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SOME GEOMETRIC ASPECTS IN INVERSE PROBLEMS

V.G.Romanov

Abstract We consider inverse problems for partial differential equations of the second order
related to recovering a coefficient in these equations. It is supposed that some measurements
of solutions to direct problems are made on convenient sets. A study of some inverse problems
leads to geometric problems: recovering a function from its integrals along geodesic lines of
the Riemannian metric which determines by the leading part of the differential equations
or recovering the metric. Our main goal here is to demonstrate how inverse problems for
equations of different types are reduced to the well known geometrical problems.
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1 Introduction

It was noted about 50 years ago that some inverse problems for hyperbolic equations
are closely related to the problems of the integral geometry that consist in recovering
a function from its integrals along a family of given curves or given surfaces [14, 15,
16, 27, 28]. The geometric objects connected to the latter problems are the rays or
fronts of the hyperbolic equations. They are sufficiently complicated if coefficients in
the leading terms of the differential operators are not constants. But in the simplest
case, when the leading part is the wave operator and an incident source is located at a
fixed point, the rays are segments of strait lines and the fronts are spheres. Then the
problem of recovering a variable spatial coefficient in the lower term of the equation
is often reduced to the tomography problem. The problem of recovering a variable
speed of sound in the wave equation is also reduced to the similar problem, if one
considers this inverse problem in a linear setting and the linearization is given for a
constant speed. In the next section we consider the relations of some inverse problems
for hyperbolic equations with the tomography problem, the integral geometry problem
and the inverse kinematic problem.

Some later it was opened that inverse problems for linear parabolic equations can
be reduced to analogical problems for associating hyperbolic equations [13]. It turns
out that a solution of a parabolic equation can be expressed via the solution of a
hyperbolic equation and vice versa. This result introduces the typical for hyperbolic
equations geometric objects and for parabolic equations also. Particularly, some inverse
problems for parabolic equations generate the problem of the integral geometry. But
to make it effectively, one needs to express a solution of the hyperbolic equation via



Some geometric aspects in inverse problems 69

a solution of the parabolic one. It is possible produce on the base of an analytical
continuation of the solution to the parabolic equation with respect to the time variable
t into the complex plane. The latter problem is strongly unstable. Therefore this way
is practically impossible. Recently (see [33]) it was suggested an other way of using
the relation between solutions to the both equations hyperbolic and parabolic. The
new approach uses a special expansion of the fundamental solution for the parabolic
equation with respect to t as t→ 0. In section 3 we explain how some inverse problems
for the parabolic equation arrive at the inverse kinematic and the integral geometry
problems.

In section 4 a three-dimensional inverse scattering problem for the Schrödinger
equation with a compactly supported unknown potential in the frequency domain is
considered. This problem was subject of studying in many papers (see, e.g., [3, 5,
6, 8, 9, 20], [21]-[25] and references therein). We consider here a phaseless inverse
problem when only the modulus of a scattering field is given for large frequencies. We
demonstrate that the problem of the potential recovering is reduced to the tomography
problem. For the case when leading part of the equation is a linear elliptic operator
with unknown refraction coefficient, the phaseless inverse problem is reduced to the
inverse kinematic problem.

2 Hyperbolic equations

Consider the Cauchy problem

∂2u

∂t2
− Lu = δ(x− y, t), x ∈ R3; u|t<0 = 0, (1)

where y ∈ R3 is a fixed point (parameter of the problem), L is the linear elliptic
operator

Lu =
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+ q(x)u,

in which (aij(x)) = A(x) is an uniformly positive matrix. Assume that all coefficients
of the operator L are uniformly bounded and, for simplicity, they belong C∞(R3).

Below we consider inverse problems related to the operator L that arrive at some
geometric problems.

2.1 The tomography problem

We assume here that L = ∆ + q(x). Consider the structure of the solution to the
problem (1).

Lemma 2.1. Let T > 0 is an arbitrary fixed number, D(T, y) = {(x, t)| |x− y| ≤ t ≤
T − |x − y|}, L = ∆ + q(x) and q(x) ∈ C(R3). Then the solution to the problem (1)
has the following form

u(x, t; y) =
1

4π
δ(t− |x− y|) + û(x, t; y)H(t− |x− y|), (2)
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where û(x, t; y) is a continuous function in D(T, y), H(t) is the Heaviside step-function:
H(t) = 0 for t < 0 and H(t) = 1 for t ≥ 0. Moreover, the following formula holds

lim
t→|x−y|+0

û(x, t; y) =
1

8π|x− y|

∫
L(x,y)

q(ξ)ds, (3)

in which L(x, y) is the segment of the strait line passing through points x, y, and ξ is
a variable point on this line and s is the arc length.

Proof. Using the Kirchhoff formula we find that the function û is solution to the
integral equation

û(x, t; y) =
1

4π

t∫
|ξ−x|≤t

q(ξ)

|ξ − x|

[
û(ξ, t− |x− ξ|; y) +

δ(t− |ξ − y| − |x− ξ|)
4π|ξ − y|

]
dξ. (4)

Represent the function û in the form

û(x, t; y) =
∞∑
n=1

un(x, t; y), (5)

where the functions un(x, t; y) are defined by the formulae

u1(x, t; y) =
1

16π2

t∫
|ξ−x|≤t

q(ξ)δ(t− |ξ − y| − |x− ξ|)
|ξ − x||ξ − y|

dξ, (6)

un(x, t; y) =
1

4π

t∫
|ξ−x|≤t

q(ξ)un−1(ξ, t− |x− ξ|; y)

|ξ − x|
dξ, n = 1, 2, . . . . (7)

We shall prove that all functions un(x, t; y), n ≥ 1, are continuous in D(T, y) up to
boundary t = |x−y| and the series (5) is uniformly converged in D(T, y) for any T > 0.
Moreover, the following relations hold

un(x, t; y)→ δn1

8π|x− y|

∫
L(x.y)

q(ξ)ds, as t→ |x− y|. (8)

Here δn1 is the Kronecker delta: δn1 = 1, if n = 1, and δn1 = 0, if n 6= 1. Formula (3)
follows from the latter relations.

Indeed, consider the function u1(x, t; y) defined by (6). In order to study properties
of this function, it is convenient introduce some curvilinear coordinates of the variable
point ξ. For τ > |x− y| consider the ellipsoid with focuses at points x and y:

E(x, y, τ) = {ξ ∈ R3| |ξ − y|+ |ξ − x| = τ}.
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Note that the integral (6) is taken along the ellipsoid E(x, y, t). An arbitrary point
ξ ∈ R3 for fixed x and y can be represent via curvilinear coordinates τ, z, ψ in the form

ξ(τ, z, ψ) = y +
ρ+ zτ

2
e1 +

√
(τ 2 − ρ2)(1− z2)

2
(e2 cosψ + e3 sinψ),

z ∈ [−1, 1], ψ ∈ [0, 2π], τ ∈ [ρ,∞). (9)

where ρ = |x− y|, e1 = (x− y)/|x− y| and the unit vectors e2, e3 are orthogonal to e1

and one to other. Then

|ξ − y| = τ + ρz

2
, |ξ − x| = τ − ρz

2
,

J =
∣∣∣∂(ξ1, ξ2, ξ3)

∂(τ, z, ψ)

∣∣∣ =
τ 2 − ρ2z2

8
,

J

|ξ − x0||ξ − x|
=

1

2
.

Therefore

u1(x, t; y) =
1

2(4π)2

2π∫
0

1∫
−1

q(ξ(t, z.ψ))dzdψ. (10)

In particular, from this formula follows that the ellipsoid E(x, y, t) degenerates into
the segment L(x, y) = {ξ = y + e1ρ(1 + z)/2, z ∈ [−1, 1]} as t→ ρ = |x− y| and

u1(x, |x− y|+ 0; y) =
1

16π

1∫
−1

q(y + e1ρ(1 + z)/2)dz

=
1

8πρ

ρ∫
0

q(y + se1)ds.

The latter formula coincides with one given by (8). It follows from (10) that u1(x, t; y)
is continuous in D(T, y) and

‖u1‖C(D(T,y)) ≤
q0

8π
, (11)

where

q0 = q0(y) = max
|x−y|≤T/2

|q(x)|.

Formulae for un, n ≥ 2, have the form

un(x, t; y) =
1

16π

t∫
ρ

2π∫
0

1∫
−1

q(ξ(τ, z, ψ))

×un−1(ξ(τ, z, ψ), t− (τ − ρz)/2; y)(τ + ρz)dzdψdτ. (12)
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It follows from these formulae that all functions un are continuous in D(T, y) and for
them the following relations hold

|un(x, t; y)| ≤ 3q0T

32π

t∫
ρ

2π∫
0

1∫
−1

|wn−1(ξ(τ, z, ψ), t− (τ − ρz)/2; y)|dzdψdτ, (13)

(x, t) ∈ D(T, y).

We used here that 0 ≤ τ + ρz ≤ τ + ρ ≤ 3T/2 for (x, t) ∈ D(T, y). Using inequalities
(13) one can prove that the following estimates hold

|un(x, t; y)| ≤ ‖u1‖C(D(T,y))

(3q0T

8

)n−1 (t− |x− y|)n−1

(n− 1)!
, (x, t) ∈ D(T, y),

n = 2, 3, . . . . (14)

Use for this goal the mathematical induction method. Assume that the formulae (14)
hold for all n ≤ k, k ≥ 1. Then

|uk+1(x, t; y)| ≤ 3q0T

32π

t∫
ρ

2π∫
0

1∫
−1

|uk(ξ(τ, z, ψ), t− (τ − ρz)/2; y)|dzdψdτ

≤ 3q0T

32π

t∫
ρ

2π∫
0

1∫
−1

‖u1‖C(D(T,y))

(q0T

4

)k−1 (t− τ)k−1

(k − 1)!
dzdψdτ

≤ ‖u1‖C(D(T,y))

(3q0T

8

)k (t− |x− y|)k

k!
, (x, t) ∈ D(T, y). (15)

Here the following equalities t− |ξ− y| − (τ − ρz)/2 = t− |ξ− y| − |ξ−x| = t− τ were
used. Hence, the estimates (14), indeed, take place. From these estimates follow the
relations (8) for n ≥ 2. Because 0 ≤ t− |x− y| ≤ T for all (x, t) ∈ D(T, y), the series
(5) is uniformly converged in D(T, y). Hence its sum û(x, t; y) belongs to C(D(T, y))
for any T and y. �

Consider now the following inverse problem. Let Ω be the ball of radius R centered
at the origin, Ω = {x ∈ R3| |x| < R}, and S is its boundary, S = {x ∈ R3| |x| = R}.
Assume that the solution of the problem (1) with L = ∆ + q(x) is given for all x ∈ S,
y ∈ S and t ∈ [0, T ], where T > 2R, i.e.,

u(x, t; y) = f(x, t; y), (x, y) ∈ S × S, t ∈ [0, T ]. (16)

The inverse problem is: find q(x) in Ω from given f(x, t; y).
Using Lemma 2.1 we obtain that function f(x, t; y) should be represent in the form

f(x, t; y) =
1

4π
δ(t− |x− y|) + f̂(x, t; y)H(t− |x− y|), (17)

where function f̂(x, t; y) is a continuous function in D∗(T, y) = {(x, t)| x ∈ S, |x− y| ≤
t ≤ T − |x− y|} for any y ∈ S. Moreover,

lim
t→|x−y|+0

f(x, t; y) ≡ g(x, y) =
1

8π|x− y|

∫
L(x,y)

q(ξ)ds. (18)
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Hence, we immediately arrive at the well known tomography problem: given the inte-
grals ∫

L(x,y)

q(ξ)ds = ĝ(x, y), (x, y) ∈ S × S, (19)

where

ĝ(x, y) = 8π|x− y|g(x, y), (20)

find q(x) in Ω = Ω ∪ S.
There are exist various stable algorithms for solving this problem (see for instance

[19] and references therein). Following the original paper by R.G. Mukhometov [17]
we give below only a stability estimate for this problem. Note that the tomography
problem can be solved for a cross-section of Ω by an arbitrary plane Σ. Denote the
cross-section of Ω with Σ by Ω(Σ) and the cross-section of S with Σ by S(Σ). Represent
the equation of S(Σ) as ξ = h(ϕ), where h(ϕ) is the smooth 2π periodic function, and
let x = h(ϕ1) and y = h(ϕ2).Then the following estimate holds

‖q‖2
L2(Ω(Σ)) ≤

1

4π

∫
S(Σ)×S(Σ)

|∇ϕ1,ϕ2 ĝ(h(ϕ1), h(ϕ2))|2 dϕ1dϕ2. (21)

2.2 The integral geometry problem

Consider now the more general case when operator L is given by (2). Let aij(x) be
elements of the matrix A−1(x) inverse to A(x) = (aij(x) and the length element dτ of
the Riemannian metric be determine by the formula

dτ =

(
3∑

i,j=1

aij(x)dxidxj

)1/2

.

It is well known that the Riemannian distance τ(x, y) between points x and y is the
solution to the Cauchy problem

3∑
i,j=1

aij(x)τxiτxj = 1, τ(x, y) = O(|x− y|) as x→ y. (22)

Below we shall use the following assumption.

Assumption. We assume that geodesic lines of the Riemannian metric satisfy the
regularity condition, i.e. for each two points x, y ∈ R3 there exists a single geodesic
line Γ(x, y) connecting these points.

Introduce the following functions:

θ0(t) :=


1, t ≥ 0,

0, t < 0,

θk(t) :=
tk

k!
θ0(t), k = 1, 2, . . . .

(23)
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Then the following lemma holds (see Lemma 2.2.1 in the book [31])

Lemma 2.2. Let aij and q be C∞(R3) functions and the Assumption holds. Then the
solution to problem (1) can be represented in the form of the asymptotic series

u(x, t; y) = θ0(t)

[
α−1(x, y)δ(t2 − τ 2(x, y)) +

∞∑
k=0

αk(x, y)θk(t
2 − τ 2(x, y))

]
, (24)

where τ 2(x, y), αk(x, y), k = −1, 0, 1, . . ., are infinitely smooth functions of x, y and,
moreover, α−1(x, y) > 0.

Let ζ = (ζ1, ζ2, ζ3) be the Riemannian coordinates of a point x with respect to a
fixed point y. They can be calculated through function τ 2(x, y) by the formula (see
formula (2.2.28) in [31]):

ζ = −1

2

(
∇yτ

2(x, y)
)
A(y). (25)

Denote by J(x, y) the Jacobian of the transformation of the Riemannian coordinates
into Cartesian ones, i.e.,

J = det
(
∂ζ

∂x

)
.

Then coefficients of the expansion (24) are defined by the formulae (see (2.2.44), (2.2.45)
in [31])

a−1(x, y) =

√
J(x, y)

2π
√

detA(y)
, (26)

ak(x, y) =
a−1(x, y)

4τ k+1(x, y)

∫
Γ(x,y)

τ k(ξ, y)
Lξak−1(ξ, y)

a−1(ξ, y)
dτ, k = 0, 1, 2, . . . , (27)

where Γ(x, y) is the geodesic line connecting x and y and dτ is the element of the
Riemannian length and ξ ∈ Γ(x, y) is a variable point.

Suppose that the coefficients aij(x) are given for all x ∈ R3 and the ball Ω is convex
with respect to geodesics Γ(x, y), (x, y) ∈ (S×S). Consider again the inverse problem
of recovering q(x) inside the ball Ω assuming that the following information is known

u(x, t; y) = f(x, t; y), (x, y) ∈ (S × S), t ∈ [0, T ], (28)

where T is a positive number such that

T > max
(x,y)∈(S×S)

τ(x, y). (29)

Since the coefficients aij(x) are given the function τ(x, y), ζ(x, y), J(x, y) and geodesic
lines Γ(x, y) are known for all x ∈ Ω and y ∈ Ω. Therefore the coefficient a−1(x, y)
in the expansion (24) is also known for all (x, y) ∈ (Ω × Ω). Then putting k = 0 in
formulae (27), we find∫

Γ(x,y)

q(ξ)dτ = g(x, y), (x, y) ∈ (S × S), (30)
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where

g(x, y) =
4τ(x, y)a0(x, y)

a−1(x, y)
−
∫

Γ(x,y)

L′ξa−1(ξ, y)

a−1(ξ, y)
dτ (31)

and

L′ =
n∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi

)
. (32)

Because a0(x, y) is defined by the given information,

a0(x, y) = lim
t→τ(x,y)+0

f(x, t; y), (x, y) ∈ (S × S), (33)

the function g(x, y) is known. Hence, we come to integral geometry problem: find q(x)
inside Ω from given its integrals along the geodesic lines joining points x, y belonging
to S.

This problem arise in vary inverse problems (see [14, 15, 16, 27, 28], [30] - [32]). It
was intensively studied in 70-th of the last century. In the papers [1, 2, 17, 29] stability
estimates for this problem were found. The integral geometry problem for tensor fields
was studied in [4, 26, 34]. Below we give the estimate of solution to problem (30)
following the book [31]).

Let θ, ϕ be the spherical coordinates on S, ν(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ),
and x = Rν(θ1, ϕ1), y = Rν(θ2, ϕ2). Put τ(Rν(θ1, ϕ1), Rν(θ2, ϕ2)) = τ̂(θ1, ϕ1, θ2, ϕ2),
g(Rν(θ1, ϕ1), Rν(θ2, ϕ2)) = ĝ(θ1, ϕ1, θ2, ϕ2) and

I(ĝ, τ̂) = det

 0 ĝθ1 ĝϕ1

ĝθ2 τ̂θ1θ2 τ̂ϕ1θ2

ĝϕ2 τ̂θ1ϕ2 τ̂ϕ1ϕ2

 .

Then (see formula (2.3.19) in [31]) the following estimate holds∫
Ω

q(x)(detA(x))−1/2dx ≤ 1

8π

∫
S×S

|I(ĝ, τ̂)|dθ1dϕ1dθ2dϕ2. (34)

2.3 The inverse kinematic problem

Assume here that aij = n−2(x)δij. Consider the problem: find n(x) in Ω given the
function f(x, t, ; y) in (28). Fix x ∈ S and y ∈ S. Using the representation (24) we
easily find

τ(x, y) = sup
τ≥0
{τ | f(x, t; y) ≡ 0 for t < τ}, ∀(x, y) ∈ (S × S). (35)

Hence. the function τ(x, y) is uniquely determined for all (x, y) ∈ (S×S) by the given
information. Then we come to the following problem: find n(x) in Ω given τ(x, y) for
all (x, y) ∈ (S ×S). This problem is called the inverse kinematic problem. It is widely



76 Romanov V.G.

used in the seismology, the electromagnetic prospecting. The function τ(x, y) solves
the Cauchy problem for the eikonal equation

|∇xτ(x, y)|2 = n2(x), x ∈ Ω, τ(x, y) = O(|x− y|) as x→ y. (36)

Moreover, the following formula holds

τ(x, y) =

∫
Γ(x,y)

n(ξ)ds, (37)

where s is arc length. In means that τ(x, y) is the Riemannian length of the geodesic
Γ(x, y). The inverse kinematic problem is nonlinear one. If n(x) = n0(x)+β(x), where
n0(x) is a positive known function and ‖β(x)‖C1(Ω) << ‖n0(x)‖C1(Ω) one can linearize
the problem. Assume that τ(x, y) = τ0(x, y) + τ1(x, y). where τ0(x, y) corresponds to
the function n0(x), i.e., τ0(x, y) is the solution to problem (36) with n = n0(x). Let
Γ0(x, y) be the geodesic line corresponding n0(x). Then

τ1(x, y) =

∫
Γ0(x,y)

β(ξ)ds. (38)

The formula (38) was derived in [14] for the first time. The derivation is quite
simple. If one substitutes τ(x, y) = τ0(x, y) + τ1(x, y) and n(x) = n0(x) + β(x) in (36)
and neglects by terms β2(x) and |∇xτ1(x, y)|2, one obtains the relations

∇xτ1(x, y) · ∇xτ0(x, y) = n0(x)β(x), τ1(x, y)→ 0 as x→ y. (39)

Because the vector ∇xτ0(x, y) is directed along the tangent lines to Γ0(x, y) at the point
x and |∇xτ0(x, y)|2 = n0(x), the left hand side in (39) coincides with the product n0(x)
and the derivative of τ1(x, y) with respect to s. Then. dividing both side of (39) on
n0(x) and integrating the result along Γ0(x, y), one obtains (38).

The formula (38) defines the Frechet derivative on the element n0(x) of nonlinear
operator τ(n) and it lies in a base of obtaining the stability estimate for the inverse
kinematic problem. For two-dimensional case the stability estimate was found in the
paper [17] and has the form

‖n1 − n2‖L2(Ω) ≤
1

4π
‖τ1 − τ2‖H1(S×S), (40)

where n1 and n2 two different positive functions n(x) and τ1 and τ2 are corresponding
them solutions to the problem (36) with n(x) = nk(x), k = 1, 2. For three dimensional
case the stability estimate was found in the papers [1, 2, 18] and has the form

‖n1 − n2‖L2(Ω) ≤ C‖τ1 − τ2‖H2(S×S), (41)

where the positive constant C depends on the lower bond of n1 and n2 in Ω.
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3 The parabolic equations

Consider the Cauchy problem for the parabolic equation

∂v

∂t
− Lv = δ(x− y, t), x ∈ R3; v|t<0 = 0, (42)

where L is the uniformly elliptic operator defined by the formula (2) and x ∈ R3.
Suppose that the solutions of problems (1) and (42) do not increase as t→∞. Then the
Laplace transforms of the functions u(x, t; y) and v(x, t; y) with respect to t exist and
the Laplace images of these functions are related by the equality ṽ(x, p; y) = ũ(x,

√
p; y)

for all complex p with positive real part. Therefore, we have (see, e.g., [35]).

v(x, t, y) =
1

2
√
πt3

∞∫
0

e−
z2

4t u(x, z, y)zdz, t > 0. (43)

Let us apply (43) to obtain an asymptotic expansion of v(x, t; y) as t → +0. Substi-
tuting representation (24) into (43), we obtain

v(x, t; y) =
e−

τ2(x,y)
4t

4
√
πt3

∞∫
0

e−
s
4t

[
α−1(x, y)δ(s) +

∞∑
n=0

αn(x, y)θn(s)

]
ds, t > 0. (44)

Elementary calculations yield the relation

v(x, t; y) =
e−

τ2(x,y)
4t

4
√
πt3

∞∑
n=−1

αn(x, y)(4t)n+1, t > 0. (45)

The obtained above relations make it possible to bridge the gap between a number
of settings of inverse problems for parabolic equations and similar settings of inverse
problems for hyperbolic equations, which have been studied earlier. To demonstrate
this, we first obtain relations between the solutions of problem (42) and the coefficients
in the expansion (45). Let Ω be the same domain as in section 2 with boundary S.
Suppose that, for some T > 0, the solution v(x, t; y) of problem (42) is known for all
(x, t, y) ∈ G(Ω, T ), where G(Ω, T ) = {(x, t, y)|(x, y) ∈ (S × S), t ∈ [0, T ]}. Let us find
expressions for τ(x, y) and α−1(x, y), α0(x, y) for (x, y) ∈ (S×S) in terms of the given
function. It follows from (45) that we have

τ(x, y) =
(

lim
t→+0

(−4t ln v(x, t, y)
)1/2

, (x, y) ∈ (S × S). (46)

Given the function τ(x, y), the coefficients α−1(x, y) and α0(x, y) are determined by

α−1(x, y) = lim
t→+0

(
4v(x, t, y)e

τ2(x,y)
4t

√
πt3
)
, (x, y) ∈ (S × S), (47)

α0(x, y) = lim
t→+0

[(
4v(x, t, y)e

τ2(x,y)
4t

√
πt3 − α−1(x, y)

)
/(4t)

]
. (48)
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Relations (46)-(48) can be used in problems of determining the coefficients of the
operator L inside Ω from the solution of problem (42) given for (x, t, y) ∈ G(Ω, T ).
Suppose that aij = n−2(x)δij, where n(x) > 0 and δij is the Kronecker delta, and it is
required to determine n(x) in Ω. Calculating the function τ(x, y) by formula (46), we
arrive at the inverse kinematic problem of finding n(x) in Ω from the given function
τ(x, y) for (x, y) ∈ (S × S). This problem was considered in subsection 2.3.

Suppose now that the coefficients aij(x) are given and it is required to find q(x)
from the given function α0(x, y) for (x, y) ∈ (S × S). Since the coefficients aij(x)
are given the function τ(x, y), α−1(x, y) and geodesic lines Γ(x, y) are known for all
(x, y) ∈ (Ω × Ω). Then we obtain the relations (30), (31). Hence, we again arrive at
the same integral geometry problem as in subsection 2.2.

Thus, expansions (45) obtained above for the solution of problem (42) directly
imply a whole series of new results about the uniqueness and stability of solutions for
of inverse problems for parabolic equations. In this way, numerical methods for solving
such inverse problems can also be developed.

4 The elliptic equations

Let w(x, y, k) be solution of the Schrödinger equation

−∆w − k2w + q(x)w = δ(x− y), x ∈ R3, (49)

satisfying the Sömmerfeld conditions

w(x, y, k) = O(r−1),
∂w

∂r
− ikw = o(r−1) as r →∞, (50)

where r = |x|. Here the frequency k > 0 and conditions (50) are valid for every
fixed source position y. We assume here that potential q(x) is C4(R3) smooth function
satisfying the conditions

q(x) ≥ 0, q(x) ≡ 0 ∀x ∈ (R3 \ Ω) (51)

and Ω is the same ball as earlier with boundary S. The solution of the problem (49),
(50) can be represented in the form

w(x, y, k) = w0(x, y, k) + wsc(x, y, k), (52)

where w0(x, y, k) given by the formula

w0(x, y, k) =
eik|x−y|

4π|x− y|
(53)

is the fundamental solution for the Helmholtz operator −∆ − k2 with the conditions
(50) and wsc(x, y, k) is the scattering field on the potential q(x).

Let k0 be a positive number. Consider the following phaseless inverse scattering
problem: the function |wsc(x, y, k)| is given for (x, y) ∈ (S × S) and k ≥ k0, i.e.,

|wsc(x, y, k)| = f(x, y, k), (x, y) ∈ (S × S), k ≥ k0, (54)
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it is required to find the potential q(x) in Ω.
This problem was studied in the paper [10]. It turned out that this problem is

closely related to the asymptotic expansion of the solution to (49), (50) with respect
to k as k → ∞. The such expansion can be found if we compare the solutions of
the problem (49), (50) with the solution u(x, t; y) of the Cauchy problem (1) with
L = ∆ + q(x). It was stated in the book [36], that the function u(x, t; y) exponentially
decay with respect to t→∞ together with the second partial derivatives if x belongs
any bounded domain. Moreover, in [10] was proved the following lemma.

Lemma 4.1. Let T > 0 be an arbitrary fixed number, D(T, y) = {(x, t)| |x− y| ≤ t ≤
T − |x− y|}, L = ∆ + q(x), and q(x) ∈ C4(R3) and satisfies conditions (51). Then the
solution to the problem (1) has the form (2) and the function û(x, t; y) is continuous
in D(T, y) together with ∂kû(x, t; y)/∂tk, k = 1, 2, for any T and y.

Using this Lemma and L. Vainberg’s results [36], we state that

wsc(x, y, k) =

∞∫
−∞

eiktû(x, t; y)dt. (55)

Integrating by parts we get

wsc(x, y, k) =

∞∫
|x−y|

eiktû(x, t; y)dt

= −e
ik|x−y|û(x, |x− y|+ 0; y)

ik
+
eik|x−y|ût(x, |x− y|+ 0; y)

(ik)2

+
1

(ik)2

∞∫
|x−y|

eiktûtt(x, t; y)dt.

From here, using formula (3), we obtain

wsc(x, y, k) = −eik|x−y|

 1

8ikπ|x− y|

∫
L(x,y)

q(ξ)ds+O

(
1

k2

) , as k →∞.

Thus, the given function f(x, y, k) has the asymptotic

f(x, y, k) =
1

8kπ|x− y|

∫
L(x,y)

q(ξ)ds+O

(
1

k2

)
, as k →∞. (56)

From the latter formula we find∫
L(x,y)

q(ξ)ds = g(x, y), (x, y) ∈ (S × S), (57)
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where

g(x, y) = 8π|x− y| lim
k→∞

[kf(x, y, k)]. (58)

is a known function.
Hence, to obtain q(x) we should solve the tomography problem. Note that the

similar problem occurs, if instead of the point sources, one uses incident plane waves
going from infinity [11].

Consider now the more general equation

−Lw − k2w = δ(x− y), x ∈ R3, (59)

where L = div(n−2∇) + q(x) and the function n(x) is C∞(R3) smooth function and
can be represented in the form

n(x) = 1 + β(x), β(x) ≥ 0, β(x) ≡ 0 for x ∈ (R3 \ Ω). (60)

We assume that the potential q(x) satisfies the previous conditions (51). Let function
w(x, y, k) solves the problem (59), (50). Assume that y is an arbitrary point of S,
represent the function w(x, y, k) in the form (52) and consider the inverse problem of
recovering β(x) inside Ω (see also [12]) from given function f(x, y, k) defined by (54).

Consider again the auxiliary problem (1) and use the Lemma 2.2. Then the function
u(x, t; y) can be represented in the form

u(x, t; y) =
α−1(x, y)

2τ(x, y)
δ(t− τ(x, y)) + û(x, t; y)H(t− τ(x, y)), (61)

where û(x, t; y) is C∞(R3) smooth function. and

û(x, τ(x, y) + 0; y) = a0(x, y). (62)

Again, using the Vainberg’s results [36], we get

w(x, y, k) =

∞∫
−∞

eiktu(x, t; y)dt.

Taking into account the representation (61), we find

w(x, y, k) = eikτ(x,y)

[
α−1(x, y)

2τ(x, y)
− û(x, τ(x, y) + 0; y)

ik
+
ût(x, τ(x, y) + 0; y)

(ik)2

]

+
1

(ik)2

∞∫
τ(x,y)

eiktûtt(x, t; y)dt.

From here, using formula (62), we obtain

w(x, y, k) = eikτ(x,y)

[
α−1(x, y)

2τ(x, y)
− α0(x, y)

ik
+O

(
1

k2

)]
, as k →∞. (63)
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Hence,

wsc(x, y, k) = eikτ(x,y)α−1(x, y)

2τ(x, y)
− eik|x−y|

4π|x− y|
+O

(
1

k

)
, as k →∞. (64)

Fix here x ∈ S and y ∈ S. Then |wsc(x, y, k)| = f(x, y, k) for k ≥ k0 is the given
function of k. Consider the limit of f(x, y, k) as k → ∞. It is exists if and only if
τ(x, y) = |x − y|. If τ(x, y) 6= |x − y|, then τ(x, y) > |x − y| because n(x) ≥ 1 in Ω.
The function f 2(x, y) is represented in the form

f 2(x, y, k) =

(
α−1(x, y)

2τ(x, y)

)2

+

(
1

4π|x− y|

)2

− α−1(x, y)

2π|x− y|τ(x, y)
cos [k(τ(x, y)− |x− y|)] +O

(
1

k

)
, as k →∞. (65)

This formula implies that

f ∗(x, y) = lim sup
k→∞

f(x, y, k) =
α−1(x, y)

2τ(x, y)
+

1

4π|x− y|
, (66)

f ∗∗(x, y) = lim inf
k→∞

f(x, y, k) =

∣∣∣∣α−1(x, y)

2τ(x, y)
− 1

4π|x− y|

∣∣∣∣ . (67)

Hence, we find

α−1(x, y)

2τ(x, y)
= f ∗(x, y)− 1

4π|x− y|
, (x, y) ∈ (S × S).

Now we can determine τ(x, y) for (x, y) ∈ (S×S). Fix again x and y on S and take an
arbitrary positive ε such that ε < f ∗(x, y) − f ∗∗(x, y). Then there exist the numbers
k1(ε) > max(k0, ε

−1/2) and k2(ε) > k1(ε) such that

f(x, y, k1(ε)) = f ∗(x, y)− ε, (68)

and

k2(ε) = min
k>k1(ε)

{k| f(x, y, k) = f ∗(x, y)− ε}. (69)

From relation (65) we derive that

[k2(ε)− k1(ε)](τ(x, y)− |x− y|) = 2π +O(ε), as ε→ +0.

Hence,

τ(x, y) = |x− y|+ lim
ε→+0

2π

k2(ε)− k1(ε)
, (x, y) ∈ (S × S). (70)

Thus, the function τ(x, y) becomes known for all (x, y) ∈ (S×S). So, we arrive to the
inverse kinematic problem. Solving it, we recover n(x) inside Ω.
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