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A PROBLEM OF RECOVERING A SPECIAL TWO-DIMENSIONAL
POTENTIAL IN A HYPERBOLIC EQUATION

V.G. Romanov

Abstract We consider an inverse problem for partial differential equations of the second
order related to recovering a coefficient (potential) in the lower term of this equations. It
is supposed that the unknown potential is a trigonometric polynomial with respect to one
of space variables with continuous coefficients of the other variable. The direct problem for
the hyperbolic equation is the initial-boundary value problem for half-space x > 0 with zero
initial Cauchy data and a special Neumann data at x = 0. We prove a local existence theorem
for the inverse problem. The used method gives stability estimates for the solution to the
direct and inverse problems and proposes a method of solving them.
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1 Introduction

Inverse problems for hyperbolic equations intensively studied beginning with the second
part of the last century (see [1]-[4], [7]-[13], [17], [21]-[24]). Some of this investigations
were represented later in the books [5], [6], [14]- [16], [18]-[20], [25]-[30]. Uniqueness
and stability of solutions are usually main questions in a study of inverse problems. For
some one-dimension inverse problems existence theorems can be also stated. But for
multidimensional inverse problems such theorems are almost absent. An exception here
is a class of analytical functions. If unknown coefficients and data of an inverse prob-
lem are analytical functions by some of variables, then sometimes the local existence
theorems can be proved (see, for example, [24], [27]). Numerical methods for solving
inverse problems based on the minimization of residual functionals and regularization
procedures were developed (see the books [15], [16], [29] and references therein). Very
often these methods use a finite-dimensional approximation for unknown coefficients
and a finite-dimensional approximation for solutions of direct problems.

Below we consider an inverse problem of recovering a coefficient in the lower term
of a hyperbolic equation. We suppose that the unknown coefficient is a polynomial of
a fixed order with respect to the independent variable y with continuous coefficients
dependent on x. In the next section we formulate the inverse problem and study prop-
erties of the solution of a direct problem. The latter problem contains infinitely many
components of Fourier series for the solution. We demonstrate that for the correspond-
ing infinitely system of equations the method of successive approximations is converged
and allows estimate the solution. In section 3 we prove a local existence theorem for the
posed inverse problem. The presented results give a convenient approach for numerical
solving the inverse problem.
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2 Posing the problem and some lemmas

For the function u(x, y, t) consider the initial-boundary value problem

∂2u

∂t2
−∆u− q(x, y)u = 0, (x, y, t) ∈ R3

+; u|t<0 = 0,
∂u

∂x

∣∣∣
x=0

= δ(t), (1)

where R3
+ = {(x, y, t) ∈ R3|x > 0}. Assume that the potential q(x, y) can be repre-

sented in the form of a finite Fourier series

q(x, y) =
N∑

s=−N

qs(x)eisy (2)

with a fixed integer N ≥ 0. Denote by Q(N,L,Q) the set of functions q(x, y) for which
the coefficients qs(x), |s| ≤ N , are continuous functions on the interval [0, L] and satisfy
the conditions

|qs(x)| ≤ Q, x ∈ [0, L], −N ≤ s ≤ N. (3)

For q(x, y) ∈ Q(N,L,Q) the solution of the problem (1) is a 2π periodic function of y
and can be represented as a Fourier series

u(x, y, t) =
∞∑

m=−∞

um(x, t)eimy, (4)

where the coefficients um(x, t) satisfy the following relations(
∂2

∂t2
− ∂2

∂x2
+m2

)
um(x, t)−

N∑
s=−N

qs(x)um−s(x, t) = 0, (x, t) ∈ R2
+;

um|t<0 = 0,
∂um
∂x

∣∣∣
x=0

= δ(t)δ0m m = 0,±1,±2, . . . . (5)

In the latter equations R2
+ = {(x, t) ∈ R2|x > 0} and δ0m is the Kronecker delta.

We shall consider

The inverse problem. Find the coefficients qs(x), s = 0,±1,±, . . . ,±N , from
the given

um(0, t) = fm(t), t ∈ [0, T ], m = 0,±1,±2, . . . ,±N, (6)

where T is a fixed positive number.

We begin studying this problem with consideration of some properties of the solu-
tion to the direct problem (5).

Lemma 2.1. Let T be an arbitrary positive number, q(x, y) ∈ Q(N, T/2, Q) and
D(T ) = {(x, t)| 0 ≤ x ≤ T − t}. Then the solution to the problem (5) exists and can
be represented in D(T ) in the form

um(x, t) = um(x, t)H(t− x), m = 0,±1,±2, . . . . (7)
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where H(t) is the Heaviside step-function and um(x, t) are continuous functions together
with its derivatives up to the second order in the domain D′(T ) = {(x, t)| 0 ≤ x ≤ t ≤
T − x}. Moreover, this solution is unique and there exist positive constants C1 =
C1(N, T,Q) and C2 = C2(N, T,Q) such that the following estimates hold

|u0(x, t)− 1| ≤ C1
QTt

2 · 1!
,

|um(x, t)| ≤ C1
Qn+1T n+1(2N + 1)ntn+1

2n+1 · (n+ 1)!
, (8)

(x, t) ∈ D′(T ), Nn < |m| ≤ (n+ 1)N, n = 0, 1, 2, . . . ,

∣∣∣∣∂um(x, t)

∂t

∣∣∣∣ ≤ 1

4
C2(4 +m2T 2)Q(2N + 1)t, −N ≤ m ≤ N,∣∣∣∣∂um(x, t)

∂t

∣∣∣∣ ≤ C2(4 +m2T 2)
Qn+1T n(2N + 1)ntn+1

2n+2 · (n+ 1)!
, (9)

nN < |m| ≤ (n+ 1)N, n = 1, 2, . . . , , (x, t) ∈ D′(T ).

Proof. The representation (7) follows from the well known fact that the solution
to the problem (1) vanishes for all (x, y, t) satisfying the condition x > t > 0 because
the initial data are zero and the boundary source is located on the axis x = 0, t = 0.
Hence, all um(x, t) ≡ 0 for x > t > 0. Therefore, um(x, t) = um(x, t) in D′(T ). For
the sake of convenience, we continue all functions um(x, t), qs(x) for x < 0 as even
functions: um(−x, t) = um(x, t), qs(−x) = qs(x) and define

D(T ) = {(x, t)| t ≤ T − |x|}, D′(T ) = {(x, t)| 0 ≤ |x| ≤ t ≤ T − |x|}.

Then the problem (5) is equivalent to the following integral equations

um(x, t) = δ0m +
1

2

∫
♦(x,t)

J0

(
m
√

(t− τ)2 − (x− ξ)2
) N∑
s=−N

qs(ξ)um−s(ξ, τ)dξdτ, (10)

(x, t) ∈ D′(T ), m = 0,±1,±2, . . . .

Here J0(ζ) is the Bessel function and

♦(x, t) = {(ξ, τ)| |ξ| ≤ τ ≤ t− |ξ − x|}.

Recall that the Bessel function Jν(ζ) for a fixed integer ν ≥ 0 is defined by the formula

Jν(ζ) =
∞∑
k=0

(−1)k

k!(k + ν)!

(
ζ

2

)2k+ν

.

From this formula follows the estimate∣∣∣∣Jν(ζ)

ζν

∣∣∣∣ ≤ 1

2νν!
, |ζ| ≤ 2. (11)
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Moreover, for the Bessel function the following representation holds:

Jν(ζ) =
1

2π

π∫
−π

e−iζ cosϕ+iνϕdϕ,

From here follows that

|Jν(ζ)| ≤ 1 for all ζ ∈ R. (12)

Consider for equations (10) the method of successive approximations. Define

um(x, t) =
∞∑
k=0

ukm(x, t), (13)

where

u0
m(x, t) = δ0m,

ukm(x, t) =
1

2

∫
♦(x,t)

J0

(
m
√

(t− τ)2 − (x− ξ)2
) N∑
s=−N

qs(ξ)u
k−1
m−s(ξ, τ)dξdτ, (14)

(x, t) ∈ D′(T ), k = 1, 2, . . . , m = 0,±1,±2, . . . .

It is obvious that all functions ukm(x, t) are continuous inD′(T ). Moreover, the following
estimates hold

|u1
m(x, t)| ≤ QT

2

t∫
0

N∑
s=−N

max
|ξ|≤T/2

|u0
m−s(ξ, τ)|dτ

≤ QTt

2 · 1!

{
1, |m| ≤ N,
0, |m| > N,

|u2
m(x, t)| ≤ (QT )2

22

t∫
0

N∑
s=−N

max
|ξ|≤T/2

|u1
m−s(ξ, τ)|dτ

≤ (QT )2(2N + 1)t2

22 · 2!

{
1, |m| ≤ 2N,
0, |m| > 2N,

(15)

(x, t) ∈ D′(T ).

Continuing these estimates, we easily prove that

|ukm(x, t)| ≤ (QT )km(2N + 1)k−1tk

2k · k!

{
1, |m| ≤ kN,
0, |m| > kN,

(16)

(x, t) ∈ D′(T ), k = 1, 2, . . . .

Since t ≤ T in D′(T ) the series (13) is uniformly converged in D′(T ) for all m. Hence,
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its sum is a continuous function in D′(T ). Moreover, the following estimates hold

|u0(x, t)− 1| ≤
∞∑
k=1

|ukm(x, t)| ≤
∞∑
k=1

(QT )k(2N + 1)k−1tk

2k · k!

≤ QTt

2 · 1!
C1,

|um(x, t)| ≤
∞∑

k=n+1

|ukm(x, t)| ≤
∞∑

k=n+1

(QT )k(2N + 1)k−1tk

2k · k!

≤ (QT )n+1(2N + 1)ntn+1

2n+1 · (n+ 1)!
C1, (17)

(x, t) ∈ D′(T ), Nn < |m| ≤ (n+ 1)N, n = 0, 1, 2, . . . ,

where C1 = exp (QT 2(2N + 1)/2). Now differentiating equations (10) with respect to
x and t, we easily check that functions um(x, t) are twice differentiable in D′(T ). We
check it for the derivatives with respect to t only. The expressions for these derivatives
will be useful in the analysis of the inverse problem. Using (10), we find

∂um(x, t)

∂t
=

1

2

(x+t)/2∫
(x−t)/2

N∑
s=−N

qs(ξ)um−s(ξ, t− |x− ξ|)dξ

+
1

2

∫
♦(x,t)

Km(t− τ, x− ξ)
N∑

s=−N

qs(ξ)um−s(ξ, τ)dξdτ, (18)

(x, t) ∈ D′(T ), m = 0,±1,±2, . . . .

where

Km(t− τ, x− ξ) =
∂

∂t
J0

(
m
√

(t− τ)2 − (x− ξ)2
)

= −m2(t− τ)
J1(ζ)

ζ

∣∣∣∣
ζ=m
√

(t−τ)2−(x−ξ)2
.

Here J1(ζ) is the Bessel function. Note that J1(ζ)/ζ is a continuous function for all
ζ ∈ [0,∞) and J1(ζ)/ζ → 1/2 as ζ → 0. From the relation (18) we see that the
derivatives ∂um(x, t)/∂t are, indeed, continuous in D′(T ) for all m.

To obtain estimates (9), we denote ∂um(x, t)/∂t = vm(x, t). Since from (11) and
(12) follows that |J1(ζ)/ζ| ≤ 1/2 for all ζ ∈ R, we have |Km(t − τ, x − ξ)| ≤ m2T/2.
Therefore we can estimate vm(x, t) as follows

|vm(x, t)| ≤ (4 +m2T 2)
Q

4

t∫
0

N∑
s=−N

max
ξ∈Σ(x,t,τ)

|um−s(ξ, τ)|dτ, (19)

(x, t) ∈ D′(T ), m = 0,±1,±2, . . . ,
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where Σ(x, t, τ) = {ξ| (ξ, τ) ∈ ♦(x, t)}. Using (8) and the obvious inequality C1 ≥ 1,
we get that the following estimates hold

|v0(x, t)| ≤ tQ(2N + 1)

(
1 + C1

QTt

2 · 2!

)
≤ tQ(2N + 1)C1

(
1 +

QTt

4

)
,

|vm(x, t)| ≤ (4 +m2T 2)
Q(2N + 1)

4
C1

×max

(
t

1!
+
QTt2

2 · 2!
,
Q2T 2(2N + 1)t3

22 · 3!

)
, 0 < |m| ≤ N, (20)

|vm(x, t)| ≤ C1(4 +m2T 2)
Q(2N + 1)

4
max

(
QnT n(2N + 1)n−1tn+1

2n · (n+ 1)!
,

Qn+1T (n+1)(2N + 1)nt(n+2)

2n+1 · (n+ 2)!
,
Qn+2T (n+2)(2N + 1)n+1t(n+3)

2n+2 · (n+ 3)!

)
,

nN < |m| ≤ (n+ 1)N, n ≥ 1, (x, t) ∈ D′(T ).

Denoting

C2 = C1 max

(
1 +

QT 2(2N + 1)

3
,
Q2T 4(2N + 1)2

22 · 3!

)
,

we come to the estimates

|vm(x, t)| ≤ 1

4
C2(4 +m2T 2)Q(2N + 1)t, −N ≤ m ≤ N,

|vm(x, t)| ≤ C2(4 +m2T 2)
Qn+1T n(2N + 1)ntn+1

2n+2 · (n+ 1)!
,

nN < |m| ≤ (n+ 1)N, n = 1, 2, . . . , (x, t) ∈ D′(T ). (21)

which coincide with (9).
It follows from equation (10), that um(x, |x|+ 0) = δ0m. Using this fact and differ-

entiating the equalities (18) with respect to t, we obtain

∂2um(x, t)

∂t2
=

1

4

[
qm

(
x+ t

2

)
+ qm

(
x− t

2

)]

+
1

2

(x+t)/2∫
(x−t)/2

N∑
s=−N

qs(ξ)vm−s(ξ, t− |x− ξ|)dξ

−m
2

4

(x+t)/2∫
(x−t)/2

|x− ξ|
N∑

s=−N

qs(ξ)um−s(ξ, t− |x− ξ|)dξ

+
1

2

∫
♦(x,t)

K ′m(t− τ, x− ξ)
N∑

s=−N

qs(ξ)um−s(ξ, τ)dξdτ, (22)

(x, t) ∈ D′(T ), m = 0,±1,±2, . . . ,
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where vm(x.t) = ∂um(x, t)/∂t and

K ′m(t− τ, x− ξ) =
∂

∂t
Km(t− τ, x− ξ)

= −m2

[
J1(ζ)

ζ
−m2(t− τ)2J2(ζ)

ζ2

]∣∣∣∣
ζ=m
√

(t−τ)2−(x−ξ)2
.

We have used here that
∂

∂ζ

(
J1(ζ)

ζ

)
= −J2(ζ)

ζ
,

where J2(ζ) is the Bessel function. Since the function J1(ζ)/ζ and J2(ζ)/ζ2 are contin-
uous for all ζ ∈ [0,∞), the function K ′m(t, x) is continuous for (x, t) ∈ D′(T ). Hence,
the second derivatives ∂2um(x, t)/∂t2 are also continuous functions in D′(T ).

Similarly one can check that the derivatives ∂um(x, t)/∂x and ∂2um(x, t)/∂x∂t are
continuous functions in D′(T ).

Concluding the Lemma, we note that the uniqueness of the constructed solution
follows from the uniqueness theorem to the problem (1). �

Corollary. If q(x, y) ∈ Q(N, T/2, Q) the data (6) of the inverse problem must
satisfy the following requirements

fm(t) ∈ C2[0, T ], f ′m(0) = 0, m = 0,±1,±2, . . . ,±N,
f0(0) = 1, fm(0) = 0, m = ±1,±2, . . . ,±N. (23)

For the problem (5) the following lemma holds.

Lemma 2.2. Let q(x, y) and q̂(x, y) be two arbitrary functions of the set Q(N, T/2, Q)
and um(x, t) and ûm(x, t), m = 0,±1,±2, . . ., be the solutions to the problem (5)
which correspond to q(x, y) and q̂(x, y), respectively. Then there exist constants C3 =
C3(N, T,Q) and C4 = C4(N, T,Q) such that

|u0(x, t)− û0(x, t)| ≤ C3Q̃t,

|um(x, t)− ûm(x, t)| ≤ C3Q̃
QnT n(2N + 1)ntn+1

2n · (n+ 1)!
, (24)

nN < |m| ≤ (n+ 1)N, n = 0, 1, 2, . . . , (x, t) ∈ D′(T ).

∣∣∣∣∂u0(x, t)

∂t
− ∂û0(x, t))

∂t

∣∣∣∣ ≤ C4Q̃(2N + 1)
t2

2!∣∣∣∣∂um(x, t)

∂t
− ∂ûm(x, t))

∂t

∣∣∣∣ ≤ C4Q̃
(4 +m2T 2)QnT n(2N + 1)n

2n+2

tn+2

(n+ 2)!
(25)

nN < |m| ≤ (n+ 1)N, n = 0, 1, 2, . . . , (x, t) ∈ D′(T ).

where

Q̃ = max
−N≤s≤N

max
0≤x≤T/2

|qs(x)− q̂s(x)|, (26)
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Proof. Denote

ũm(x, t) = um(x, t)− ûm(x, t), q̃s(x) = qs(x)− q̂s(x). (27)

Using the equations (10) with (um, qs) and (ûm, q̂s) and extracting one from other, we
find

ũm(x, t) =
1

2

N∑
s=−N

∫
♦(x,t)

J0

(
m
√

(t− τ)2 − (x− ξ)2
)

×[qs(ξ)ũm−s(ξ, τ) + q̃s(ξ)ûm−s(ξ, τ)]dξdτ, (28)
(x, t) ∈ D′(T ), m = 0,±1,±2, . . . .

Represent ũm(x, t) in the form

ũm(x, t) =
∞∑
k=0

ũkm(x, t), (29)

where

ũ0
m(x, t) =

1

2

N∑
s=−N

∫
♦(x,t)

J0

(
m
√

(t− τ)2 − (x− ξ)2
)
q̃s(ξ)ûm−s(ξ, τ)dξdτ, (30)

(x, t) ∈ D′(T ), m = 0,±1,±2, . . . ,

ũkm(x, t) =
1

2

N∑
s=−N

∫
♦(x,t)

J0

(
m
√

(t− τ)2 − (x− ξ)2
)
qs(ξ)ũ

k−1
m−s(ξ, τ)dξdτ, (31)

(x, t) ∈ D′(T ), k = 1, 2, . . . , m = 0,±1,±2, . . . .

From here we obtain

|ũ0
m(x, t)| ≤ TQ̃

2

N∑
s=−N

t∫
0

max
|ξ|≤T/2

|ûm−s(ξ, τ)|dτ,

|ũkm(x, t)| ≤ TQ

2

N∑
s=−N

t∫
0

max
|ξ|≤T/2

|ũk−1
m−s(ξ, τ)|dτ, (32)

(x, t) ∈ D′(T ), m = 0,±1,±2, . . . , k = 1, 2, . . . .

Use the estimates (8) for functions ûm(x, t) here. Then we get

|ũ0
0(x, t)| ≤ TQ̃

2
C1

(
t

1!
+
QTt2

2 · 2!

)
(2N + 1),

|ũ0
m(x, t)| ≤ TQ̃

2
C1 max

(
t

1!
+
QTt2

2 · 2!
,
Q2T 2(2N + 1)t3

22 · 3!

)
(2N + 1)t,

0 < |m| ≤ N,

|ũ0
m(x, t)| ≤ TQ̃

2
C1
QnT n(2N + 1)ntn+1

2n · (n+ 1)!
max

(
1,
Q2T 2(2N + 1)2t2

22 · (n+ 2)(n+ 3)

)
,

nN < |m| ≤ (n+ 1)N, n = 1, 2, . . . , (x, t) ∈ D′(T ).
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These estimates we can write it in the more compact form as follows

|ũ0
m(x, t)| ≤ Q̃

T (2N + 1)t

2
C2, −N < m ≤ N,

|ũ0
m(x, t)| ≤ Q̃

QnT n+1(2N + 1)ntn+1

2n+1 · (n+ 1)!
C2, (33)

nN < |m| ≤ (n+ 1)N, n = 1, 2, . . . , (x, t) ∈ D′(T ).

For k ≥ 1 we find that

|ũk0(x, t)| ≤ C2Q̃
Qk(T (2N + 1)t)k+1

2k+1 · (k + 1)!
,

|ũkm(x, t)| ≤ C2Q̃
Qn+k(T (2N + 1)t)n+k+1

2n+k+1 · (n+ k + 1)!
max

(
1,

QT t

2(n+ k + 2)

)
(34)

(x, t) ∈ D′(T ), nN < |m| ≤ (n+ 1)N, n = 0, 1, 2, . . . .

Hence,

|ũ0(x, t)| ≤ C2Q̃
T (2N + 1)t

2 · 1!
exp (QT (2N + 1)t) ,

|ũm(x, t)| ≤ C2Q̃
Qn(T (2N + 1)t)n+1

2n+k+1 · (n+ 1)!
max

(
1,
QT 2

4

)
exp (QT (2N + 1)t) , (35)

nN < |m| ≤ (n+ 1)N, n = 0, 1, 2, . . . , (x, t) ∈ D′(T ).

Thus, the estimate (24) holds with

R0 = C2
T (2N + 1)

2
max

(
1,
QT 2

4

)
exp

(
QT 2(2N + 1)

)
.

For proving (25), we use the relation (18) for (um, qs) and (ûm, q̂s). Subtracting one
from other, we find

∂ũm(x, t)

∂t
=

1

2

(x+t)/2∫
(x−t)/2

N∑
s=−N

[qs(ξ)ũm−s(ξ, t− |x− ξ|) + q̃(ξ)ûm−s(ξ, t− |x− ξ|)] dξ

+
1

2

∫
♦(x,t)

Km(t− τ, x− ξ)
N∑

s=−N

[qs(ξ)ũm−s(ξ, τ) + q̃(ξ)ûm−s(ξ, τ)] dξdτ, (36)

m = 0,±1,±2, . . . , (x, t) ∈ D′(T ).

Then∣∣∣∣∂ũm(x, t)

∂t

∣∣∣∣ ≤ 4 +m2T 2

4

N∑
s=−N

t∫
0

max
ξ∈Σ(x,t,τ)

(
Q|ũm−s(ξ, τ)|+ Q̃|ûm−s(ξ, τ)|

)
dτ, (37)

m = 0,±1,±2, . . . , (x, t) ∈ D′(T ).
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Using estimates (8) and (24), we find∣∣∣∣∂ũ0(x, t)

∂t

∣∣∣∣ ≤ Q̃(2N + 1)

(
C3 + C1

(
1 +

QT

4

))
t2

2!∣∣∣∣∂ũm(x, t)

∂t

∣∣∣∣ ≤ Q̃
(4 +m2T 2)QnT n(2N + 1)ntn+1

2n+2

tn+2

(n+ 2)!

×
(
C3 + C1

QT

2
max

(
1 +

QT

4
,
Q2T 4(2N+!)2

4

))
, (38)

nN < |m| ≤ (n+ 1)N, n = 0, 1, 2, . . . , (x, t) ∈ D′(T ).

Hence. estimates (25) hold with

C4 = C3 + C1
QT

2
max

(
1 +

QT

4
,
Q2T 4(2N+!)2

4

)
.

The lemma is proven. �

3 The existence and uniqueness theorem

Set x = 0 in the equation (22) and use the condition (6). Then we obtain

f ′′m(t) =
1

2
qm

(
t

2

)
+

t/2∫
0

N∑
s=−N

qs(ξ)vm−s(ξ, t− |ξ|)dξ

−m
2

2

t/2∫
0

|ξ|
N∑

s=−N

qs(ξ)um−s(ξ, t− |ξ|)dξ

+

∫
.(t)

K ′m(t− τ, ξ)
N∑

s=−N

qs(ξ)um−s(ξ, τ)dξdτ, (39)

t ∈ [0, T ], m = 0,±1,±2,±N,

where

f ′′m(t) =
d2fm(t)

dt2
, .(t) = {(ξ, τ)|0 ≤ ξ ≤ t/2, ξ ≤ τ ≤ t− ξ}.

The equations (10), (19), (39) form the system of integral relations for finding
unknown functions um(x, t), vm(x, t) and qs(x) in the domain D

′
(T ). The equa-

tions (10) determine um as the operator functions of qs, s = −N, . . . , N , i.e., um =
um(x, t; q−N , . . . , qN). Similarly equations (19) determine vm = vm(x, t; q−N , . . . , qN).
Then the equations (39) we can consider as the operator equations

qm(x) = Am(x; q−N , . . . , qN), m = 0,±1, . . . ,±N, x ∈ [0, T/2], (40)
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where operators Am(x; q−N , . . . , qN) are defined by the formulae

Am(x; q−N , . . . , qN) = q0
m(x)− 2

x∫
0

N∑
s=−N

qs(ξ)vm−s(ξ, 2x− |ξ|; q−N , . . . , qN)dξ

+m2

x∫
0

|ξ|
N∑

s=−N

qs(ξ)um−s(ξ, 2x− |ξ|; q−N , . . . , qN)dξ

−2

∫
.(2x)

K ′m(2x− τ, ξ)
N∑

s=−N

qs(ξ)um−s(ξ, τ ; q−N , . . . , qN)dξdτ, (41)

x ∈ [0, T/2], m = 0,±1,±2,±N,

and

q0
m(x) = 2f ′′m(2x) ⊂ C[0, T/2], m = 0,±1,±2,±N. (42)

Denote by Q0(N,L,Q0) the set of functions qs(s), −N ≤ s ≤ N , satisfying the condi-
tions

‖qm − q0
m‖C[0,L] ≤ Q0, Q0 = max

−N≤s≤N
‖q0

s‖C[0,L], m = 0,±1,±2,±N. (43)

If functions qs ∈ Q0(N,L,Q0) for −N ≤ s ≤ N then, obviously, qs ∈ Q(N,L, 2Q0).
For the operator equations the following theorem holds.

Theorem 3.1. Let the data (6) satisfy the conditions (23) and

F = max
−N≤m≤N

‖f ′′m‖C[0,T ]. (44)

Then there exists a number T0 ∈ (0, T ] such that the operator equations (40) have one
and only one solution on the set Q0(N, T0/2, 2F ).

Proof. It is obviously that Q0 = 2F . We prove that operator A = (A−N , . . . , AN)
maps the set Q0(N, T/2, 2F ) into itself and it is a contracted operator if T satis-
fies a smallness condition. Let qs ∈ Q0(N, T/2, 2F ), −N ≤ s ≤ N . Then qs ∈
Q(N, T/2, 4F ), −N ≤ s ≤ N . Then from relations (40) we obtain

|qm(x)− q0
m(x)| ≤ 8F (2N + 1)

x∫
0

max
−N≤s≤N

|vm−s(ξ, 2x− |ξ|; q−N , . . . , qN)|dξ

+4F (2N + 1)N2

x∫
0

|ξ| max
−N≤s≤N

|um−s(ξ, 2x− |ξ|; q−N , . . . , qN)|dξ

+8F (2N + 1)

∫
.(2x)

|K ′m(2x− τ, ξ)| max
−N≤s≤N

|um−s(ξ, τ ; q−N , . . . , qN)|dξdτ, (45)

x ∈ [0, T/2], m = 0,±1,±2,±N.
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Estimate first the function K ′m(2x− τ, ξ). Since from (11) and (12) follows that∣∣∣∣J1(ζ)

ζ

∣∣∣∣ ≤ 1

2
,

∣∣∣∣J2(ζ)

ζ2

∣∣∣∣ ≤ 1

4

for all ζ ∈ R, then the following estimate holds

|K ′m(2x− τ, ξ)| ≤ m2(2 +m2T 2)

4
, (ξ, τ) ∈ .(2x), x ∈ [0, T/2]. (46)

Then from (45) we get

|qm(x)− q0
m(x)| ≤ 4F (2N + 1)T max

−2N≤j≤2N
max

(ξ,τ)∈D′(T )
|vj(ξ, τ |; q−N , . . . , qN)|

+
1

2
F (2N + 1)T 2N2[4 +N2T 2] max

−2N≤j≤2N
max

(ξ,τ)∈D′(T )
|uj(ξ, τ |; q−N , . . . , qN)|, (47)

x ∈ [0, T/2], m = 0,±1,±2,±N.

For functions um(x, t; q−N , . . . , qN) and vm(x, t; q−N , . . . , qN) the estimates (8) and (9)
valid with Q = 4F . Using them, we find

|qm(x)− q0
m(x)| ≤ 8F 2(2N + 1)2T 2C2 max(1, 2FT 3(2N + 1))

+
1

2
F (2N + 1)T 2N2[4 +N2T 2]C1 max(1 + 2FT 2, 2F 2T 4(2N + 1)) (48)

≡ 2FT 2C5(N, T, F ), (49)
x ∈ [0, T/2], m = 0,±1,±2,±N.

Choosing T1 = T1(N,F ) as a positive root of the equation

T 2C5(N, T, F ) = 1,

we obtain that

|qm(x)− q0
m(x)| ≤ 2F, x ∈ [0, T1/2], m = 0,±1,±2,±N,

i.e. the operator A = (A−N , . . . , AN) maps the set Q0(N, T1/2, 2F ) into itself.
Let us demonstrate now that this mapping is contracted if T ≤ T1 and it is enough

small. Let (q−N , . . . , qN) and (q̂−N , . . . , q̂N) be two solutions of the inverse problem
belonging the set Q0(N, T/2, 2F ). Denote corresponding them solutions of the problem
(10) by um and ûm, respectively, and its derivatives with respect to t by vm and v̂m.
Then we can write relations (40) for (q−N , . . . , qN) and (q̂−N , . . . , q̂N). Denoting

ũm = um − ûm, ṽm = vm − v̂m, q̃m = qm − q̂m, Q̃ = max
−N≤m≤N

max
x∈[0,T/2]

|q̃m(x)|,
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we find

q̃m(x) = −2

x∫
0

N∑
s=−N

[q̃s(ξ)vm−s(ξ, 2x− |ξ|) + q̂s(ξ)ṽm−s(ξ, 2x− |ξ|)]dξ

+m2

x∫
0

|ξ|
N∑

s=−N

[q̃s(ξ)um−s(ξ, 2x− |ξ|) + q̂s(ξ)ũm−s(ξ, 2x− |ξ|)]dξ

−2

∫
.(2x)

K ′m(2x− τ, ξ)
N∑

s=−N

[q̃s(ξ)um−s(ξ, τ) + q̂s(ξ)ũm−s(ξ, τ)]dξdτ, (50)

x ∈ [0, T/2], m = 0,±1,±2,±N.

From here

|q̃m(x)| ≤ T (2N + 1) max
−2N≤j≤2N

max
(ξ,τ)∈D′(T )

[
Q̃|vj(ξ, τ)|+ 4F |ṽj(ξ, τ)|

]
+
T 2N2(4 +N2T 2)

8
(2N + 1) max

−2N≤j≤2N
max

(ξ,τ)∈D′(T )

[
Q̃|uj(ξ, τ)|+ 4F |ũj(ξ, τ)|

]
, (51)

x ∈ [0, T/2], m = 0,±1,±2,±N.

Using estimates (8), (9) and (24), (25), we find

|q̃m(x)| ≤ 2T 2(2N + 1)2FQ̃(1 +N2T 2) [2C2 + C4T ] max(1, FT 2)

+
T 2N2(4 +N2T 2)

8
(2N + 1)Q̃

×
[
C1 max(1 + 2FT 2, 2F 2T 4(2N + 1) + 4FC3T max(1, FT (2N + 1))

]
≡ Q̃T 2C6(N, T, F ), (52)

x ∈ [0, T/2], m = 0,±1,±2,±N.

Set a fixed ρ ∈ (0, 1) and define T2 = T2(N,F, ρ) as the posirive root of the equation

T 2C6(N, T, F ) = ρ. (53)

Then for T ≤ T2 the estimates hold

|q̃m(x)| ≤ ρ Q̃, x ∈ [0, T/2], m = 0,±1,±2,±N. (54)

It means that operator A = (A−N , . . . , AN) is contractive on the set Q0(N, T2/2, 2F ).
Taking T0 = min(T1, T2) we get that this operator maps the set Q0(N, T0/2, 2F ) into
itself and it is a contracted operator on this set. By the Banach’s principle the operator
equation (40) has one and only one solution on the set Q0(N, T0/2, 2F ). �
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