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ANALYTICAL EXPRESSIONS FOR A SOLUTION
OF CONVECTIVE HEAT AND MOISTURE TRANSFER EQUATIONS

IN THE FREQUENCY DOMAIN FOR LAYERED MEDIA
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Abstract Analytical expressions for the solution of the differential equations in the frequency
domain, describing convective heat and moisture transfer in homogeneous layered medium are
obtained. The known connection between systems of differential equations of the second order
and the differential matrix Riccati equation is used for the derivation of these expressions.
The numerical algorithm is recursive on the number of layers, stable to the rounding errors,
and each step of this numerical algorithm based on simple actions: addition, multiplication
and inversion of matrices of the second order.
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1 Introduction

In this work analytical expressions for the solution of the differential equations in the
frequency domain, describing convective heat and moisture transfer in homogeneous
layered medium are obtained.

The process of moisture transfer in soils under an influence of a temperature gradient
is often observed in the nature. The overalls of the mass transfer are significantly
complicated in the presence of a temperature gradient in media due to the additional
flow of steam, water and heat. Redistribution of moisture in a soil from the hotter
region to the cooler one significantly changes the properties of the soil. Thus, the
study of joint heat and moisture transfer is an urgent problem.

We use the well known connection between systems of differential equations of
the second order and the differential matrix Riccati equation to obtain the necessary
expressions for the layer-stripping method. One of the first layer stripping methods for
solving the differential equation of second order for the layered medium is the method
proposed in [1]. It has several limitations: the presence of expressions with exponents
having indicators with positive real parts, leads to accumulation of rounding errors
in a calculated solution. The idea of using the Riccati equation for a construction
of the numerical algorithm, which would be convenient for a programming, useful
for solving inverse problems and for modeling of electromagnetic wave propagation in
horizontally layered media, apparently, was proposed for the first time in the paper [2].
Expressions with exponents having indicators with positive real parts are missing when
implementing this algorithm. In this case the layer stripping method does not lead to
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the accumulation of rounding errors. Further the method was developed in the work
[3]. To solve the system of differential equations of the elasticity, the idea of [2] was
implemented in the works [4, 5]. The formula for the trace of the solution on the surface
z = 0 was obtained. It is assumed that the medium is horizontally layered and isotropic.
A similar result was obtained in the papers [6, 7] for horizontally-layered isotropic
medium with absorption. In the work [8] the horizontally layered transversely isotropic
medium with vertical symmetry axis was considered. In the works [4, 5, 6, 7, 8] the
authors use the following scheme: the system of differential equations for displacements
→ the system of differential equations for potentials → the differential matrix Riccati
equation. An intermediate step (the transition to the system for potentials) imposes
constraints: first, the transition from the displacements to potentials is ambiguous for
some parameters of the problem, secondly, this approach does not have development
for media of any kind of the anisotropy. For this reason, the works [9, 10, 11, 12] use
the direct transition from the differential system for displacements to the differential
matrix Riccati equation. The authors of these works deal with horizontally-layered
isotropic (with absorption) media. In the works [13, 14] algorithm for solving the
system of differential equations of the elasticity for horizontally layered media of any
kind of the anisotropy was proposed. The analytical formulas for the solution are
obtained not only on the surface z = 0 but also at any point. To study of inverse
problems of determining the elastic properties of thinly stratified layers, this algorithm
was used in [15, 16, 17, 18]. The layer stripping method for the Maxwell’s equations
for horizontally layered media with some types of the anisotropy was suggested in [19].
Ideologically, the latter paper duplicates the work [1], for this reason, the authors spend
a lot of effort to compute stable. The approach proposed in [13, 14], is expanded on the
Maxwell’s equations in [20]. It allows to consider media with any type of the anisotropy
and to be free from the constraints of [19]. To solve and to study inverse problems of
electro-magnetics, this algorithm was used in [21, 22].

The system of differential equations considered in these works, was solved by finite
difference method in the papers [23, 24].

2 Problem statement and basic analytical expression

Let media be N -layered structure with boundary points zk (k = 0, N), z0 = 0, zN = H,
and k-th layer be the interval [zk−1, zk], hk = zk − zk−1 be the thickness of the layer.

The system of differential equations

C0
∂T

∂t
− Cb

∂Ω

∂t
=

∂

∂z

(
λ
∂T

∂z

)
,

(1)
∂Ω

∂t
=

∂

∂z

(
η
∂Ω

∂z
+ µ

∂T

∂z

)
,

describes convective heat and moisture transfer in a homogeneous medium [25, 26, 27].
Here T is a temperature, Ω is a moisture, λ is the coefficient of thermal conductivity,
C0 = γ0C, where C is the coefficient of heat capacity, γ0 is the specific gravity of a soil,
Cb is the coefficient of convective heat transfer, η is the moisture diffusion coefficient
of a soil, µ is the thermal transfer coefficient of a soil.
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In each interval [zk−1, zk] the functions λ, C0, Cb, η, and µ are constant, i.e., these
functions are piecewise constant on z ∈ [0, H] with the values λk, C0,k, Cb,k, ηk, and µk
in k-th layer.

Let the initial conditions

T |t=0 = T0(z), Ω|t=0 = Ω0(z), (2)

the boundary conditions

(
λ
∂T

∂z
+ α

(
T − Ta

))∣∣∣∣
z=0

= 0, T |z=H = TH , (3)(
η
∂Ω

∂z
+ β

(
Ω− Ωa

))∣∣∣∣
z=0

= 0, Ω|z=H = ΩH (4)

be known. Also we assume that the following gluing conditions at points of disconti-
nuity of the medium hold [

λ
∂T

∂z

]
zk

= 0, [T ]zk = 0, (5)

[
η
∂Ω

∂z
+ µ

∂T

∂z

]
zk

= 0, [Ω]zk = 0. (6)

Here α and β are the heat transfer coefficients and the ratio of the water-yielding ca-
pacity of a soil to the atmosphere, respectively, Ta = Ta(t) and Ωa = Ωa(t) are the
temperature and the moisture of the atmosphere, they are assumed to be continue
functions. Functions T0(z) and Ω0(z) are continuous and they must satisfy the gluing
conditions (5)-(6). Additionally we assume that these functions can be well approxi-
mated by quadratic functions on each interval [zk−1, zk]:

T0(z) =
1

2
akT (z − zk−1)2 + bkT (z − zk−1) + ckT , (7)

Ω0(z) =
1

2
akΩ(z − zk−1)2 + bkΩ(z − zk−1) + ckΩ, (8)

i.e., piecewise constant functions aT , bT , cT , aΩ, bΩ and cΩ with the values akT , bkT , ckT ,
akΩ, bkΩ and ckΩ in k-th interval are known.

Introduce the new functions:

τ(z, t) = T (z, t)− T0(z), w(z, t) = Ω(z, t)− Ω0(z) (9)
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These functions satisfy the relations:

C0
∂τ

∂t
− Cb

∂w

∂t
=

∂

∂z

(
λ
∂τ

∂z

)
+ fT ,

(10)
∂w

∂t
=

∂

∂z

(
η
∂w

∂z
+ µ

∂τ

∂z

)
+ fΩ,(

λ
∂τ

∂z
+ α

(
τ − Ta

))∣∣∣∣
z=0

= φT , τ |z=H = τH , (11)(
η
∂w

∂z
+ β

(
w − Ωa

))∣∣∣∣
z=0

= φΩ, w|z=H = wΩ (12)[
λ
∂τ

∂z

]
zk

= 0, [τ ]zk = 0, (13)

[
η
∂w

∂z
+ µ

∂τ

∂z

]
zk

= 0, [w]zk = 0, (14)

τ |t=0 = 0, w|t=0 = 0, (15)

where the following notations are introduced

fT = λaT ,

fΩ = ηaΩ + µaT ,

φT = −λb1
T − αc1

T ,

φΩ = −ηb1
Ω − βc1

Ω,

τH = TH −
1

2
aNT (H − zN−1)2 − bNT (H − zN−1)− cNT ,

wΩ = ΩH −
1

2
aNΩ (H − zN−1)2 − bNΩ (H − zN−1)− cNΩ .

Here fT and fΩ are piecewise constant functions, φT , φΩ, τH and wΩ are constants.

The main goal of our work is to obtain analytical expressions for the functions
τ̂(z, p) and ŵ(z, p) those are the images of the Laplace transforms of the functions
τ(z, t) and w(z, t). Here p = ε + iω is the Laplace transform parameter, ε is the
attenuation parameter and ω is the circular time frequency.

We introduce the following notations:

U =

[
τ̂

ŵ

]
, A =

[
λ 0

µ η

]
, D = p

[
C0 −Cb
0 1

]
, F =

1

p

[
fT

fΩ

]
,

A0 =

[
λ 0

0 η

]
, B0 =

[
α 0

0 β

]
, G0 =

[
φT + αT̂0(p)

φΩ + βΩ̂0(p)

]
, GH =

[
τT

wΩ

]
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where T̂0(p) and Ω̂0(p) are the images of the Laplace transform for the functions T0(t)
and Ω(t).

We apply the Laplace transform to the relations (10)-(15) and obtain

∂

∂z

(
A
∂U

∂z

)
−DU = −F, (16)(

A0
∂U

∂z
x+B0

)∣∣∣∣
z=0

= G0, U |z=H = GH , (17)[
A
∂U

∂z

]
zk

= 0, [U ]zk = 0. (18)

To obtain analytical expressions for the solution of (16)-(18) we use the idea of the
layer stripping method. To this purpose we introduce the square matrix X and the
vector Y by the following correlation:

A
∂

∂z
U = XU + Y. (19)

Substituting (19) in (16)-(18), it is easy to obtain the statements for X and Y :

X ′ +XA−1X = D, X|z=0 = −AA−1
0 B0, [X]zk = 0, (20)

Y ′ +XA−1Y = −F, Y |z=0 = AA−1
0 G0, [Y ]zk = 0. (21)

Let z ∈ [zk−1, zk].
Now we want to obtain the solution of the differential matrix Riccati equation (20).

Let Rk be the constant matrix and the partial solution of (20), i.e., it is a solution of
the matrix Riccati equation

RkA−1Rk = D. (22)

Here superscript k denotes that elements of the matrices Rk, A, and D corresponds to
k-th layer. Also here and below the superscript k for matrices Ĉ, Č, A, and D have
been omitted for simplicity.

Let Z = X −R be satisfy the differential matrix Bernoulli equation

Z ′ + ZA−1Z + ZĈ + ČZ = 0, (23)

where
Ĉ = A−1Rk, Č = RkA−1, ČAĈ = D. (24)

Set L = Z−1. This matrix satisfies the linear inhomogeneous differential matrix equa-
tion

L′ = ĈL+ LČ + A−1. (25)

Consequently, the solution of the differential matrix Riccati equation can be represented
in the form

X(z) = Rk + L−1(z), z ∈ [zk−1, zk], (26)
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L(z) = eĈ(z−zk−1)(Xk−1 −Rk)−1eČ(z−zk−1)

+ eĈ(z−zk−1)

z∫
zk−1

e−Ĉ(s−zk−1)A−1e−Č(s−zk−1)ds eČ(z−zk−1). (27)

Here Xk−1 = X|z=zk−1
.

Now we obtain the solution of the differential equation (21). The solution of this
equation can be expressed through the matrix Q, which is the solution of the problem

Q′ +XA−1Q = 0, Q|z=zk−1
= E. (28)

Apparently, the matrix Q cannot be obtained from this equation in an analytical form.
From (28) we obtain

Q′ + ZA−1Q+RkA−1Q = 0

and
−(Q−1)′ +Q−1ZA−1 +Q−1Č = 0.

We multiply this equation on the left by matrix Z and equation (23) on the right by
matrix Q−1, the summation gives the following result:

(Q−1Z)′ + (Q−1Z)Ĉ = 0

or
(LQ)′ − Ĉ(LQ) = 0.

Hence, the analytical expression for the matrix Q can be easily obtained

Q(z) = Z(z)eĈ(z−zk−1)(Xk−1 −Rk)−1, z ∈ [zk−1, zk].

Taking this into account, we obtain the solution of the equation (21) in the form

Y (z) = Q(z)Y k−1 +Q(z)

z∫
zk−1

Q−1(s)F ds

= Z(z)eĈ(z−zk−1)(Xk−1 −Rk)−1 + Z(z)eĈ(z−zk−1)

z∫
zk−1

e−Ĉ(s−zk−1)L(s)ds F.

In this expression, the integral can be simplified as follows:

z∫
zk−1

e−Ĉ(s−zk−1)L(s)ds =

z∫
zk−1

e−Ĉ(s−zk−1)(L′ − ĈL− A−1)ds Č−1

=

z∫
zk−1

(
e−Ĉ(s−zk−1)L

)′
ds Č−1 −

z∫
zk−1

e−Ĉ(s−zk−1)dsA−1Č−1

=
(

e−Ĉ(s−zk−1)L(s)Č−1 + e−Ĉ(s−zk−1)Ĉ−1A−1Č−1
)∣∣∣s=z

s=zk−1

.
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After that, we obtain

Y (z) =
(
X(z)−Rk

) (
eĈ(z−zk−1)Mk −D−1F k

)
− Č−1F k, z ∈ [zk−1, zk], (29)

where

Mk =
(
Xk−1 −Rk

)−1 (
Y k−1 + Č−1F k

)
+D−1F k, Y k−1 = Y |z=zk−1

.

Since the solutions of the differential equations (20) and (21) are known, we can
obtain the solution of the differential equation (19). The solution of this equation is
expressed through the matrix Q, which is the solution of the problem

Q′ − A−1XQ = 0, Q|z=zk = E. (30)

From (30) we get
Q′ − A−1ZQ− ĈQ = 0

We multiply this equation on the left by matrix Z and equation (23) on the right by
matrix Q, the summation gives the following result:

(ZQ)′ − Č(ZQ) = 0.

Hence, the analytical expression for the matrix Q can be easily obtained

Q(z) = L(z)eČ(zk−z(Xk−1 −Rk), z ∈ [zk−1, zk]. (31)

Taking (31) and (29) into account, we can write the solution of the equation (19):

U(z) = Q(z)Uk +Q(z)

z∫
zk−1

Q−1(s)Y (s) ds

= L(z)eČ(zk−z)(Xk−1 −Rk)Uk + L(z)eČ(zk−z)

z∫
zk

e−Č(zk−s)Z(s)A−1Y (s) ds

= L(z)eČ(zk−z)(Xk−1 −Rk)Uk

+ L(z)eČ(zk−z)

z∫
zk

e−Č(zk−s)Z(s)A−1Z(s)eĈ(s−zk−1)dsMk

− L(z)eČ(zk−z)

z∫
zk

e−Č(zk−s)
(
Z(s)A−1Z(s) + ZĈ

)
ds Ĉ−1A−1Č−1F k.

First integral can be simplified as follows:
z∫

zk

e−Č(zk−s)Z(s)A−1Z(s)eĈ(s−zk−1)ds = −
z∫

zk

e−Č(zk−s)
(
Z ′ + ČZ + ZĈ

)
eĈ(s−zk−1)ds

= −
z∫

zk

(
e−Č(zk−s)Z(s)eĈ(s−zk−1)

)′
ds

= −
(

e−Č(zk−s)Z(s)eĈ(s−zk−1)
)∣∣∣s=z

s=zk
.
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Second integral can be simplified as follows:
z∫

zk

e−Č(zk−s)
(
Z(s)A−1Z(s) + ZĈ

)
ds = −

z∫
zk

e−Č(zk−s)
(
Z ′ + ČZ

)
ds

= −
z∫

zk

(
e−Č(zk−s)Z(s)

)′
ds

= −
(

e−Č(zk−s)Z(s)
)∣∣∣s=z

s=zk
.

Taking these into account, finally we get the expression for U(z)

U(z) = L(z)eČ(zk−z)V k − eĈ(z−zk−1)Mk +D−1F k, z ∈ [zk−1, zk], (32)

where
V k =

(
Xk−1 −Rk

) (
Uk + eĈhkMk −D−1F k

)
.

The matrices Rk, Ĉ, and Č are included in all expressions above. They are con-
nected by the relations (24). From (22) the matrix Ĉ is the solution of the matrix
equation

AĈ2 = D. (33)

It is well known (see, for example, [28]), if a matrix is the solution of the matrix
equation (33), then its eigenvalues must satisfy the characteristic equation

|Aξ2 −D| = 0 ⇒ ληξ4 − p(C0η + λ+ µCb)ξ
2 + p2C0 = 0 (34)

(it should be noted that (34) is the characteristic equation for the system (16) too).
Four roots of this equation can be calculated from the equality

ξ2 = p
(C0η + λ+ µCb)±

√
(C0η + λ+ µCb)2 − 4C0

λη
. (35)

By physical reasons, the value under the root is non-negative, hence, two roots have
positive real part and two roots have negative real part.

To obtain the matrix Ĉ (see [28]), we need to solve the characteristic equation (34),
to take any pair of roots, and to construct the Jordan form J of the matrix Ĉ; the
transition matrix can be found by substitution of Ĉ = T−1JT in the matrix equation
(33). From the point of computing view, this method is unsatisfactory. A simple way
to calculate the matrix Ĉ is proposed in the works [13, 14, 20], if the eigenvalues of Ĉ
are known. Let ξ1 and ξ2 be known and ξ1 + ξ2 6= 0. Each matrix is a solution of its
characteristic equation, i.e., the matrix equation holds

Ĉ2 − (ξ1 + ξ2)Ĉ + ξ1ξ2E = 0.

From this matrix equation and matrix equations (33) we easily obtain the following
equality

Ĉ =
1

ξ1 + ξ2

(A−1D + ξ1ξ2E). (36)
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Using the matrix Ĉ and the relations (24), we can compute the matrix Rk and Č.
It should be noted that the matrix Č satisfies the matrix equation Č2A = D for

which the characteristic equation has the form (34), it means that the eigenvalues of
Ĉ and Č are equal. For the matrix Č the expression similar to (36) can be obtained.

For stable computing matrix exponentials, we use the idea from [29]. In our case,
we have the following correlations:

eĈz = Eψ(z, ξ1) + (Ĉ − ξ1E)ψ(z, ξ1, ξ2),

where
ψ(z, ξ1) = eξ1z, ψ(z, ξ1, ξ2) =

1

ξ1 − ξ2

(eξ1z − eξ2z), если ξ1 6= ξ2,

ψ(z, ξ1) = eξ1z, ψ(z, ξ1, ξ1) = zeξ1z, если ξ1 = ξ2.

For the correlation (27) for the matrix L(z), we give a way to compute the second
member

Ξ(z) = eĈ(z−zk−1)

z∫
zk−1

e−Ĉ(s−zk−1)A−1e−Č(s−zk−1)ds eČ(z−zk−1).

It is easy to see that the matrix Ξ(z) satisfies the matrix equation

ĈΞ + ΞČ = eĈ(z−zk−1)A−1eČ(z−zk−1) − A−1 ≡ C̃, (37)

which is equivalent to the problem for the matrix and vectors of fourth order:[
Ĉ + Č11E Č21E

Č12E Ĉ + Č22E

][
Ξ1

Ξ2

]
=

[
C̃1

C̃2

]
,

where Ξj and C̃j are j-th column of the matrices Ξ and C̃, Čnm are elements of the
matrix Č.

Since the eigenvalues of the matrices Ĉ and Č are equal, then the equation (37)
has a unique solution for any right part C̃.

To compute the column Ξj (j = 1, 2) of the matrix Ξ(z), we obtain the following
relations:

Ξ1 =
[
(Ĉ + Č22E)(Ĉ + Č11E)− Č12Č21E

]−1 [
(Ĉ + Č22E)C̃1 − Č21C̃2

]
,

(38)

Ξ2 =
[
(Ĉ + Č11E)(Ĉ + Č22E)− Č12Č21E

]−1 [
(Ĉ + Č11E)C̃2 − Č12C̃1

]
.

Now we demonstate how to compute akT , bkT , and ckT (k = 1, N) for (7). Let the
function T0(z) be taken. Since the values T0(zk) (k = 0, N) are known then

ckT = T0(zk−1), k = 1, N. (39)

At the point z = 0 the first boundary condition (3) must be satisfied, hence we have

λ1b
1
T + α(T0(0)− Ta(0)) = 0. (40)
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At the points zk (k = 1, N − 1) the gluing conditions (5) give us the following correla-
tions

1

2
akTh

2
k + bkThk + T0(zk−1) = T0(zk),

(41)
λk(a

k
Thk + bkT ) = λk+1b

k+1
T .

At the point z = zN the second boundary condition (3) must be satisfied, hence we
have

1

2
aNT h

2
N + bNT hN + T0(zN−1) = T0(zN). (42)

From (40) and (41) we get the recurrence relations

bk+1
T =

λk
λk+1

(
2
T0(zk)− T0(zk−1)

hk
− bkT

)
, k = 1, N − 1,

(43)
b1
T =

α

λ1

(
Ta(0)− T0(0)

)
.

From (41) and (42) we obtain

akT =
2

hk

(
T0(zN)− T0(zN−1)

hk
− bkT

)
, k = 1, N. (44)

Similarly, the expressions for akΩ, bkΩ, and ckΩ (k = 1, N) can be obtained from (8)
as follows:

ckΩ = Ω0(zk−1), k = 1, N,

bk+1
Ω =

ηk
ηk+1

(
2

Ω0(zk)− Ω0(zk−1)

hk
−bkΩ + rk+1

)
, k = 1, N − 1,

rk+1 = µk+1b
k+1
T − µk

(
hka

k
Thk + bkT

)
(45)

b1
T =

α

λ1

(
Ωa(0)− Ω0(0)

)
,

akΩ =
2

hk

(
Ω0(zN)− Ω0(zN−1)

hk
− bkΩ

)
, k = 1, N.

All necessary analytical expressions to compute U(z) are obtained. In the next
section we give a procedure for computing U(z) at any point z in any interval [zm−1, zm].

3 Order of operations for calculating U(z)

Now we give the procedure of layer-stripping method to compute the solution of the
problem (16)-(18). Let we need to know U(z) for z ∈ [zm−1, zm].

• Values akT , bkT , ckT , akΩ, bkΩ, and ckΩ (k = 1, N) can be calculated using relations
(39), (43), (44), and (45).
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• In each interval [zk−1, zk] (k = 1, N) it is necessary

– to solve the characteristic equation (34), to choose two roots with negative
real parts;

– to calculate the matrices Ĉ, Č, and Rk (see (36) and the connection (24));

– to calculate the matrix Xk and the vector Y k using the following recurrent
correlation:

Xk = Rk + (Lk)−1,

Lk = eĈhk(Xk−1−Rk)−1eČhk + eĈhk

zk∫
zk−1

e−Ĉ(s−zk−1)A−1e−Č(s−zk−1)ds eČhk ,

Y k = (Xk −Rk)
(

eĈhkMk −D−1F k
)
− Č−1F k,

X0 = −AA−1
0 B0,

Y 0 = AA−1
0 G0,

(see (26)-(27) and (29)); for Lk the second member can be calculated using
(38) where

C̃ = eĈhkA−1eČhk − A−1.

• UN = GH (see (17)).

• The vector Uk (k = N,m+ 1) should be calculated using the following recurrent
corellation:

Uk−1 = Lk−1eČhkV k −Mk +D−1F k

(see (32)).

• From (32) the vector U(z) can be calculated for z ∈ [zm−1, zm].

Thus, the algorithm for calculating the vector U(z) is completely described.
To solve inverse problems, as a rule, we need to know the vector U on a surface,

i.e., U0. In this case we should compute Uk, using the recurrence relation for k = N, 1.
It should be noted that we chose the eigenvalues of the matrices Ĉ and Č with

negative real parts. In this case, the rounding error will not be accumulated in recurrent
calculations, because all expressions with matrix exponents are computed stably.

The second important property of the algorithm is: for its implementation on each
interval [zk−1, zk], all actions is reduced to an addition, multiplication and inversion for
square matrices of the second order.
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