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ON THE RECONSTRUCTION OF PARAMETERS OF A MOVING
FLUID FROM THE DIRICHLET-TO-NEUMANN MAP

A.D.Agaltsov

Abstract We consider an inverse boundary value problem for a model time-harmonic equa-
tion of acoustic tomography of moving fluid with variable current velocity, sound speed, den-
sity and absorption. In the present article it is assumed that at fixed frequency the coefficients
of this equation are already recovered modulo an appropriate gauge transformation using some
reconstruction method from boundary measurements presented in the literature. Our main
result consists in formulas and equations that allow to get rid of this gauge non-uniqueness
and recover the fluid parameters using boundary measurements at several frequencies.

Key words: acoustic tomography of moving fluid, magnetic Schroedinger operators, inverse
boundary value problems.

AMS Mathematics Subject Classification: 35R30, 35Q35.

1 Introduction

We consider a model equation for a time-harmonic acoustic pressure ψ = ψ(x) (time
dependence e−iωt) in a moving fluid with sound speed c = c(x), current velocity v =
v(x), density ρ = ρ(x) and absorption α = α(x, ω) = ωζ(x)α0(x) at fixed frequency ω:

Lωψ = 0 in D, (1)
Lω = −∆− 2iAω(x) · ∇ − Uω(x), x = (x1, . . . , xd), (2)

∇ =
(

∂
∂x1
, . . . , ∂

∂xd

)
, ∆ = ∂2

∂x21
+ · · ·+ ∂2

∂x2d
,

where

D is an open bounded domain in Rd,
d ∈ {2, 3}, with connected C∞ boundary ∂D,

(3)

Aω(x) =
ωv(x)

c2(x)
+ i∇ ln ρ

1
2 (x), Uω(x) =

ω2

c2(x)
+ 2iω1+ζ(x)α0(x)

c(x)
. (4)

Note that the operator Lω is a special case of the so-called magnetic Schroedinger
operator.

The model equation (1) was studied in different particular cases in [9, 13, 14, 12,
6, 3, 4].
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In the present article we suppose that

c ∈ C2(D), c > 0 in D, (5a)

v ∈ C2(D,Rd), (5b)

ρ ∈ C2,β(D), β ∈ (0, 1], ρ > 0 in D, (5c)

ζ ∈ C(D), α0 ∈ C(D), ζ > 0, α0 is real in D, (5d)

whereD = D∪∂D and Ck,β(D) denotes the space of k times continuously differentiable
functions in D whose k-th derivatives are β-Hölder continuous. Let

c̃ = c|∂D, ṽ = v|∂D, ρ̃ = ρ|∂D. (6)

In what follows we always assume that

0 is not a Dirichlet eigenvalue for operator Lω in D. (7)

Note that the set of ω’s for which (7) does not hold is locally finite. Besides, (7) always
holds for ω = 0.

For equation (1) under the assumption (7) we consider the Dirichlet-to-Neumann
type operator Λω which maps a sufficiently regular function f on ∂D to the function

Λωf =
(
∂ψ
∂ν

+ i(ν · Aω)ψ
)∣∣
∂D
,

where ψ is the solution of equation (1) inD with Dirichlet boundary condition ψ|∂D = f
and ν is the unit exterior normal field to ∂D.

Note that it is possible to get rid of the assumption (7) by considering a general
Robin-to-Robin map instead of the Dirichlet-to-Neumann map, see [10].

We consider the following problem:

Problem 1.1. Find c, v, ρ and α in D from Λω given for ω in some fixed set Ω and
from c̃, ṽ and ρ̃.

This problem was studied, in particular, in [3, 4]. In these works it was shown that

(a) if ρ ≡ const, α0 ≡ 0 and Ω = {ω1} then the Problem 1.1 is uniquely solvable;

(b) if α0 ≡ 0, Ω = {ω1, ω2}, ω1 < ω2, then the Problem 1.1 is uniquely solvable;

(c) if Ω = {ω1, ω2, ω3}, ω1 < ω2 < ω3, and ζ 6= 0 in D then the Problem 1.1 is
uniquely solvable.

Reconstruction results for Problem 1.1 at fixed ω can be summarized as follows:

1. Uniqueness modulo gauge transformations in the most general case follows from
the results of [8] in dimension d = 2 and of [11] in dimension d = 3.

2. An approximate reconstruction algorithm modulo gauge transformations in di-
mension d = 2 was developed in [1, 2].
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3. A possible reconstruction approach modulo gauge transformations in dimension
d = 3 was outlined in [9].

In the present article we assume that the coefficients Aω and Uω of equation (1)
are already recovered from Λω up to a gauge transformation using some appropriate
method at fixed ω. The goal of the present work is to show how to get rid of the gauge
non-uniqueness and recover c, v, ρ and α using boundary measurements at several
frequencies. In this respect, the present article can be considered as a development of
the article [3] where the particular case ρ ≡ const, α0 ≡ 0, Ω = {ω1} was considered,
and of the article [4] where the corresponding uniqueness theorems for equation (1)
with general operator of the form (2) were obtained.

For a vector field V = (V1, . . . , Vd) and a function f in D we set by definition

curlV =

{
∂1V2 − ∂2V1, d = 2,(
∂2V3 − ∂3V2, ∂3V1 − ∂1V3, ∂1V2 − ∂2V1

)
, d = 3,

curl f =
(
∂2f,−∂1f

)
, d = 2,

(8)

where ∂j = ∂/∂xj .
In the present article it is assumed that the following functions are already recovered

from the operator Λω at fixed ω:

F = curl
(
v
c2

)
in D, (9)

qω = f1 − ω2f2 + iωf3 − 2iω1+ζ α0

c
in D, (10)

where
f1 = ρ

1
2 ∆ρ−

1
2 , f2 = 1

c2
+ v

c2
· v
c2
, f3 = ∇ ·

(
v
c2

)
− v·∇ ln ρ

c2
. (11)

For the corresponding identifiability results see [8] (for d = 2) and [11] (for d = 3); for
an approximate reconstruction algorithm see [1, 2].

Thereby, in the present article we study the following problems.

Problem 1.2. Find c, v and ρ in D from qω given for ω ∈ Ω = {ω1, ω2}, ω1 < ω2,
and from F , c̃, ṽ, ρ̃.

Problem 1.3. Find c, v, ρ, ζ and α0 in D from qω given for ω ∈ Ω = {ω1, ω2, ω3},
ω1 < ω2 < ω3, and from F , c̃, ṽ, ρ̃.

2 Solution of Problem 1.2

We are going to derive the explicit formulas for solving the Problem 1.2. We consider
(10) with ω ∈ Ω as a system of linear equations for f1, f2 and f3. Solving this system
we obtain

f1 =
ω2
2<qω2 − ω2

1<qω1

ω2
2 − ω2

1

, f2 =
<qω1 −<qω2

ω2
2 − ω2

1

, f3 = ω−11 =qω1 . (12)
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Set g = ρ−
1
2 . It follows from formula (11) that g satisfies the following equation

g(x) = g0(x) +

∫
D

G(x, y)f1(y)g(y) dy, x ∈ D, (13)

g0(x) =

∫
∂D

∂G(x, y)

∂νy
ρ̃−

1
2 (y) dy, (14)

where G(x, y) is the (non-positive) Dirichlet Green’s function for operator ∆ in D and
νy is the unit exterior normal to ∂D at point y. Note that g0 is just the the harmonic
extension of ρ̃−

1
2 to D. The existence of function G follows from assumption (3) and

from [5, Theorem 4.17, p. 112].

Lemma 2.1. Equation (13) is uniquely solvable for g ∈ C(D).

Proof. Suppose that g1, g2 ∈ C(D) are two solutions of equation (13). Then their
difference h = g1 − g2 satisfies

h(x) =

∫
D

G(x, y)f1(y)h(y) dy, x ∈ D. (15)

Using formulas (5c) and (11) we obtain that f1 ∈ C0,β(D). Taking this into account
and using formula (15) and Lemma [7, Lemma 4.2], we obtain that h ∈ C2(D)∩C(D)
and that

−∆h+ f1(x)h = 0 in D, (16a)
h|∂D = 0. (16b)

Using formulas (12) and (16a) we can rewrite equation (16a) as

−∆(ρ
1
2h) +∇ρ · ∇(ρ

1
2h) = 0, in D. (17)

It follows from [7, Lemma 4.2 and Corollary 8.2] and from formulas (16b) and (17)
that h ≡ 0. Hence, ρ−

1
2 is the unique solution of class C(D) to equation (13).

For vectors a = (a1, . . . , ad) and b = (b1, . . . , bd) in D we put by definition

a× b =

{
a1b2 − a2b1, d = 2,(
a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1

)
, d = 3.

(18)

Recall that the Helmholtz decomposition of the vector field v
c2

is given by the following
formula:

v

c2
= ∇Φ− curlV in D, (19)

where

Φ(x) =

∫
D

G0(x− y)∇y ·
( v(y)
c2(y)

)
dy −

∫
∂D

G0(x− y)
νy · ṽ(y)

c̃2(y)
dy, (20)

V (x) =

∫
D

G0(x− y)F (y) dy −
∫
∂D

G0(x− y)
νy × ṽ(y)

c̃2(y)
dy, (21)

G0(x) = − 1

2π
ln |x|, d = 2, (22)

G0(x) =
1

4π

1

|x|
, d = 3, (23)
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where νy is the unit exterior normal to ∂D at point y. Note that the vector field V is
known since F , ṽ and c̃ are given.

Using formula (19) we can recover the function Φ|∂D modulo an additive constant
(which does not matter). Fix a point x0 ∈ ∂D. Let x : [0, 1]→ ∂D be a smooth curve
linking x0 to some given point x ∈ ∂D. Then

Φ(x)− Φ(x0) =

∫ 1

0

(
ṽ
c̃2

+ curlV
)
|x(t) · ẋ(t) dt, ẋ =

dx

dt
. (24)

It follows from formulas (11) and (19) that Φ satisfies the equation

−∆Φ +∇ ln ρ · ∇Φ = −f3 + curlV · ∇ ln ρ in D,

or −∆η + f1(y)η = ρ−
1
2 (−f3 + curlV · ∇ ln ρ) in D,

where η = ρ−
1
2 (Φ − Φ(x0)). The function η can be found from the following integral

equation:

η(x) = η0(x) + η1(x) +

∫
D

G(x, y)f1(y)η(y) dy, x ∈ D, (25)

η0(x) =

∫
D

G(x, y)ρ−
1
2 (y)

(
f3(y)− curlV (y) · ∇ ln ρ(y)

)
dy,

η1(x) =

∫
∂D

∂G(x, y)

∂νy
ρ̃−

1
2 (Φ(y)− Φ(x0)) dy,

where G(x, y) is the (non-positive) Dirichlet Green’s function for ∆ in D. Note that η1
is just the harmonic extension of ρ̃−

1
2 (Φ|∂D−Φ(x0)) to D. Also note that equation (25)

has the same kernel as equation (13). Therefore, it is uniquely solvable for η ∈ C(D).
After recovering Φ − Φ(x0) in D we can find v

c2
using formula (19). Finally, using

formulas (11) and (19) we obtain

1

c2
= f2 − (∇Φ− curlV )2, v = c2(∇Φ− curlV ). (26)

The described algorithm for solving Problem 1.2 is summarized in the following the-
orem.

Theorem. Suppose that D satisfies (3), Ω = {ω1, ω2}, ω1 6= ω2 and (7) holds for all
ω ∈ Ω, and suppose that c, v, ρ satisfy (5a)–(5c). Then Problem 1.2 can be solved as
follows:

1. Define f1, f2, f3 and V using formulas (12) and (21).

2. Find g as the unique solution of class C(D) to equation (13). Set ρ = g−2.

3. Fix x0 ∈ ∂D and find Φ|∂D − Φ(x0) using formula (24).

4. Find η as the unique solution of class C(D) to equation (25). Set Φ − Φ(x0) =

ρ
1
2η.



On the reconstruction of parameters of a moving fluid... 9

5. Find c and v using the explicit formulas (26).

Remark 2.1. Suppose that d = 2 and D =
{
x ∈ R2 | |x| ≤ 1}. Then the function g0

from formula (13) and the function G(x, y) from formulas (13) and (25) can be found
explicitly:

g0(x) =

∫
S1

ρ̃−
1
2 (ϑ)

1− |x|2

|ϑ− x|2
dϑ

2π
, G(x, y) =

1

2π
ln
|x||y − x|∣∣y|x|2 − x∣∣ ,

where S1 = ∂D. Furthermore, if ‖f1‖C(D) < 4 then equations (13) and (25) can be
solved using the method of successive approximations in C(D).

3 Solution of Problem 1.3

Define the sets D0 and D1 by the formulas

D0 =
{
x ∈ D | =qω1 (x)

ω1
=
=qω2 (x)
ω2

}
, D1 = D \D0. (27)

It follows from formulas (5d) and (10) that D0 = {x ∈ D | α0(x) = 0} and that the
functions f1, f2 and f3 defined in (10) can be found in D0 using formulas (12).

Using formula (10) for x ∈ D1 and ω ∈ Ω we obtain that

ω−12 =qω2(x)− ω−11 =qω1(x)

ω−13 =qω3(x)− ω−11 =qω1(x)
=

(
ω2

ω1

)ζ(x) − 1(
ω3

ω1

)ζ(x) − 1
. (28)

We consider (28) as an equation for finding ζ(x) at fixed x ∈ D1. This equation is
uniquely solvable for ζ(x) at fixed x ∈ D1 as the following lemma shows.

Lemma. The right side of equation (28) at fixed x ∈ D1 is a strictly decreasing function
of ζ(x) ∈ (0,+∞).

Proof. It is sufficient to show that for any p, q such that 1 < p < q and for any t > 1
the equality

pt − 1

qt − 1
=
p− 1

q − 1
. (29)

can not hold. Assuming the equality (29), we define

λ1 =
p− 1

q − 1
, λ2 =

q − p
q − 1

. (30)

Using formulas (29) and (30) we obtain the formulas

λ1 + λ2 = 1, λ1 > 0, λ2 > 0, (31a)
λ1q + λ2 = p, λ1q

t + λ2 = pt. (31b)

Since the function f(s) = st is strictly convex, relations (31a)–(31b) can not hold.
Therefore the initial assumption that (29) holds must be false.
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Next we find functions f1, f2, f3 and α0/c in the domain D1. It follows from formula
(10) that f1 and f2 in D1 can be found using formulas (12). It also follows from (10)
that f3 and α0/c in D1 can be found from the following formulas:

f3 =

ωζ1
ω2
=qω2 −

ωζ2
ω1
=qω1

ωζ1 − ω
ζ
2

,
α0

c
=

1

2

ω−12 =qω2 − ω−11 =qω1

ωζ1 − ω
ζ
2

. (32)

Using the values of f1, f2 and f3 in D we can find c, ρ and v in D using the steps 2–5
mentioned in Theorem 2. Finally, we find α0 using α0/c and c. The algorithm for
solving Problem 1.3 is summarized in the following proposition.

Theorem. Suppose that D satisfies (3), Ω = {ω1, ω2, ω3}, ω1 < ω2 < ω3, and (7) holds
for all ω ∈ Ω. Suppose also that c, v, ρ, ζ and α0 satisfy (5a)–(5d). Then Problem
1.3 can be solved as follows:

1. Define D0 and D1 using formula (27). Find f1 and f2 in D using formulas (12).
Find f3 using formula (12) in D0 and formula (32) in D1.

2. Find ζ(x) at fixed x ∈ D1 as the unique positive solution to equation (28).

3. Find α0/c in D1 using formula (32).

4. Find g as the unique solution of class C(D) to equation (13). Set ρ = g−2.

5. Fix x0 ∈ ∂D and find Φ|∂D − Φ(x0) using formula (24).

6. Find η as the unique solution of class C(D) to equation (25). Set Φ − Φ(x0) =

ρ
1
2η.

7. Find c and v using the explicit formulas (26). Set α0 to zero in D0 and find α0

from α0/c and c in D1.

Remark 3.1. Note that the formulas and equations presented in Theorem 2 (resp.
3) require the knowledge of the function qω at two (resp. three) frequencies ω. These
formulas are exact but they can be not very stable with respect to the noise in the
initial data. However, if qω is known for a bigger number of frequencies it is possible to
increase the stability of reconstruction by replacing formulas (12) and (32) with their
least squares analogues. A numerical study of reconstruction stability will be carried
out in a subsequent paper.
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