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AN ALGORITHM FOR WAVE PROPAGATION ANALYSIS
IN STRATIFIED POROELASTIC MEDIA
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Abstract The classic poroelastic theory of Biot, developed in 1950’s, describes the propaga-
tion of elastic waves through a porous media containing a fluid. This theory has been exten-
sively used in various fields dealing with porous media: seismic exploration, oil/gas reservoir
characterization, environmental geophysics, earthquake seismology, etc. In this work we use
the Ursin formalism to derive explicit formulas for the analysis of propagation of elastic waves
through a stratified 3D porous media, where the parameters of the media are characterized
by piece-wise constant functions of only one spatial variable, depth.
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1 Introduction

Poroelastic models are used in geophysics and petroleum engineering, where porous
media filled with fluid and/or gas is of great interest. The best-known poroelastic
theory was developed by Maurice Biot, see [5, 6].

There are many works devoted to the development and application of analytical/semi-
analytical methods for wave propagation analysis in stratified elastic media, see, for
instance, [1, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18].

The development of similar methods in the case of stratified porous media is very
important too, see [2, 4, 8, 16].

To construct explicit formulas for the analytical/numerical analysis of the elastic
waves propagation in stratified 3D porous media, we use the Ursin formalism, which
was initially used to give a unified treatment of electromagnetic waves, acoustic waves,
and the isotropic elastic waves in plane layered media. Recently, this formalism was
applied to the Pride equations for simulation of the electrokinetic phenomena in layered
media, see [19].

In this work we apply Ursin’s method for solving the Biot system in the case of the
3D poroelastic plane layered media. In the exposition of results, we follow basically to
the works [17, 19]. Although the results obtained in the work [19] allow, under certain
conditions, to split Pride’s equations and select only the poroelastic part, we examine
the case of a more complete poroelastic system, characterised by presence in the Darcy
law of an inertial force connected with the effective density of pore fluid, see [3] for
details.
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2 Statement of the problem

We shall consider wave propagation in a porous medium R = ∪Nk=0Rk, composed by
stratified layers identified with Rk = {x = (x1, x2, x3 ≡ z) ∈ R3 : zk < z < zk+1}, with
0 = z0 < z1 · · · < zN+1 =∞. Let u = (u1, u2, u3) and w = (w1, w2, w3) be the solid and
relative fluid displacements, respectively. The Biot equations in the time frequency (ω)
domain, at each point x ∈ R, are (time dependence of e−iωt is assumed)

− iω(ρv + ρfq) = ∇ · τ + f ,

q =
κ

η
(−∇p+ iωρfv + iωρEq + g) ,

− iωτ = (λ∇ · v + C∇ · q)I +G(∇v +∇vT ) ,

iωp = C∇ · v +M∇ · q .

(1)

Here v = −iωu, q = −iωw are the solid and relative fluid velocities, f = (f1, f2, f3),
g = (g1, g2, g3) are the forces imposed on the solid and on the pore fluid, respectively,
τ is the stress tensor, p is the pressure in the pore fluid, λ,G are the Lamé coefficients,
C,M are the Biot moduli, ρ is the bulk density, ρf is the density of the pore fluid,
ρE is the effective density of the pore fluid, κ is the permeability, η is the pore fluid
viscosity, I is the 3 × 3 identity matrix. We assume that all material parameters are
represented by piece-wise constant functions depended only the depth coordinate z,
with the discontinuities at the points z = zk, k = 1, 2, . . . , N .

At the internal layer boundaries z = zk, we suppose that the following functions
are continuous:

v , q , p , τ13 , τ23 , τ33 . (2)

The boundary conditions at the free surface z = 0 are

p = τ13 = τ23 = τ33 = 0 . (3)

And finally, at the infinity the solution satisfy the following radiation conditions:

lim
|x|→∞

(u,w) = 0 . (4)

3 Method

3.1 Ursin format

Consider the Fourier transform in the two coordinates x1, x2

X̂(k1, k2, z) = Fx1x2
(
X
)
≡
∫
R2

e−i(k1x1+k2x2)X(x1, x2, z)dx1dx2 .

Let (k1, k2)T be the horizontal wave number and k =
√
k2

1 + k2
2, γ = kω−1. Applying

the Fourier transform to (1) we obtain the system of ordinary differential equations
(ODE’s) represented in the terms of f̂ , ĝ, v̂, q̂, τ̂ , p̂. For each horizontal wave number,
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plane wave sources of the form ei(k1x1+k2x2)f̂ , ei(k1x1+k2x2)ĝ will produce plane wave
responses with spatial dependence of the form ei(k1x1+k2x2). The equations can be
simplified if we rotate to a coordinate system (x̂1, x̂2, x̂3)T with the first coordinate
oriented in the direction of the horizontal wave number, so that all of these plane
waves have a spatial dependence of the form eikx̂1 . Therefore, let

Ω =
1

k

 k1 k2 0
−k2 k1 0

0 0 k

 . (5)

The ODE’s obtained after application of the Fourier transform can be simplified if we
define

x̃ = Ωx , ṽ = Ωv̂, q̃ = Ωq̂ , τ̃ = Ωτ̂ΩT , p̃ = p̂ , f̃ = Ωf̂ , g̃ = Ωĝ . (6)

A straightforward calculation uncouples this system

dΦ(m)

dz
= −iωM (m)Φ(m) + S(m) ,m = 1, 2 , (7)

where Φ(m), m = 1, 2, are the 2nm-vectors (n1 = 3, n2 = 1) defined as

Φ(1) = (ṽ3, τ̃13,−q̃3, τ̃33, ṽ1, p̃)
T ,Φ(2) = (ṽ2, τ̃23)T ,

S(m) are the source 2nm-vectors, and M (m) are the 2nm × 2nm-matrices

M (m) =

(
0 M

(m)
1

M
(m)
2 0

)
(8)

with symmetric nm × nm-matrices M (m)
1 ,M

(m)
2 . For Systems 1 and 2 the sub-matrices

and the corresponding source vectors are

M
(1)
1 =

 −βM βγ(C2 − λM) −βC
βγ(C2 − λM) ρ+

iωρ2fκ

η−iωρEκ
− 4βγ2G(C2 −M(λ+G)) 2βγGC − iωρfγκ

η−iωρEκ
−βC 2βγGC − iωρfγκ

η−iωρEκ
−β(λ+ 2G) + iωγ2κ

η−iωρEκ


M

(1)
2 =

 ρ γ −ρf
γ G−1 0
−ρf 0 −η−iωρEκ

iωκ

 , S(1) = (0,−f̃1 −
iωρfκ

η − iωρEκ
g̃1,

ikκ

η − iωρEκ
g̃1,−f̃3, 0, g̃3)T

(9)

and

M
(2)
1 = G−1 ,M

(2)
2 = ρ−Gγ2 +

iωρ2
fκ

η − iωρEκ
,

S(2) = (0,−f̃2 −
iωρfκ

η − iωρEκ
g̃2)T .

(10)
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Here β = (C2 −M(λ + 2G))−1. Once Φ(1) and Φ(2) have been determined, we may
compute

q̃1 =
κ

η − iωρEκ
(−ikp̃+ iωρf ṽ1 + g̃1) ,

τ̃11 = β
(
− 4γG(C2 −M(λ+G))ṽ1 + (C2 − λM)τ̃33 + 2GCp̃

)
,

τ̃22 = β
(
− 2γG(C2 − λM)ṽ1 + (C2 − λM)τ̃33 + 2GCp̃

)
,

q̃2 =
κ

η − iωρEκ
(iωρf ṽ2 + g̃2) , ˙̃τ12 = −Cγṽ2 .

(11)

The boundary conditions for Systems 1 and 2 at the free surface z = 0 are

p̃ = τ̃13 = τ̃23 = τ̃33 = 0 . (12)

Note that (12) gives n1 = 3 conditions for System 1 having 2n1 = 6 variables, and gives
n2 = 1 condition for System 2, which has 2n2 = 2 variables. It means that for each
system we need nm, m = 1, 2 additional conditions to completely specify the solution.
These relations we obtain using the radiation condition (4), which means that there
are no up-going waves from z =∞.

3.2 Ursin diagonalization

Let’s give briefly a derivation of the Ursin diagonalization procedure. We consider
matrices of the form (8), where for simplicity we drop the superscript (m).

Assume that M1M2 has n distinct nonzero eigenvalues λ2
j , j = 1, 2, . . . , n, with

associated eigenvectors aj, such that aTjM2aj = λj. Here λj =
√
λ2
j with the branch

chosen so that Im(λj) ≥ 0 and λj > 0 if λj is real. Define bj = λ−1
j M2aj. This vector is

an eigenvector of M2M1 with eigenvalue λ2
j . Using symmetricity of M1,M2 we obtain

aTj bi = δij, where δij is the Kronecker delta.
Let L1 be the n×n-matrix whose j-th column is aj, and let L2 be the n×n-matrix

whose i-th column is bi, then L−1
1 = LT2 , L

−1
2 = LT1 . Introduce Λ = diag(λ1, λ2, . . . , λn).

Then L2Λ = M2L1 and M1L2 = L1Λ, which implies

M1 = L1ΛLT1 ,M2 = L2ΛLT2 . (13)

Introducing the diagonal matrix Λ̃ = diag(Λ,−Λ) and using (13), we finally obtain

M = LΛ̃L−1 , (14)

where

L =
1√
2

(
L1 L1

L2 −L2

)
, L−1 =

1√
2

(
LT2 LT1
LT2 −LT1

)
.

In our case the explicit formulas for λj, aj, bj, are:
System 1. There are three modes: fast compressional wave (λ

(1)
1 ), Biot slow wave
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(λ
(1)
2 ) and vertical shear wave (λ

(1)
3 ).

(λ
(1)
j )2 = −γ2 + β

(
Cρf −

Mρ

2
− i(λ+ 2G)

η − iωρEκ
2ωκ

)
±

± β

2

√(
Mρ− i(λ+ 2G)

η − iωρEκ
ωκ

)2 − 4(Mρf − iC
η − iωρEκ

ωκ
)(Cρ− (λ+ 2G)ρf )

j = 1, 2, with (+) for j = 1 and (-) for j = 2, and (λ
(1)
3 )2 = −γ2 +G−1

(
ρ+

iωκρ2
f

η − iωρEκ
)

a
(1)
j = aj(−1, 2Gγ, ξj)

T , j = 1, 2 , a
(1)
3 =

a3

λ
(1)
3

(
γ,G(λ

(1)
3 )2 −Gγ2,− iωκγρf

η − iωρEκ
)T

b
(1)
j =

aj

λ
(1)
j

(
2Gγ2 − ρ− ρfξj, γ, ρf + iξj

η − iωρEκ
ωκ

)T
, j = 1, 2 , b

(1)
3 = a3(2Gγ, 1, 0)T

where

ξj =
Cρ− (λ+ 2G)ρf

(λ
(1)
j )2+γ2

β
− Cρf + i(λ+ 2G)η−iωρEκ

ωκ

, j = 1, 2 ,

aj =

√√√√ λ
(1)
j

ρ+ 2ρfξj + iξ2
j
η−iωρEκ

ωκ

, j = 1, 2 , a3 =

√√√√ λ
(1)
3

G(λ
(1)
3 )2 +Gγ2

.

(15)

System 2. There is the horizontal shear wave (λ(2)) only.

(λ(2))2 = −γ2 +G−1
(
ρ+

iωκρ2
f

η − iωρEκ
)
, a(2) =

√
1

Gλ(2)
, b(2) =

√
Gλ(2) . (16)

3.3 Reflection and transmission matrices

Firstly, we consider a homogeneous source-free region of space. Dropping (m) we have
a 2n-dimensional system of the form (7) with M constant and S = 0. Let

Φ = LΨ and Ψ =
(
U,D

)T
, (17)

where U,D are n-vectors. Inserting (17) into (7) and using (14) we arrive at

d

dz
Ψ = −iωΛ̃Ψ .

Then
Ψ(z) =

(
e−iωΛ(z−z0)U(z0), eiωΛ(z−z0)D(z0)

)T
, (18)

where z0 is a fixed point in the same source-free region. The vectors U,D characterise
up-going (U) and down-going (D) waves. Next, consider an interface at z = z, where
the material parameters vary discontinuously across z. We denote by ± quantities
evaluated at z± = z ± 0. Since Φ is continuous across z, we obtain

Ψ+ = JΨ− , Ψ− = J−1Ψ+ , (19)
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where the jump matrix is

J = (L+)−1L− =

(
JA JB
JB JA

)
, J−1 =

(
JTA −JTB
−JTB JTA

)
and JA, JB are the n× n-matrices

JA =
1

2

[(
L+

2

)T
L−1 +

(
L+

1

)T
L−2
]
, JB =

1

2

[(
L+

2

)T
L−1 −

(
L+

1

)T
L−2
]
.

Next, we consider a stack of layers 0 < z1 < · · · < zN <∞. We denote by subscript j
a quantity at interface z = zj, with superscripts ± as before. Then(

U−N , D
−
N

)T
= J−1

N

(
0, D+

N

)T
,

where we have used that there is no up-going wave below the last interface at z = zN .
So, we obtain

U−N = ΓND
−
N , D

+
N = TND

−
N , (20)

where
ΓN = −JTB,N

(
JTA,N

)−1
, TN =

(
JTA,N

)−1
. (21)

Here ΓN is the reflection matrix and TN is the transmission matrix from the last
interface z = zN .

Let j < N and 4zj = zj+1 − zj, j = 0, 1, . . . , N − 1, is the layer thickness. Then
by jumping across the layer boundary and using (18), (19) we obtain

U−j = JTA,je
iωΛj4zjU−j+1 − JTB,je−iωΛj4zjD−j+1 ,

D−j = −JTB,jeiωΛj4zjU−j+1 + JTA,je
−iωΛj4zjD−j+1 .

(22)

Define reflection and transmission matrices Γj, Tj by the relations that for any incident
wave D−j at the top of stack of layers underlying z = zj

U−j = ΓjD
−
j , D

+
j = TjD

−
j . (23)

Therefore Γj computes the reflected wave from the stack and Tj computes the trans-
mitted wave below the stack, when the incident wave is known. From (22), (23) we
obtain by induction

Γj =
(
JTA,jΓ̃j+1 − JTB,j

)(
− JTB,jΓ̃j+1 + JTA,j

)−1
,

Tj = Tj+1e
iωΛj4zj

(
− JTB,jΓ̃j+1 + JTA,j

)−1
,

(24)

where Γ̃j+1 = eiωΛj4zjΓj+1e
iωΛj4zj . Again, by induction it can be shown that Γj is

symmetric.
Thus all the reflection and transmission matrices can be calculated by (24), starting

with (21).
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3.4 Sources and boundary conditions

Consider a 2n-dimensional system of the form (7) with (m) omitted. Let the source be
of the form

S = S0δ(z − zs) + S1δ
′(z − zs) (25)

with S0, S1 independent of z. Here δ is the Dirac function. Define n-vectors SA, SB by
the following formula (

SA, SB
)T

= iωMS1 − S0 . (26)

Applying the standard procedure we obtain the following jump condition across the
source

Φ(z−s ) = Φ(z+
s ) +

(
SA, SB

)T
. (27)

Inserting a fictitious layer boundary at z = z+
s , we compute the reflection matrix

Γs ≡ Γ(z+
s ) from the top of this layer. Note that at z+

s , JA = I, JB = 0, since the
material properties do not change at zs. Then the up-going wave Us ≡ Us(z

+
s ) is related

to the down-going wave Ds ≡ Ds(z
+
s ) there by (23). Then we have

Ψ(z+
s ) =

(
ΓsDs, Ds

)T
. (28)

Using (17), (27) and (28) we obtain

Ψ(z−s ) =
(
ΓsDs, Ds

)T
+

1√
2

(
LT2 SA + LT1 SB, L

T
2 SA − LT1 SB

)T
. (29)

This expression may now propagated upwards through layers, using (18) and jumped
upwards across layers boundaries using (19) until we reach the free surface at z = 0+.
Then the n boundary conditions at z = 0 can be used to find the n unknowns Ds.

Consider now one particular case when zs ∈ (0, z1). In this case

Ψ(0+) =
(
eiωΛszsΓsDs, e

−iωΛszsDs

)T
+

+
1√
2

(
eiωΛszs(LT2 SA + LT1 SB), e−iωΛszs(LT2 SA − LT1 SB)

)T
.

(30)

We next write
Φ(0+) =

(
GAΦ0, GBΦ0

)T
, (31)

where Φ0 is an n-vector of unknowns at z = 0 and GA, GB are n × n matrices. For
System 1, let

Φ
(1)
0 =

(
ṽ3,−q̃3, ṽ1

)T
z=0+

, G
(1)
A =

1 0 0
0 0 0
0 1 0

 , G
(1)
B =

0 0 0
0 0 1
0 0 0

 . (32)

We can check that (31) holds for System 1 with the boundary conditions given by (12).
For System 2, let

Φ
(2)
0 = ṽ2(0+) , G

(2)
A = 1 , G

(2)
B = 0 . (33)

It may be checked that (31) holds for System 2 with the boundary conditions given by
(12).
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Using (17), (30) and (31) we obtain

Φ0 =
(
eiωΛzsΓse

iωΛzs
(
LT2GA − LT1GB

)
−
(
LT2GA + LT1GB

))−1

×

× eiωΛzs
(

Γs
(
LT2 SA − LT1 SB

)
−
(
LT2 SA + LT1 SB

))
,

Ds =
1√
2
eiωΛzs

(
LT2GA − LT1GB

)
Φ0 −

1√
2

(
LT2 SA − LT1 SB

)
.

(34)

In particular, when the source is situated just below the surface we get

Φ0 =
((

Γs − I
)
LT2GA −

(
Γs + I

)
LT1GB

)−1

×

×
((

Γs − I
)
LT2 SA −

(
Γs + I

)
LT1 SB

)
as zs → 0+ .

(35)

Φ0 defines all of Φ at the free surface, and Ds, Us = ΓsDs give all of Φ just below the
source. Now we are able to compute Φ in any z ∈ R+ by propagating through the
layers using (18) and (19).

Remark. Propagation of an upward-going wave in the downward direction will be un-
stable numerically using (18), because the complex exponentials grow rather than decay
with distance. Therefore, numerically one has to obtain U from D using the reflection
or transmission matrices.

Inverting (6), we can calculate the hat (̂ ) variables, i.e.,

v̂ = ΩT ṽ, q̂ = ΩT q̃ , τ̂ = ΩT τ̃Ω , p̂ = p̃ . (36)

The matrices for Systems 1 and 2 depend only on the magnitude k. However, factors
k1 and k2 are introduced by (5) and possibly by the directionality of the source. For
any function ĥ(k) let

Tj1,j2
(
ĥ
)
≡ F−1

x1x2

(
kj11 k

j2
2 ĥ(k)

)
= (−i)j1+j2∂j1x1∂

j2
x2
F−1
x1x2

(
ĥ(k)

)
.

We can compute these quantities as Hankel transforms in the cylindrical coordinates
r, θ, z. Define

Bj1,j2

(
ĥ
)

=
1

2π

∫ ∞
0

kj1Jj2(kr)ĥ(k)dk ,

where Jj2 is the Bessel function and j1, j2 are nonnegative integers. Then

T0,0 = B1,0 , T1,0 = i cos θB2,1 , T0,1 = i sin θB2,1 ,

T1,1 = sin θ cos θ
(
B3,0 −

2

r
B2,1

)
, T2,0 = cos2 θB3,0 −

cos 2θ

r
B2,1 ,

T0,2 = sin2 θB3,0 +
cos 2θ

r
B2,1 .

(37)
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4 Example of dynamite source

A dynamite source imposed on the solid and the fluid can be defined in the following
form

f(x) = g(x) = −s(ω)∇δ(x− xs) ,

where xs = (0, 0, zs)
T is the source position and s(ω) is the spectrum of the seismic

moment. Applying the Fourier transform Fx1x2 we obtain

f̂ = ĝ = −s(ω)
(
ik1δ(z − zs), ik2δ(z − zs), δ′(z − zs)

)T
.

The rotation by Ω yields

f̃ = g̃ = −s(ω)
(
ikδ(z − zs), 0, δ′(z − zs)

)T
. (38)

Substitution of (38) into (9) gives the source for System 1 in the form (25) with

S
(1)
0 = s(ω)

(
0, ik − ωρfkκ

η − iωρEκ
,

k2κ

η − iωρEκ
, 0, 0, 0

)T
,

S
(1)
1 = s(ω)(0, 0, 0, 1, 0,−1)T .

(39)

Substitution of (38) into (10) shows that S(2) is zero, then ṽ2, τ̃23 associated with System
2 are zero too. This is to be expected result because System 2 is related to SH-waves,
which are not excited by the dynamic source. Substitution of (39) into (26) gives

S
(1)
A = iβs(w)

(
ω(C −M), 2kG(M − C), ω(λ+ 2G− C)

)T
,

S
(1)
B = (0, 0, 0)T .

(40)

Formulas (40) may be used in (34) or (35) for a shallow source, to obtain all the tilde
(̃ ) functions.

To invert the rotation Ω, using (36), note that from (11) and the vanishing of
System 2, ṽ2, q̃2, τ̃12, τ̃23 are identically zero. All the remaining tilde functions depend
of k only and can be calculated by the following formulas

v̂1 =
k1

k
ṽ1 , v̂2 =

k2

k
ṽ1 , v̂3 = ṽ3 ,

q̂1 =
k1

k
q̃1 , q̂2 =

k2

k
q̃1 , q̂3 = q̃3 ,

τ̂11 =
k2

1 τ̃11 + k2
2 τ̃22

k2
, τ̂12 =

k1k2(τ̃11 − τ̃22)

k2
,

τ̂22 =
k2

2 τ̃11 + k2
1 τ̃22

k2
, τ̂13 =

k1τ̃13

k
, τ̂23 =

k2τ̃13

k
, τ̂33 = τ̃33 .

(41)

Then the Fourier transform Fx1x2 can be inverted in cylindrical coordinates (r, θ, z)
using (37) to obtain the solid and fluid velocities

v =
(
iB1,1(ṽ1)

)
er +

(
B1,0(ṽ3)

)
ez , q =

(
iB1,1(q̃1)

)
er +

(
B1,0(q̃3)

)
ez (42)
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and the stress tensor components

τ11 = T2,0

(
k−2τ̃11

)
+ T0,2

(
k−2τ̃22

)
, τ12 = T1,1

(
k−2(τ̃11 − τ̃22)

)
,

τ22 = T0,2

(
k−2τ̃11

)
+ T2,0

(
k−2τ̃22

)
, τ13 = T1,0

(
k−1τ̃13

)
,

τ23 = T0,1

(
k−1τ̃13

)
, τ33 = T0,0(τ̃33) .

(43)

These stresses may now be computed in cylindrical coordinates from (37) using the
Hankel transforms of the appropriate tilde functions.

4 Example of vertical source

We next consider a vertical point force acting on the free surface z = 0, i.e.,

f(x) = g(x) = (0, 0, 1)T s(ω)δ(x1)δ(x2)δ(z − zs) ,
where zs → 0+ puts the force on the free surface. This models hammer, weight drop,
and vibroseis sources. Applying the Fourier transform Fx1x2 and rotation Ω we arrive
at

f̃ = g̃ = f̂ = ĝ = (0, 0, 1)T s(ω)δ(z − zs) . (44)
Substitution of (44) into (9), (10) yields the source for Systems 1 and 2 in the form

S(1) = (0, 0, 0,−1, 0, 1)T s(ω)δ(z − zs) , S(2) = (0, 0)T . (45)

Thus, all variables in System 2 are zero, as it was in the case of the dynamite source.
From (25), (26) and (45) we obtain

S
(1)
A = (0, 0, 0)T , S

(1)
B = (1, 0,−1)T s(ω) . (46)

Now all the tilde variables at the free surface may be computed from equations (35) as
zs → 0+ and propagated anywhere else in space. Note that S(1)

A , S
(1)
B are independent

of k1, k2, so that the tilde variables depend only on k and not on wavenumber direction.
Therefore, similar to dynamite we can transform to the hat variables using (41) and
transform back to the spatial coordinates using (42) and (43).

5 Conclusions

We have shown how the complete Biot equations (low-frequency range) can be put into
the Ursin form in a plane-layered medium. We have derived explicit formulas of the
solution to a boundary-value problem formulated for Biot’s system, which can be used
as the basis of a numerical algorithm and studying the propagation of elastic waves in
porous media.
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