N) = N , as it is impossible by
one line dissect all 4 edges of a guadrate and by two planes dissect all 12 edges of a
3-dimensional cube. From here follows, that m(N) = N with N = 2, 3. More hard,
but it is possible to show, that m(4) = 4.

In connection with above the following problems are natural.
1. Whether always m(N) = N?
2. Are there N , for which m(N) > m1(N).
Similar is the problem of the minimality of constructed in [4, 5] neural networks

with N/2 intermediate threshold neurons in a class of neural networks (5)-(6).
However, as it is mentioned in [8], this problems have not simple solution similar

to simple constructions of concrete neural networks.

4 Conclusions

We have offered a simple ordered neural network for the N -bit parity function, which
contains log2(N+1) threshold elements. For a comparison, the ordered neural network
in [6] contains N threshold gates, and in [4, 5] N/2 + 1 threshold gates. The problems
of proving the minimality (on number of threshold neurons) for various architecture
of neural networks are still difficult. We have proved the minimality of the offered
construction for the N -bit parity function in the class of ordered neural networks.
Some considerations of analogous problem for perceptron of Gamb are undertaken and
open problems are formulated.
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