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TOMOGRAPHY OF TENSOR FIELDS IN THE PLAIN
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Abstract The problems of tomography and integral geometry of tensor fields in the plane
are considered. Basic backgrounds on tensor fields, operators of ray transforms and back-
projections are stated. The representations of symmetric tensor fields through potential that
generates the field with usage of operators of differentiation and symmetrization are obtained.
A detailed classification of symmetric m-tensor fields is suggested and decomposition theo-
rems are obtained. Back-projection operators acting on ray transforms of tensor fields are
introduced. The kernels and images of the operators of mixed and transverse ray transforms
are described. The connections between ray transforms of the fields and Radon transforms of
their potentials are established. The inversion formulas for the components of a field and for
its potential are obtained.
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1 Introduction

Mathematical backgrounds of computerized tomography were laid at the very beginning
of twenty century in the papers of Radon [1] and Funk [2] on integral geometry which
had pure theoretical sense. Thus in the paper of Radon the inversion formulas for
Radon transform were suggested and proved. An essential extension of applications
and formulations of tomography problems has led to an emergence of vector, tensor
and refractive tomography as separate fields of investigations with their own problems,
achievements and unsolved tasks. The formation and fast development of this new
fields of tomography are also based on ideas, statements and results of integral geometry
cultivated in framework of more general theory of inverse and ill-posed problems.

Integral geometry is certain category of inverse problems that are understood in
wide sense and is connected closely with geometrical objects in n-dimensional space.
The statements and investigation of integral geometry problems for the time being re-
alized mainly in theoretical terms having rare and fragmentary applications in practice.
Geophysical investigations of the inner structure of the Earth by means of natural (the
earthquakes) or artificial sources of elastic and electromagnetic waves were a powerful
stimulus for new settings in the integral geometry [3]. The emergence and fast for-
mation of tomography as self-depended natural and practical subject led to the new
intensive development of the integral geometry and the obtained results have been in
demand for areas connected with investigations by nondestructive distant technique.
Many Russian and foreign scientists explored the inverse and ill-posed problems, the
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tasks of integral geometry and tomography in which in particular a phenomenon of re-
fraction was included. The Soviet and Russian scientists from Moscow (A.N. Tikhonov,
I.M. Gelfand, V.Ya. Arsenin, A.V. Goncharsky, A.G. Yagola, etc.) and Novosibirsk
(M.M. Lavrentiev, A. S. Alekseev, V.G. Romanov, S. I. Kabanikhin, Yu. E. Anikonov,
etc.) scientific Schools have made a significant contribution to the theory of inverse
and ill-posed problems. A large number of their great results are published in plenty
papers, textbooks and monographs. We mention only mostly known of them, [4]–[30].

The integral geometry problem in traditional general setting [13] is the determina-
tion of an unknown function u(x), x ∈ Rn, by its known integrals∫

M(λ)

u(x)dσ = v(λ) (1)

over manifolds depending on a parameter λ ∈ Rk from a certain family {M(λ)}. Com-
plete mathematical study of the problem assumes to answer the listed below significant
questions.

Uniqueness. What are the conditions when an assignment of a function v(λ) deter-
mines u(x) uniquely? A considerable part of theoretical investigations and results in
the integral geometry answer this question.

Existence. What are the necessary and sufficient conditions for belonging v(λ) to
the set of functions that may be represented by the integrals of a form (1)? The question
of existence usually is more complicated then a question of uniqueness. Fortunately
in the tasks arising due to the practice requirements there exists a priori information
that the solution exists because one has the date in which in one form or another the
unknown quantity (solution) is “encrypted”.

Method for solving. What is a way for determination a function u by the known
v? The usual answer the question assumes obtaining u as a result of applications the
explicit inversion formulas. Now the other approach got a wide spread in association
with applications of computers. Namely it is numerical method of approximate solving
to the problems of integral geometry. The approach uses as the universal tools of
approximation theory so the special methods developed in framework of specific of
concrete problems of the integral geometry.

Stability. What is a behavior of a solution u in dependence of the errors in data v?
Problems of integral geometry with complete data are as a rule weakly ill-posed. But
there exist an important statements of the problems with incomplete data, and they are
ill-posed with strong degree just the same as well known problem of analytical continu-
ity. The examples of the problems are the inverse kinematic problem of seismic and the
tomography problem with limited angles of observation. In spite of pessimism among
the researchers about future perspectives of this problems the attempts of working-out
the effective and stability numerical methods are going on.

1.1 Practical statements of the vector tomography problems

Practical statements connected with reconstruction of vector properties of a medium
by known information of tomographic type appeared at 70–80 years of previous century
[31]–[36]. At present tomography directions focused on the investigation of vector or
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tensor features of media by nondestructive methods are developed rather intensively. It
occurs primarily due to the fact that the areas of applications of tomographic methods
to the non-scalar properties of objects are very broad. They are investigations of liquid
or gas flows, physical and astrophysical experiments, studying of anisotropic character-
istics of industrial products and terrestrial rocks, biological and medical applications,
and many other areas of nature science, techniques, etc., [37]–[43]. Now we would like
to formulate mostly characteristic situations that led to the problems of vector and
tensor tomography.

Liquid or gas flow. Let D ⊂ R2 be bounded convex domain of the flow of liquid
or gas with boundary ∂D. The boundary may be not “physical” boundary but be
determined by a domain of investigation with sources and detectors in it. The flow is
determined by a vector field of speed w(x), x = (x1, x2) ∈ D. The vector field w(x)
shall be determined by measurements of time-of-flight of acoustic signal through the
flow domain. Let c(x) be a speed of sound in the domain D. We assume |w| � c and
c changes small enough in D so the propagation of the signal may be thought off as
over straight lines. Then the time-of-flight between a source at a point P (or Q) and
a receiver at a point Q (or P accordingly) is

tPQ =

∫
LPQ

dl

c+ 〈w, η〉
, tQP =

∫
LQP

dl

c− 〈w, η〉
,

where η is a unit tangent vector of acoustic signal ray LPQ, and the time tQP is calcu-
lated taking into account the replacement of the direction vector η onto the direction
vector −η.

By summing the time-of-flights

tPQ + tQP ≈ 2

∫
LPQ

dl

c(x)
,

we obtain the traditional problem of (scalar) transmission computerized tomography
of recovering of a sound speed c(x) in the medium.

By subtracting

tPQ − tQP ≈ −2

∫
LPQ

〈w(x), η〉
c2(x)

dl =

∫
LPQ

〈w̃(x), η〉dl,

with w̃(x) = −2w(x)/c2(x), we have the statement of vector tomography problem
consisting in determination of the flow speed w(x) of the liquid or gas by the known
longitudinal ray transform of the vector field w̃.

Thus the information about time-of-flights is enough not only for reconstruction of
scalar field (function) c(x) corresponding to the sound speed in the medium, but also
for the reconstruction of the vector field w̃ that is connected with the field of speeds of
the flow of liquid or gas. It should be mentioned that inverse ratio of w̃ to the square
c2(x) of a sound speed and natural assumption |w| � c lead to the require of much
more higher accuracy of measurement compared with the accuracy in computerized
tomography.

Measurements of a temperature of gas on a base of Schlieren effect. A problem of
temperature measurement in gas with usage of a distance methods is considered [33],
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[44]. A propagation of light rays in an inhomogeneous medium with index of refraction
n = n(x), x ∈ D ⊂ R3, which changes weakly in comparison with the length of wave,
is described by the equation

d

ds
(n η) = ∇n,

where ds is the differential of arc length along the light ray. Then a vector η, tangent
to the light ray that ran the distance l in a medium, may be expressed as

η =
1

n

∫ l

0

∇n ds+
n0

n
η0,

where η0 specify the initial direction of the light ray and n0 is the index of refraction at
s = 0. An optical Schlieren device transforms the difference in directions of propagation
into an intensity of deviations

I =
k

n

∫ l

0

〈θ, (∇n× η0)〉ds.

The unit vector θ along with the constant k describe a sensitivity of the device in
dependence of the direction. If the vector θ is orthogonal to the plane of tomographic
measurements, and θ × η0 = ξ, where through ξ the unit normal vector to the ray
belonging to the plane of investigations is designated, then

I =
k

n

∫ l

0

〈w, ξ〉ds,

where w = ∇n. The last equation shows that the component 〈∇n, ξ〉 of potential
field ∇n is orthogonal to the direction of propagation of the observed optical radiation.
Hence the problem of vector tomography is formulated on determination of the poten-
tial vector field w by the known transverse ray transform. The process of solving this
problem gives as potential vector field ∇n so the index of refraction n. In gas medium
the index of refraction depends on a density, and if a pressure is constant, it means the
dependence on temperature too so it can be estimated by the recovered n.

Doppler tomography. The Doppler effect is one of the physical phenomena on
the base of which one can determine vector properties of a medium. The problem
is to find a field of speeds v = v(x, t) in a domain D, filled by liquid or gas, by the
measurements obtained out of the domain.

This general statement has interesting concrete applications. Thus in physical ex-
periment one can find the function of distribution of molecule by the speeds by means
of the Doppler effect; the initial data are obtained by raying of the molecular ensemble
by laser radiation [40], [41]. The problem of reconstruction of a vector field of mean
speeds of ions in plasma was set and investigated, see [45] for example. The problem
of speed distributions of the large masses of air is actual in hydrometeorology [37].
In hemodynamics it is necessary to determine the field of blood speed in vessels of a
patient with usage of acoustic Doppler measurements [46]– [48]. As a rule the focused
ultrasound beams or laser sources are applied in the problem of Doppler tomography
as the probe signals.
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An interaction of physical field with moving particles of a medium leads to an
appearance of the reflected waves with a frequency ω which differs from the frequency
ω0 of the incident wave on the magnitude

δω =
2cω0vη
c2 − v2

η

,

where c is a speed of the incident wave, vη is a projection of the speed of a particle,
on which the wave is reflected, onto direction of the ray. Assuming |v| � c, which is
actual practically always, we derive δω ≈ 2ω0vη/c good approximation of the Doppler
shift. The shift is registered by receiving equipment and represents initial data for the
problem of Doppler tomography.

The general problem of Doppler tomography consists in determination of the field
of speeds of the ensemble of particles (molecule, ions, etc.) moving in a certain domain
with different speeds and in different directions. This problem is very complicated and
yields for solving with great difficulties. So as the date in investigations an integral
moment of the first order is used much more often,

µ(s′) =

∫
L

vη dτ =

∫
L

〈v , dτ〉. (2)

The moment (2) obviously is the longitudinal ray transform of the vector field v.
Hence a more simpler statement is considered, namely consisting in changing of the
complicated distribution by speeds onto one mean speed, and the problem is now to
find a vector field of mean speeds.

We led references only on the main statements and directions of investigations on
vector field tomography above. A review paper [49] contains essentially more detailed
information on main environment and results of vector tomography. We ought mention
a technique report [48] too. It contains a large bibliography references of the papers
devoted to investigations of vector and tensor tomography problems in different physical
statements.

1.2 Tensor tomography problems

It is well known fact that phenomenon of polarization arises during propagation of
electromagnetic and elastic waves in anisotropic medium. An approximation of geo-
metrical optics describes a behavior of ellipse of polarization by a system of differential
equations connecting properties of the medium with the values of electromagnetic field
that propagates along the ray [50]. Thus the problem of determination of the medium
properties by a degree of polarization of the incident wave and the wave, passed through
the medium, has tomographic nature (an information accumulated along the ray). If
we have enough number of polarization measurements then the problem of polariza-
tion tomography can be stated. The rigorous general setting of the problem and its
mathematical aspects are considered in [26], [51], [52]. An algorithm of solving the
problem in linearized statement is developed in [53]. There are traditional applications
of the problem to plasma diagnostic [54], [43], [55], [56], [39], photoelasticity and fiber
optics, see [57]–[59] for example. In recent years applications and hence the statements
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of tensor tomography become much more wider. There arise absolutely new directions
of development such as magneto-photoelasticity, [60], [61], the tomography of tensor
fields of stress [62], tensor fields of residual stress [63], [64], the diffractive tomography
of strains [65], the polarization tomography of quantum radiation [66]. New intensive
developed directions for the methods in tensor tomography have especially successful
applications in biology and medicine. This areas are the diffusion MRI-tomography
allowing investigate the brain in more details, the cross-polarization optic coherent
tomography applying in morphology, the vessel investigations, cancer diagnosis. An
approaches of cross-polarization tomography allow to increase resolution nearly de-
gree in comparison with the other tomographic methods [67]–[70], and certain other
applications.

Described above examples show that, as in the considered earlier settings of vector
tomography, instead of scalar variable it is required to recover vector (in particular elec-
tromagnetic) or tensor field. It’s possible to speak about tensors of strains or stresses,
a tensor of electromagnetic field. A complication of an object of investigation leads
not only to the generalization of the Radon transform, the longitudinal and the trans-
verse ray transforms, but to the appearance of quite new types of integral transforms
of tomographic type. First of all it is the longitudinal ray transform of symmetric m-
tensor field. This transform may be determined not only in n-dimensional Euclidean
space but in the Riemannian manifold too. The Radon transform for functions also
is generalized for the symmetric m-tensor fields depending on n variables. This type
of integral transforms is called the normal Radon transform. The truncated transverse
ray transform is simplified version of the transverse ray transform and directly related
to the photoelasticity. Polarization tomography (in a narrow sense) has deal with mea-
surements of subtraction of the phases between inductive and the transmitted wave.
Sometimes it is more simple then the measurements of the phase on “entrance” and
“exit”. The mixed (longitudinal-transverse) ray transform arises as a result of appli-
cation of the “ray approach” to the isotropic elastic medium which is described by a
system of equations of the dynamic elasticity and further while consideration of simpler
variant of the quasi-isotropic medium [25].

We would like to give an example of certain general setting of a problem of the
integral geometry of tensor fields [25], consisting in determination of a symmetric m-
tensor field w = wi1...im(x), x ∈M , given in the Riemannian manifold M , dimM = n,
by its known integrals (i.e. the longitudinal ray transform)∫

γx,ξ

wi1...im
(
γx,ξ(t)

)
γ̇i1x,ξ(t) . . . γ̇

im
x,ξ(t)dt = (Pu)(x, ξ) (3)

On the one hand the statement generalizes the traditional problem of integral geometry
as the requirement is to recover tensor field but not a function. On the other hand
we have more narrow and concrete manifolds of surfaces the integrals over which are
known as initial information. Namely there are one-dimensional manifolds consisting of
geodesics of certain given Riemannian metric. The purpose consists in determination
of symmetric tensor field wi1...im by its known integrals (3). It appears that as and
for vector case and Euclidean metric this information is sufficient only for unique
reconstruction of solenoidal part ws of unknown field w. Here in the article more
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simple case of this transform is considered, i.e. only a case of Euclidean metric, but a
number of other types of ray transforms are treated.

1.3 The algorithms of computerized tomography

Now we mention the main mathematical tools lying in a base of numerical methods and
algorithms of computerized (scalar) tomography. Mathematically the inversion formu-
las are very attractive. The whole family of algorithms based on the inversion formulas
are known, in particular, as algorithms of the convolution and back projection. Now
they have wide applications but at first the idea was applied in radio-astronomy in 2D
variant, see [71]. One of its forms was described at first in papers [72], [73] in application
to medicine tasks. Later on the development of the approach led to a number of kinds
of reconstruction algorithms, see [74]. They are algorithms of Davison-Grunbaum,
Madikh-Nelson, ρ-filtration of back projection, Marr and others. The other class of
algorithms based on projection theorems are known as Fourier-algorithms. They con-
nect the transforms of Radon and Fourier. The first variants of these algorithms were
suggested in [75] for solving the problems of radio-astronomy, and in [76] for electron
microscopy. The algebraic algorithms, see [77], [78], are well known and used widely.
The first step of the algorithm consists in construction of a system of linear algebraic
equations, the second step devoted to solving of the system. Usually the iterative meth-
ods, and the main among them — the method of Karchmazha (the iterative orthogonal
projections) — are used [79]–[81]. The probability models and mathematical-statistic
tools [82], [83] have much less application. They are used usually in framework of more
complicated tomographic models including high level of noise, or inner sources with
unknown distribution, or phenomenon of multiple scattering, etc.

The most part of mentioned approaches and corresponding algorithms are devel-
oped in suggestion of absence of phenomenon of refraction in a medium. The possibility
of the usage of them in mathematical models with refraction is inexplicit. A certain in-
terest, especially in connection with possibility of the usage in the models of refractive
tomography, represent two general approach of applied functional analysis. In partic-
ular they can be used for solving the integral equations of the first kind. The method
of least squares (LSM) is the first of them. This approach is well known and employed
to a great number of different problems of numerical calculations. LSM is exploited as
within the framework of variational methods (in pairs of Hilbert or normed spaces) for
solving of operator (in particular integral) equations [84], [85], so and for the solution
of discrete and finite-dimensional approximations of these tasks [86]–[88]. This method
is connected closely with the second approach named as singular value decomposition
(SVD) method and show very powerful results in practice of numerical computations.
The SVD-method has two main kinds of applications similar to the areas of applications
of LSM-method. The first is the decomposition of operators acting from one Hilbert
space to another; see, for example about singular value decompositions of tomographic
operators [89]–[91], [74]. The second variant of the application of SVD-method is much
more spreading and is used in a case of the operators acting from one finite-dimensional
space to another finite-dimensional space, usually of another dimension, see [92] for ex-
ample. The third method, similar to the described above two powerful methods, is so
called method of approximate inverse developed by A.K. Louis and his pupils [93]–[96]
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more then twenty years. Theoretical backgrounds of the method lays in functional
analysis too. These are the Riesz theorem about representation of linear functional, a
concept of fundamental solution and its properties, approximations of δ-function.

Currently there are published a great number of monographs containing as math-
ematical backgrounds, numerical methods and algorithms of tomography, so and de-
scriptions, developments of tomography theory and practice in different subject areas
especially in physics, biology and medicine, see [97]–[101] for example.

1.4 The goals and short content

The formulated above statements and characteristics of the vector and tensor tomog-
raphy problems, even very short and schematic, lead to certain questions and conclu-
sions. As we remember the measurements in transmission computerized tomography
are based on the phenomenon of decreasing of a signal intensity while passing the con-
tinuous medium. The principles of measurements for creating of initial data in vector
and tensor tomography are based on completely different of those used in transmission
tomography. We would like to remind that in the base of measurements in mostly
known problems of vector and tensor tomography problems lie such physical phenom-
ena as different time-of-flights of direct and inverse signals, Doppler and Schlieren
effects, the polarization of electromagnetic or elastic waves, etc.

The question arises on the possibility of application of methods and algorithms
developed in the computerized tomography to the problems of vector and tensor to-
mography. Or researchers should elaborate absolutely new mathematical tools different
from those have been exploited in the tomography of scalar fields with great success.
Should new methods be so different from each other as different from each other phys-
ical effects? Do every physical effect needs in new own mathematical tools, the new
methods and algorithms?

The answer to the first question is positive on the whole, and the answers two next
questions are negative generally. The 2D-statements of vector and tensor tomography
confirm this assertions most clearly. A variety of all physical effects, lying in a base
of modern measurements of physical fields passed through an object, is aligned, and
the ways of data obtaining are reduced to few types of ray transforms. More over
absolutely different physical effects lead often to the same ray transforms.

The main purpose of the article consists in investigation of the questions formulated
above, searching and justification the answers to this questions. We investigate the
general case of symmetric m-tensor field for arbitrary m, not only for m = 0, 1, 2.
We reduce the problem of reconstruction of a tensor field by its ray transforms to the
problem of reconstruction of its components (as functions considered) by their known
Radon transforms. Then it follows that the vast majority of the scalar tomography
algorithms are useful and for the tasks of vector and tensor tomography.

Necessary notations, definitions and main material on tensor fields and tomographic
operators are represented at Section 1 of the paper. The section is devoted to the
properties of the Radon transform, ray and fan-beam transforms, the back projection
operators. We pay special attention to the inversion formulas for the Radon and ray
transforms. Important for the practice cases of recovering of vector (Section 1) and
symmetric 2-tensor fields (Section 2) are considered in details for a possibility of direct
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construction of corresponding algorithms. The concepts of transverse and mixed ray
transforms for the vector and symmetric 2-tensor fields are developed. The kernels and
images of such operators are described.

In Section 3 a detailed classification of symmetric m-tensor fields, m > 1, is estab-
lished. The classification lies at the base of proof of the decomposition theorems for
the fields. An idea of representation of a symmetric tensor field through the potentials
generating the field by superpositions of the operators of inner differentiation and inner
orthogonal differentiation plays the main role for decomposition theorems. The con-
cepts of transverse and mixed ray transforms for the vector and symmetric m-tensor
fields are introduced. The operators of back projection acting on the transverse and
mixed ray transforms for the fields, m > 1, are suggested. The kernels of the transverse
and mixed ray transforms are described. The connections between ray transforms for
the fields and Radon transforms for their potentials are established. In particular, this
important connections allow us to establish the projections theorems for symmetric
tensor fields as well as to obtain the inversion formulas for the components of tensor
field and their potentials.

Generally the proposed article is a review but it contains a number of new re-
sults. Certain results of the authors concerning vector and tensor tomography prob-
lems including numerical methods, algorithms and their realizations are published in
[102]–[109]. Stability estimates, on which investigations of the ill-posedness type of
the problems of refractive, vector and tensor fields tomography, are obtained in [110],
[108], [109].

2 Definitions and preliminary results

Let B = {(x1, x2) ∈ R2 | (x1)2 + (x2)2 < 1} be a unit disk with a boundary ∂B =
{(x1, x2) ∈ R2 | (x1)2 + (x2)2 = 1}. A notation Z = {(α, s) ∈ R2 |α ∈ [0, 2π], s ∈
[−1, 1]} is used for the cylinder [−1, 1]× [0, 2π]. Unit vectors ξ ∈ ∂B, ξ = (cosα, sinα),
η := ξ⊥ ∈ ∂B, η = (− sinα, cosα) and a real number s ∈ R set a straight line Lξ,s
by the normal equation x1 cosα + x2 sinα − s = 0 or by the parametrical equations
x1 = s cosα− t sinα, x2 = s sinα + t cosα.

Functions (scalar fields) are denoted as f(x), g(x), ... and through ϕ(x), ψ(x), χ(x), ...
are designated potentials determining tensor fields. The functions and the potentials
are given in unit disk B. Notations x = (x1, x2), y = (y1, y2),. . . are convenient for
statement of the problems and formulation of necessary properties of tensor fields.
But sometimes at description of numerical experiments the notations (x, y) for co-
ordinates of the points in the plane are used. A set of symmetric m-tensor fields
w(x) = (wi1...im(x)), u(x) = (ui1...im(x)), v(x) = (vi1...im(x)), . . ., i1, . . . , im = 1, 2, given
in B is designated by Sm(B). The scalar product in Sm(B) is defined by the formula

〈u(x), v(x)〉 = ui1...im(x)vi1...im(x), (4)

where by repeating super- and subscripts in a monomial a summation from 1 to 2 is
meant. We recall that in the Euclidean space with a rectangular Cartesian coordi-
nate system there is no difference between contravariant and covariant components of
tensors. Later the covariant components of tensors are exploited usually.
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The notations for functional spaces should be remind now. Further we need in the
spaces of square integrable functions L2(B) and symmetric m-tensor fields L2(Sm(B))
as well as the L2-space L2(Z). The inner product of symmetric m-tensor fields u, v ∈
L2(Sm(B)) is defined as

(u, v)L2(Sm(B)) =

∫
B

〈u(x), v(x)〉dx. (5)

The spaces of differentiable, with finite order k, symmetric m-tensor fields are desig-
nated as Ck(Sm(B)) and Ck

0 (Sm(B)); the Sobolev spaces are denoted as Hk(Sm(B)),
Hk

0 (Sm(B)), Hk(Z), m = 0, 1, 2, . . . , k = 0, 1, . . . All these spaces are defined in usual
manner.

Thus the inner product in the Sobolev space Hk(B) is defined as(
f, g
)
Hk(B)

=
∑

0≤|a|≤k

∫
B

DafDag dx1dx2,

where a is the multi-index and an operator Da is the operator of multi-index differen-
tiation. The norm in Hk(B) is generated by the inner product,∥∥f∥∥

Hk(B)
=
( ∑

0≤|a|≤k

∫
B

|Daf |2dx1dx2
)1/2

.

The inner product for vector fields u, v ∈ H1(S1(B)) is defined by the formula

〈u, v〉H1(S1(B)) =

∫
B

( 2∑
i=1

uivi +
2∑

i,j=1

∂ui
∂xj

∂vi
∂xj

)
dx1dx2,

the inner product for symmetric 2-tensor fields u, v ∈ H1(S2(B)) is defined as

〈u, v〉H1(S2(B)) =

∫
B

( 2∑
i,j=1

uijvij +
2∑

i,j,k=1

∂uij
∂xk

∂vij
∂xk

)
dx1dx2,

and the inner product for functions f, g ∈ H1(∂B × ∂B) is defined by the formula

〈f, g〉H1(∂B×∂B) =

∫
∂B×∂B

(
fg +

∂f

∂α

∂g

∂α
+
∂f

∂β

∂g

∂β

)
dαdβ.

The inner product in the space L2(Z) is defined by the relation(
f, g
)
L2(Z)

=

∫
Z

f(x)g(x) dx,

so the norm should be defined as∥∥f∥∥
L2(Z)

=
( ∫

Z

|f(x)|2 dx
)1/2

.

Further sometimes the spaces D(B), D(R2) of test functions and the Schwartz spaces
S, S ′ are used too.
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2.1 The Radon transform

Let a function ϕ(x), x = (x1, x2), be given in B, ϕ(x) ∈ C∞0 (B). The Radon transform
Rϕ of a function ϕ is defined as

(Rϕ)(ξ, s) =

∫ ∞
−∞

ϕ(sξ + tξ⊥)dt, (6)

The transform is the integrals along the lines Lξ,s = {x ∈ R2 | ξ1x1 + ξ2x2 = s} and
maps the space C∞0 (B) into the space C∞0 (Z). The boundedness of functions given in
Z is understood to the argument s.

The well known properties [97] of the Radon transform will be required further.
Let A be a matrix of dimension 2× 2, ϕ ∈ D(R2). The notation

ϕ̆(ξ, s) :=

∫ ∞
−∞

ϕ(sξ + tξ⊥)dt

is exploited.

1) The function ϕ̆(ξ, s) is a homogeneous of degree −1 function of its arguments,

ϕ̆(tξ, ts) = |t|−1ϕ̆(ξ, s).

2) The function ϕ̆(ξ, s) is an even function of the variables ξ, s,

ϕ̆(−ξ,−s) = ϕ̆(ξ, s).

3) Let in R2 a linear change of basis y = Ax, detA 6= 0 are made. Then we have

R (ϕ(Ax)) = | detA−1|ϕ̆
(
(A−1)T ξ, s

)
.

4) If in R2 a change of the origin is made, y = x− a (shift of the Radon transform)
then the relation

R (ϕ(x− a)) = ϕ̆(ξ, s− 〈ξ, a〉).

is valid.

2.2 Inversion formulas

A simple inversion formula can be derived with usage of the back projection operator
and the Fourier transform. Let g(ξ, s) ∈ C∞0 (Z), g(ξ, s) = (Rϕ)(ξ, s) be valid for some
function ϕ ∈ C∞0 (B). The back projection operator

f(x) = (R#g)(x) =
1

2π

∫ 2π

0

(Rϕ)(ξ(α), x1 cosα + x2 sinα) dα, (7)

is an average of values of the Radon transform (applied to the function ϕ) calculated
along all lines passing through the point x. The back projection operator allows to
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“return” from the space of functions depending on variables ξ, s to the space of functions
depending on the variables x1, x2. Substituting the expression (6) to (7), we obtain

f(x) =
1

2π

∫ 2π

0

(∫ ∞
−∞

ϕ(sξ + tξ⊥) dt

)
dα.

Change of variable y = sξ+ tξ⊥ allows to break the inner integral in two integrals with
limits from −∞ to 0 and from 0 to ∞. Taking into account that t dt dα = dy1 dy2 ≡
dy and t = |x− y| we obtain the representation

f(x) =
1

π

∫ ∞
−∞

ϕ(y)

|x− y|
dy (8)

for the back projection f(x) in the form of convolution, f = ϕ ∗ |x|−1/π. Applying the
Fourier transform to both sides of (8) and using the convolution theorem, we arrive
to the relation F [f ] ≡ f̂ = ϕ̂ · h, where ϕ̂ ≡ F [ϕ], h =

(
|x|−1

)̂
. Hence ϕ̂ = f̂ / h.

Applying to the resulting expression the inverse Fourier transform we get inversion
formula

ϕ(x) =
1

2

∫ ∞
−∞

f̂(y)

h(y)
ei〈x,y〉 dy. (9)

Algorithm based on (9) is very simple. Let the Radon transform g(ξ, s) = Rϕ of
a function ϕ is given. The first step of the algorithm consists in calculation of back
projection f(x) = (R#g). The second step is an application of two-dimensional Fourier
transform f̂(y). Then the Fourier transform h(y) of the function |x|−1 is computed
and a relationship f̂ / h is obtained. At last the application of the two-dimensional
inverse Fourier transform to the obtained expression gives the required function ϕ. The
calculation of the back projection is reduced to the single integration with limits from
from 0 to 2π. For the calculations we have at our disposal the numerous quadrature
formulas. The Fourier transform, both direct and inverse, is replaced by a discrete
Fourier transform. We would note that, by using the fast Fourier transform (FFT), we
decrease a calculation time significantly.

It seems that the algorithm described above, due to its simplicity, has broad ap-
plications, but it is not so. Its usage is limited to the cases when one needs to get
rough quality evaluation, especially without worrying about the good accuracy of cal-
culations. The algorithm can be used for a comparative study of the effectiveness and
accuracy characteristics of different reconstruction algorithms. And it is rarely used if
it is necessary to determine the object with the maximum possible accuracy.

Main reasons for this situation are caused by two circumstances. The first is that a
back projection f(x) = (R#g), where g(ξ, s) = Rϕ for ϕ ∈ D(R2) or ϕ ∈ S, (ϕ > 0),
slowly decreases at the infinity. Generally speaking, f ∈ S ′, i.e. the function is an
element of the space of slow-growing at the infinity functions. In particular f /∈ L2(R2).
The second circumstance is connected with the behavior of f at infinity too. Namely
the discrete Fourier transform, apart from the continuous one, assumes the replacement
both of it and its image by some periodic functions. Thus the approximation is the
worse than the decrease of a transformed function is more slowly at the infinity.
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Involving a terminology of the pseudodifferential operators theory, the inversion
formula can be rewritten as

ϕ(x) = (−∆)1/2f(x) =
(
(−∆)1/2(R#g)

)
(x), (10)

where g(ξ, s) = Rϕ. Thus (10) is a composition of the back projection operator and
the nonlocal pseudodifferential operator (−∆)1/2 with a symbol |y|.

I. Radon used another approach for a derivation of his inversion formula. The
derivation is based on the Abel integral equation and its inversion; the averaging op-
erator over circles for a function ϕ(x); the averaging of (Rϕ)(α, s) over straight lines
equidistant from the origin; commutative properties of the Radon transform with re-
spect to shifts and rotations of the plane (properties 3 and 4 above). Inversion formu-
las are the best known, especially in proceedings of applied character, in the following
forms,

ϕ(x1, x2) = − 1

4π2

∫ 2π

0

∫ ∞
−∞

(Rϕ)
′
s(α, s+ x1 cosα + x2 sinα)

s
ds dα, (11)

where the integral over s is understood in a sense of the Cauchy principal value. The
integration by parts of the inner integral leads to the inversion formulas of another
types. Namely, in one of them the second derivative (Rϕ)

′′
ss of the Radon transform is

used,

ϕ(x1, x2) =
1

4π2

∫ 2π

0

∫ ∞
−∞

(Rϕ)
′′

ss(α, s+ x1 cosα + x2 sinα) ln |s|ds dα, (12)

while in the second the Radon transform Rϕ by itself,

ϕ(x1, x2) = − 1

4π2

∫ 2π

0

∫ ∞
−∞

(Rϕ)(α, s+ x1 cosα + x2 sinα)

s2
ds dα, (13)

is exploited. It should be marked that the value s2 in the denominator of the integrand
appears (instead of s in the formula (11)).

The algorithms of recovering of a function ϕ by its known Radon transform can
use any of the inversion formulas (11)–(13). It depends on a priori information about
the function ϕ; an existence, level and nature of a noise in the data Rϕ; a quality
of mathematical tools for a numerical differentiation, smoothing and accounting the
singularities of various orders.

Remark 2.1. Looking ahead we note that the variants (11), (12) of the inversion for-
mulas can be used directly for the recovery of potentials of vector or symmetric 2-tensor
fields, respectively. In this case the derivatives with respect to s of the Radon transform
of the corresponding potentials should be replaced by the longitudinal or transverse ray
transforms of vector or tensor fields.

We present now more general means that allow to obtain the whole family of the
inversion formulas [74]. In the Euclidean space Rn, n ≥ 2, x = (x1, . . . , xn) ∈ Rn the
unit ball is denoted as B, ∂B is its boundary. The designation Sn−1 for the unit sphere
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in Rn is used too. We establish the following sets: ξ⊥ is a subspace {y ∈ Rn | 〈ξ, y〉 = 0}
orthogonal to a vector ξ = (ξ1, . . . , ξn) ∈ Sn−1; Z is a cylinder Sn−1 × R ⊂ Rn+1; T is
a tangent bundle of the sphere Sn−1 × ξ⊥ = {(ξ, x) | ξ ∈ Sn−1, 〈x, ξ〉 = 0} ⊂ R2n; SRn

is a sphere bundle {(x, ξ) | x ∈ Rn, ξ ∈ Sn−1. Without loss of generality we give the
definitions of the Radon transform, the ray and fan-beam transforms for the functions
from Schwartz space S(Rn).

The (n-dimensional) Radon transform R performs the mapping of a function ϕ(x)
to a set of its integrals (Rϕ)(ξ, s) over hyperplanes in Rn, R : S(Rn)→ S(Z),

(Rϕ)(ξ, s) =

∫
〈ξ,x〉=s

ϕ(x)dx =

∫
ξ⊥
ϕ(sξ + y)dy.

The hyperplane is defined by the normal vector ξ and a distance s from the origin
(taking a sign into account). The back projection operator R# : S(Z) → S ′(Rn) (for
the Radon transform) is defined by the formula

(R#g)(x) =
1

|Sn−1|

∫
Sn−1

g(ξ, 〈x, ξ〉) dξ,

where g(ξ, s) ∈ S(Z), |Sn−1| is the square of the surface of the sphere Sn−1 in Rn.
The ray transform P maps a function ϕ(x) ∈ S(Rn) into a set of its integrals along

all lines in Rn, P : S(Rn)→ S(T ),

(Pϕ)(ξ, x) =

∫ ∞
−∞

ϕ(x+ tξ)dt;

the line passes through a point x ∈ Rn towards a vector ξ ∈ Sn−1. The back projection
operator (for the ray transform) P# : S(T )→ S ′(Rn) looks as follows,

(R#g)(x) =
1

|Sn−1|

∫
Sn−1

g(ξ, Eξx) dξ,

where g(ξ, y) ∈ S(T ), Eξ is an operator of orthogonal projection onto the subspace ξ⊥.
The fan-beam transform I : S(Rn)→ S(SRn),

(Iϕ)(a, η) =

∫ ∞
0

ϕ(a+ tη)dt

is an integral of a function ϕ ∈ S(Rn) over a ray beginning at a point a ∈ Rn towards
a vector η ∈ Sn−1.

A whole class of inversion formulas and corresponding algorithms based on the pro-
jection theorems, which connect the Fourier transform of a required function with
the Fourier transform of its Radon transform (ray transform). We use notations
(Rξϕ)(s) = (Rϕ)(ξ, s), s ∈ R; (Pξϕ)(y) = (Pϕ)(ξ, y), y ∈ ξ⊥. An agreement works
that the Fourier transform is realized by the second variable s for (Rϕ)(ξ, s) (by the sec-
ond group of variables y ∈ ξ⊥ for (Pϕ)(ξ, y)). The projection theorems are formulated
below.
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Theorem 2.1. Let ϕ ∈ S(Rn) be a function. Then

(Rξϕ)̂(σ) = (2π)(n−1)/2ϕ̂(σξ), σ ∈ R,

(Pξϕ)̂(y) = (2π)1/2ϕ̂(y), y ∈ ξ⊥.

The designation f̂ denotes an image of the Fourier transform applied to the function
f .

Explicit formulas for a composition of the Radon transform or the ray transform
operator and their back projection operators are of great importance. The following
relations for ϕ ∈ S(Rn) hold

R#Rϕ =
|Sn−2|
|Sn−1|

|x|−1 ∗ ϕ, P#Pϕ =
2

|Sn−1|
|x|1−n ∗ ϕ.

Obviously these formulas give a complete impression of the behavior of functions
(R#Rϕ)(x) and (P#Pϕ)(x) for x→∞, and at the origin, in dependence of the class
of functions which owns the function ϕ(x). There exists a whole family of inversion
formulas and a set of algorithms based on this formulas, as for the Radon transform
so and for the ray transform (for n = 2, 3) [74]. The above formulas use the Riesz
potential which, for γ < n, is determined by means of the Fourier transform,

(Iγϕ)̂(y) = |y|−γϕ̂(y).

When the operator Iγ is applied to functions given on the set Z (or T ), it is acting on
the second variable (the second group of variables). Let ϕ ∈ S(Rn) be a function, then
(Iγϕ)̂∈ L1(Rn), therefore the following equality holds, I−γ(Iγϕ) = ϕ.

Let ϕ ∈ S(Rn) be a function, then for any γ < n we have the formulas

ϕ =
1

2
(2π)1−nI−γR#Iγ−n+1g, g = Rϕ. (14)

ϕ =
1

|Sn−2|
(2π)−1I−γP#Iγ−1g, g = Pϕ.

It follows from these formulas that one of the Riesz operators is the identity operator
if n = 2 and γ = 0 or γ = n − 1 = 1. Therefore unless there exist strong reasons
for using both of the Riesz transforms in the inversion formula, the defined values for
parameter γ should be chosen in the algorithms.

Assuming n = 2, γ = n− 1 = 1 in (14) we obtain

ϕ =
1

4π
I−1R#g, g = Pϕ. (15)

This variant of the inversion formula is useful because it allows to use the technique
of the Fourier transform easily hence the fast Fourier transform too. Besides the well
known algorithm of ρ-filtration of back projection based on this formula.

We would note that for odd n = 2l+ 1 the operator I1−n is an ordinary differential
operator, I1−n =

(
−∆

)l, in particular when n = 3 we obtain the formula

ϕ(x) = − 1

8π2
∆x

∫
S2
g(ξ, 〈x, ξ〉) dξ.
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Let ϕ ∈ L2(B) be a function. In [74] the stability estimate

‖ϕ‖2
L2(B) ≤ C‖Rϕ‖2

H1(Z) (16)

was proved with the constant C independent of ϕ.

3 Vector fields

We define the class of functions which are used for the description of not only the
continuous or Ck-smooth, k ∈ N, but the discontinuous vector and tensor fields also
as well as the fields with discontinuous derivatives. Physical considerations allows to
assume that we have deal with the discontinuities of the first kind only. Let a domain
D ⊂ R2 be such that D ⊂ B. We assume it consisting of a finite number of disjoint
subdomains {Di}, i = 1, . . . , N , such that their union D0 = ∪Di is dense in D and their
boundaries are smooth of class C1. At first we note that D may be a multiply connected
and, secondly, D may coincide with B. It can be marked easily that ∂D ⊂ ∂D0 and
the boundary ∂D0 coincides with the union of the boundaries ∪Di of the subdomains
Di, i = 1, . . . , N . An important requirement for the boundaries is that they must not
contain straight segments.

Let a function ϕ(x) of class Ck be given in B, it vanishes in the sets R2\B, B\D, and
its support coincides with the closure D, suppϕ = D. The function ϕ(x) is infinitely
differentiable at points (x1, x2) ∈ D. At points (x1, x2) ∈ ∂D0 it is continuously
differentiable up to k-th order and vanishes. The function ϕ has partial derivatives of
any order due to its smoothness in D. But if the point belongs to ∂D0 then all partial
derivatives ∂lϕ/∂(x1)j∂(x2)l−j, l = 0, . . . , k, j ≤ l, up to the order k are continuous,
and derivatives of order k + 1 are discontinuous with discontinuities of the first kind.
We say that the function is a potential smoothness Ck, or Ck-potential in R2. Further
this notations will be fixed precisely for the described above class of potentials.

Alongside with the gradient operator d : Hk(B)→ Hk−1(S1(B)) and the operator
δ : Hk(S1(B))→ Hk−1(B) of divergence,

dϕ =
(
( dϕ)1, ( dϕ)2

)
=
( ∂ϕ
∂x1

,
∂ϕ

∂x2

)
, (δu) =

∂u1

∂x1
+
∂u2

∂x2
,

we define [29] the orthogonal gradient operator d⊥ : Hk(B) → Hk−1(S1(B)), and the
operator of orthogonal divergence δ⊥ : Hk(S1(B))→ Hk−1(B),

d⊥ϕ =
(
( d⊥ϕ)1, ( d⊥ϕ)2

)
=
(
− ∂ϕ

∂x2
,
∂ϕ

∂x1

)
,
(
δ⊥u

)
=
∂u2

∂x1
− ∂u1

∂x2
.

We recall that a vector field u ∈ Hk(S1(B)) is called the potential vector field if
there exists a function ϕ ∈ Hk+1(B) (potential) such that u = dϕ. A field v ∈
Hk(S1(B)) is called the solenoidal vector field if δv ∈ Hk−1(B) = 0. For every two-
dimensional solenoidal vector field v there exists a potential ψ ∈ Hk+1(B) such that
d⊥ψ ∈ Hk(S1(B)) [111]. A vector field dh ∈ Ck(S1(B)) is called the harmonic vector
field if h is the harmonic function in B. A decomposition of a vector field on a potential
and a solenoidal parts is essential in the vector and tensor analysis, and in particular
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in vector tomography. The decomposition is not unique without a specifying the prop-
erties on a boundary (or at the infinity) for vector fields. This decomposition of vector
fields is associated with the name of Helmholtz. There exists more detailed decompo-
sition on three parts which is already unique [111], [112], [113]. This decomposition is
called the Helmholtz-Hodge theorem. We formulate this result.

The unique decomposition for any vector field w ∈ H1(S1(B))

w = v + dh+ dψ, δv = 0, ψ |∂B = 0, 〈v, ν〉 |∂B = 0, (17)

holds with the potential vector field dψ, the solenoidal vector field v and the harmonic
vector field dh. A unit vector ν is the vector of outer to the boundary ∂B normal,
v ∈ H1

0 (S1(B)), ψ ∈ H2
0 (B). We use the designation ws = v+ dh. Obviously this field

is the solenoidal field as h is a harmonic function and hence the equation (17) can be
rewritten as

w = ws + dψ, δ ws = 0, ψ |∂B = 0.

Combining dh and dψ, u = dh+ dψ = d(h+ ψ) = dψ̃, we obtain a modification of
the decomposition (17),

w = v + dψ̃, δ v = 0, 〈v, ν〉 |∂B = 0.

3.1 The ray transforms

We define two types of the ray transforms acting on vector fields given in the plane.
The longitudinal ray transform of a vector field v(x) = (v1(x), v2(x)), x ∈ B, s ∈

[−1, 1], η ∈ ∂B, is defined by a formula

(Pv)(η, s) =

∫ ∞
−∞

〈
η, v(sξ + tη)

〉
dt =

∫ ∞
−∞

(η1v1 + η2v2)dt. (18)

This transform is well known and often if one speaks about the vector tomography
problem he means that the data are connected with is the values of this integral op-
erator. The second type of ray transforms namely the transverse ray transform was
defined previously for spaces of a dimension more than 2, and for symmetric tensor
fields of any rank [26].

The transverse ray transform of a vector field u(x) = (u1(x), u2(x)), x ∈ B, s ∈
[−1, 1], ξ ∈ ∂B, is defined similarly,

(P⊥u)(ξ, s) =

∫ ∞
−∞

〈
ξ, u(sξ + tη)

〉
dt =

∫ ∞
−∞

(ξ1u1 + ξ2u2)dt. (19)

Here ξ = (cosα, sinα) is a normal vector of the straight line, η = ξ⊥ = (− sinα, cosα)
is a directional vector of the straight line along which the integration is carried out.
The function (Pw)(α, s) is an image of the longitudinal ray transform which is the
integral calculated along the straight line Lξ,s for the component of the vector field w
parallel to Lξ,s. The function (P⊥w)(α, s) (the image of the transverse ray transform)
is the integral along the same straight line Lξ,s for the component of the vector field w
orthogonal to Lξ,s. The longitudinal and (or) transverse ray transforms are an input
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data for the vector tomography problem with a purpose to reconstruct the vector field
w. In other terms it’s required to solve the operator equation of the first kind (18) or
(19).

Remark 3.1. The definitions of the ray transforms do not contain the specifications of
the vector fields and corresponding functional spaces. It turns out [26] that these spaces
can be not only the spaces of the smooth vector fields but the Sobolev spaces Hk(S1(B))
also, k ≥ 0 integer, and even the space L2(S1(B)). In other words, the ray transform
acting on a smooth field extended to a bounded operator acting from Hk(S1(B)) to
Hk(Z). This result is general and applies to the ray transforms of symmetric m-tensor
fields also, m ≥ 0. Below we consider this fact as known and do not justify it or link
it to the monograph [26].

Further properties of the ray transforms as well as the inversion formulas are for-
mulated for more narrow than L2(S1(B)) class of vector fields with potentials from
Ck(B), k ≥ 0.

Proposition 3.1. Let v ∈ Ck(S1(B)) be a solenoidal and u ∈ Ck(S1(B)) a potential
vector fields, k integer, k ≥ −1. The following properties hold:

1) there exist ϕ, ψ ∈ Ck+1(B), such that v = d⊥ϕ, u = dψ;
2) if ϕ, ψ ∈ Ck+1(B), k ≥ 1, then δ( dψ) = 4ψ, δ( d⊥ϕ) = 0, δ⊥( dψ) = 0,

δ⊥( d⊥ϕ) = 4ϕ;
3) (Pu)(ξ⊥, s) = 0, (P⊥v)(ξ, s) = 0;
4) the transverse ray transform of the field u ∈ Ck(S1(B)), u = dψ, ψ ∈ Ck+1(B),

is connected with the Radon transform of its potential ψ by the relation

(
P⊥u

)
(ξ, s) =

∂

∂s
Rψ(ξ, s);

5) the longitudinal ray transform of the field v ∈ Ck(S1(B)), v = d⊥ϕ, ϕ ∈ Ck+1(B),
is connected with the Radon transform of its potential ϕ by the relation

(
Pv
)
(ξ⊥, s) =

∂

∂s
Rϕ(ξ, s);

6) if ϕ = ψ, ϕ, ψ ∈ Ck(B), k ≥ 0, u = dϕ, v = d⊥ϕ then 〈u , v〉 = 0. Besides the
relations (

P⊥u
)
(ξ, s) =

(
Pv
)
(ξ⊥, s) =

∂

∂s
Rϕ(ξ, s)

are valid.

The formulated above properties are either known or their proofs are simple and
consist in a direct verification. We would emphasize the fact that vector fields them-
selves may be discontinuous but their potentials are continuous in R2.

Being limited ourselves by the class Ck(B) of potentials and taking into account the
properties 1 and 2 we obtain the following version of the decomposition formula (17),

w = d⊥ϕ+ dψ, ψ |∂B = 0, ϕ |∂B = 0, (20)
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without any harmonic vector field.

A vector field reconstruction. Conclusions.
1. The property 3 means that there are invisible vector fields. For the longitudinal

ray transform this vector fields are potential with vanishing potential on the boundary.
For the transverse ray transform this vector fields are solenoidal with a vanishing normal
component on the boundary.

2. The properties 4, 5 imply that only the solenoidal part v of a vector field w is
recovered from the longitudinal ray transform and only the potential part u of a vector
field w is recovered from the transverse ray transform.

3. The longitudinal and transverse ray transforms allow to reconstruct the original
vector field w entirely if they are known simultaneously.

4. The properties 4-6 connecting the ray transforms of vector fields with the Radon
transform of their potentials allow to obtain the inversion formulas for the potentials
ψ, ϕ, almost coinciding with the inversion formula for the Radon transform.

Thus the formulations of the vector tomography problems depend on the available
input information.
The formulations of main vector tomography problems.

1. It is necessary to reconstruct the solenoidal part v of the unknown vector field
w by its known longitudinal ray transform.

2. It is necessary to reconstruct the potential part u of the unknown vector field w
by its known transverse ray transform.

3. It is necessary to reconstruct the original vector field w from its known ray
transforms, i.e. by the longitudinal and transverse ray transforms.

3.2 Inversion formulas

The derivation of the inversion formulas for vector fields are described below. The
formulated above properties of the ray transforms and the known inversion formulas
for the Radon transform are taking in mind.

We obtain now the inversion formulas for components of a vector field under as-
sumption that we have the input data of the type 3, i.e. we assume that the longitu-
dinal (18) and transverse (19) ray transforms of the vector field w are known. The ray
transforms can be written as

Pw = η1
(
Rw1

)
+ η2

(
Rw2

)
=− sinα

(
Rw1

)
+ cosα

(
Rw2

)
P⊥w = ξ1

(
Rw1

)
+ ξ2

(
Rw2

)
= cosα

(
Rw1

)
+ sinα

(
Rw2

)
,

with unknown functions
(
Rw1

)
,
(
Rw2

)
. Solving this system we obtain the expressions

Rw1 = η1
(
Pw
)

+ η2
(
P⊥w

)
=− sinα

(
Pw
)

+ cosα
(
P⊥w

)
Rw2 = ξ1

(
Pw
)

+ ξ2
(
P⊥w

)
= cosα

(
Pw
)

+ sinα
(
P⊥w

)
.

(21)

for the Radon transforms Rw1, Rw2 of the components of the unknown vector field w
depending on the known ray transforms Pw and P⊥w. Applying any of the numerous
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inversion formulas for the Radon transform to both sides of the obtained expressions,
we obtain the components w1, w2 of the required field.

In practice often only one of the ray transforms is known: either longitudinal
or transverse. Let the longitudinal ray transform of the vector field w of the class
Ck(S1(B)) be known,

Pw = η1
(
Rw1

)
+ η2

(
Rw2

)
= − sinα

(
Rw1

)
+ cosα

(
Rw2

)
.

First of all we would note that due to the decomposition (20) and the property 3 we
have

(
P( dψ)

)
= 0. Therefore Pw = Pv, where v = d⊥ ϕ. Consequently we may

reconstruct only the solenoidal part v = (v1, v2) of the field. But due to the property
3 the solenoidal field v belongs to the kernel of the transverse ray transform, P⊥v = 0,
ie 0 = P⊥v = cosα

(
Rv1

)
+ sinα

(
Rv2

)
. Hence it follows that

Rv1 = η1Pw ≡ − sinαPw, Rv2 = η2Pw ≡ cosαPw.

We can use all the known inversion formulas again.
If the transverse ray transform P⊥w is known then, analogically, we obtain the

formulas
Ru1 = ξ1P⊥w ≡ cosαP⊥w, Ru2 = ξ2P⊥w ≡ sinαP⊥w.

Further we apply any of the known inversion formulas for the Radon transform to the
both sides of the system we obtain the components of the potential part u of the vector
field w.

Analyzing the inversion formulas we can derive the definition of the back projec-
tion operator P#

1tf which is applied to the image of the longitudinal ray transform
g(η(α), s(x, α)) = (Pw)(η, s) of the vector field w. Here s(x, α) = x1 cosα + x2 sinα.
The image of this operator is a solenoidal vector field µ, δµ = 0 (that is verified di-
rectly), independent of the field w,

µ(x) = P#
1tf

(
(Pw)(η(α), s(x, α))

)
(x). (22)

The components of the field (22) are

µj(x) =
1

2π

∫ 2π

0

ηj(Pv)(η(α), s(x, α))dα, j = 1, 2.

The back projection operator, applying to the transverse ray transform
h(ξ(α), s(x, α)) = (P⊥w)(ξ, s) of the field w, gives a potential vector field λ, δ⊥ λ = 0,

λ(x) =
(
P⊥
)#

1tf

(
(P⊥u)(ξ(α), s(x, α))

)
(x)

with the components

λj(x) =
1

2π

∫ 2π

0

ξj(P⊥w)(ξ(α), s(x, α))dα, j = 1, 2.

Here s(x, α) = x1 cosα + x2 sinα.
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In terms of vector fields µ, λ we can write the simple inversion formulas (the operator
(−∆)1/2 acts componentwise),

v = (−∆)1/2µ, u = (−∆)1/2λ,

where v is the solenoidal part of vector field w, u is the potential part of vector field w.
This formulas are very similar to the inversion formulas (14), (15) for the functions, at
γ = 1.

Using the properties 3–6 of vector fields and their potentials, we can obtain another
type of the inversion formulas, which reconstruct potentials of vector fields by its known
longitudinal or transverse ray transform. After the reconstruction of the potentials it
is easy to construct the corresponding parts of the field, solenoidal or potential. We
present the inversion formulas for the potential ϕ of the solenoidal part v of the field
w, which, as already noted, completely repeat the formulas (11), (12) in the form

ϕ(x1, x2) = − 1

4π2

∫ 2π

0

∫ ∞
−∞

(Pw)(α, s+ x1 cosα + x2 sinα)

s
ds dα,

ϕ(x1, x2) =
1

4π2

∫ 2π

0

∫ ∞
−∞

(Pw)
′

s(α, s+ x1 cosα + x2 sinα) ln (s)ds dα.

The solenoidal field v is constructed on the base of recovered potential ϕ: v = d⊥ϕ.
It is necessary to differentiate the potential ϕ numerically and thereby to find values
of the components v1 = −∂ϕ/∂x2, v2 = ∂ϕ/∂x1 of the field v. Analogous inversion
formulas can be used for reconstruction of the potential ψ of the potential field u = dψ,
and then we find a values of components u1 = ∂ψ/∂x1, u2 = ∂ψ/∂x2 of the field u.

We formulate the projection theorems for the ray transforms of vector fields. The
notations (Pξw)(s) = (Pw)(ξ, s), (P⊥ξ w)(s) = (P⊥w)(ξ, s), |s| ≤ 1 are used.

Theorem 3.1. Let u = dϕ and v = d⊥ϕ be vector fields, ϕ ∈ Ck(B), k ≥ 0. Then

(Pξv)̂(σ) = (P⊥ξ u)̂(σ) = i σ
√

2πϕ̂(σξ), σ ∈ R.

The proof consists in usage of the projection theorem for the Radon transform,
the property 6 of the ray transforms of vector fields and the properties of the Fourier
transform.

Let v be a solenoidal part of a symmetric m-tensor field w. In [26] for a case of a
Riemannian manifold there was proved the conditional stability estimate

‖v‖2
L2(Sm(B)) ≤ Ct

(
‖w‖H1(Sm(B))‖Pw‖L2(Z) + ‖Pw‖2

H1(Z)

)
(23)

with a constant Ct independent of w.
In the case of the Euclidian metric it is possible to obtain the estimates for the ray

transforms of vector fields, which are stronger then (23) and similar to the estimate for
the Radon transform applying to functions (16).
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Theorem 3.2. Let u = d⊥ϕ+ dψ be a vector field with potentials ψ, ϕ ∈ H1
0 (B). The

stability estimates

‖d⊥ϕ‖2
L2(S1(B)) ≤ C1‖Pw‖2

H1(Z),

‖dψ‖2
L2(S1(B)) ≤ C⊥1 ‖P⊥w‖2

H1(Z), (24)

hold with constants C1 and C⊥1 independent of w.

Here are the main steps of proof of this theorem (for details, see [108]). With
usage of the property 3 for the ray transforms we deduce

(
P⊥d⊥ϕ

)
(α, s) = 0,(

Pd⊥ϕ
)

(α, s) = (Pw) (α, s). Using (21) we have(
R(d⊥ϕ)1

)
(α, s) = − sinα(Pw)(α, s),

(
R(d⊥ϕ)2

)
(α, s) = cosα(Pw)(α, s).

Thus the norm ‖R(d⊥ϕ)1‖2
H1(Z) can be estimated as

‖R(d⊥ϕ)1‖2
H1(Z) =

∫
Z

( (
R(d⊥ϕ)1

)2
+
((
R(d⊥ϕ)1

)′
s

)2

+
((
R(d⊥ϕ)1

)′
α

)2 )
dα ds

=

∫
Z

(
((P w) sinα)2 + ((P w)′s sinα)2 + ((P w)′α sinα + (P w) cosα)2

)
dα ds

6
∫
Z

(
(P w)2(1 + cos2 α) + ((P w)′s sinα)2 + 2((P w)′α sinα)2

)
dα ds

6 2‖P w‖2
H1(Z).

The inequality ‖R(d⊥ϕ)2‖2
H1(Z) 6 2‖P w‖2

H1(Z) is deduced in the same way. The
estimate (16) leads to the formula

‖d⊥ϕ‖2
L2(S1(B)) = ‖(d⊥ϕ)1‖2

L2(B) + ‖(d⊥ϕ)2‖2
L2(B)

6 C‖R(d⊥ϕ)1‖2
H1(Z) + C‖R(d⊥ϕ)2‖2

H1(Z)

6 4C‖P w‖2
H1(Z) = C1‖P w‖2

H1(Z).

The estimate (24) can be obtained analogously.

4 Symmetric 2-tensor fields

The operators of gradient, orthogonal gradient, divergence and orthogonal divergence
d, d⊥, δ, δ⊥ defined above can be generalized naturally. Namely, the operator d of inner
derivation and the operator d⊥ of inner orthogonal derivation are compositions of the
operators of differentiation and symmetrization, d, d⊥ : Hk(S1(B)) → Hk−1(S2(B)),
k ≥ 1. They act on vector fields according to the rules

uij := (dw)ij =
1

2

(∂wi
∂xj

+
∂wj
∂xi

)
,

vij := (d⊥w)ij =
1

2

(
(−1)j

∂wi
∂x3−j + (−1)i

∂wj
∂x3−i

)
,
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and give symmetric 2-tensor fields as a result, w ∈ Hk(S1(B)), u, v ∈ Hk−1(S2(B)).
The operators of divergence δ and orthogonal divergence δ⊥, δ, δ⊥ : Hk(S2(B)) →
Hk−1(S1(B)), act on symmetric 2-tensor field w by the formulas,

ui := (δw)i =
∂wij
∂xj

≡ ∂wi1
∂x1

+
∂wi2
∂x2

, vi := (δ⊥w)i = −∂wi1
∂x2

+
∂wi2
∂x1

,

and give vector fields u, v.
Three types of symmetric 2-tensor fields can be constructed with usage of potentials

from the space Ck, k ≥ 1, and the operators d, d⊥. The potential symmetric 2-tensor
field u ∈ Ck−2(S2(B)),

uij := d2ψ =
1

2

(∂(dψ)i
∂xj

+
∂(dψ)j
∂xi

)
=

∂2ψ

∂xi∂xj
(25)

is generated by potential ψ ∈ Ck(B). The potential symmetric 2-tensor field ũ ∈
Ck−2(S2(B)) has the form

ũij := d(d⊥χ) = d⊥(dχ) =
1

2

(∂(d⊥χ)i
∂xj

+
∂(d⊥χ)j
∂xi

)
=

1

2

(
(−1)j

∂(dχ)i
∂x3−j + (−1)i

∂(dχ)j
∂x3−i

)
=

1

2

(
(−1)i

∂2χ

∂x3−i∂xj
+ (−1)j

∂2χ

∂x3−j∂xi

)
.

(26)

It is defined by potential χ ∈ Ck(B). The solenoidal symmetric 2-tensor field v ∈
Ck−2(S2(B)),

vij := (d⊥)2ϕ =
1

2

(
(−1)j

∂(d⊥ϕ)i
∂x3−j + (−1)i

∂(d⊥ϕ)j
∂x3−i

)
= (−1)i+j

∂2ϕ

∂x3−i∂x3−j

(27)

is defined by potential ϕ ∈ Ck(B).
The following properties of commutativity and the connections between scalar prod-

ucts (4) of symmetric 2-tensor fields defined by the formulas (25)–(27) are verified
directly easily.

Lemma 4.1. Let the potentials ϕ, ψ ∈ Ck(B), k ≥ 1, and tensor field wij ∈ Cl(S2(B)),
l ≥ 1 be given. Then the following properties and relations are valid:
1) the operators δ and δ⊥ are commutative,

δ (δ⊥wij) = δ⊥ (δwij) =
( ∂2

∂(x1)2
− ∂2

∂(x2)2

)
w12 −

∂2

∂x1∂x2

(
w11 − w22

)
;

2) the operators d and d⊥ are commutative,

d(d⊥ϕ) = d⊥(dϕ),
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and the components of a field (d d⊥)ϕ are calculated by the formulas (26);
3) the following equalities are fulfilled,

〈d2ϕ , d2ψ〉 = 〈(d⊥)2ϕ , (d⊥)2ψ〉;
〈d2ϕ , (d⊥)2ψ〉 = 〈(d⊥)2ϕ , d2ψ〉;

〈d2ϕ , d2ψ〉 = ∆ϕ∆ψ − 〈d2ϕ , (d⊥)2ψ〉;

〈(d⊥d)ϕ , (d⊥d)ψ〉 =
1

2
∆ϕ∆ψ − 〈d2ϕ , (d⊥)2ψ〉.

The results of the action of operators δ and δ⊥ on symmetric 2-tensor fields of
various types are collected in the next proposition. All of them can be easily verified
directly.

Proposition 4.1. Let the potentials ϕ, ψ χ ∈ Ck(B), k ≥ 3, and tensor fields uij =
d2ψ, ũij = (dd⊥)χ, vij = (d⊥)2ϕ ∈ Cl(S2(B)), l ≥ 1 be given. Then:
1)

δ(d2ψ) = d(4ψ) = 4(dψ),

δ⊥(d2ψ) = 0;

δ2(d2ψ) = δ(d4ψ) = 42ψ;

2)

δ(dd⊥χ) =
1

2
d⊥4χ =

1

2
4(d⊥χ),

δ⊥(dd⊥χ) =
1

2
d4χ =

1

2
4(dχ),

δ2(dd⊥)χ = 0,

(δ⊥δ)(dd⊥χ) =
1

2
42χ,

(δ⊥)2(dd⊥χ) = 0;

3)
δ⊥((d⊥)2ϕ) = d⊥(4ϕ) = 4(d⊥ϕ),

δ((d⊥)2ϕ) = 0;

(δ⊥)2((d⊥)2ϕ) = 42ϕ.

Theorems of decomposition of a tensor field on a potential and solenoidal part are
important for studying of tensor fields. The general theorem of decomposition of a
symmetric m-tensor field given in a Riemannian manifold of dimension n is proved in
[26]. We formulate it in terms of our statements.

Theorem 4.1. For every field w ∈ Hk−m(Sm(B)), k ≥ m, there exist a potential
u ∈ Hk−m+1

0 (Sm−1(B)) and solenoidal v ∈ Hk−m(Sm(B)) symmetric m-tensor fields
such that

w = v + du, δv = 0.

This decomposition is unique.
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Applying this theorem for m = 1, m = 2, the decomposition theorem of a vector
field [111], [112] and representation of a solenoidal field by potential [114], we obtain
one of the variants of the decomposition theorem for the symmetric 2-tensor field (see
also [103]). A property of orthogonality of the corresponding subspaces is checked by
means of Gauss theorem.

Theorem 4.2. For any field w ∈ Hk−2(S2(B)), k ≥ 2, there exists the unique decom-
position onto potential u, ũ ∈ Hk−2(S2(B)) and solenoidal v ∈ Hk−2(S2(B)) symmetric
2-tensor fields generated by potentials ϕ, χ, ψ ∈ Hk

0 (B),

w = v + ũ+ u ≡ (d⊥)2ϕ+ (dd⊥)χ+ d2ψ, δv = 0, δ⊥u = 0. (28)

The decomposition (28) is orthogonal in L2(S2(B)) in terms of the scalar product (5),(
d2ψ , (d⊥)2ϕ

)
= 0;

(
d2ψ , (dd⊥)χ

)
= 0;

(
(d⊥)2ϕ , (dd⊥)χ

)
= 0.

Remark 4.1. The decomposition of symmetric 2-tensor field (28) is valid if the fol-
lowing conditions on the potentials are carried out,

ψ |∂B= 0, χ |∂B= 0, ϕ |∂B= 0,

dψ |∂B= 0, dχ |∂B= 0, dϕ |∂B= 0,

Particularly they are valid automatically with potentials which belong to the space D(B)
of test functions. Hence the fields (wij) belong to the space D(S2(B)). We can choose
the other spaces of potentials. For example, we can choose potentials ψ, χ, ϕ from the
classes Ck(B), k > 0. Then d2 : Ck(B)→ Ck−2(S2(B)), ( d⊥)2 : Ck(B)→ Ck−2(S2(B)),
d(d⊥) : Ck(B) → Ck−2(S2(B)). In this case the above properties of vanishing of the
potentials and their first derivatives saved, but generated by them 2-tensor fields may be
discontinuous with discontinuities of the first kind. This property is differs from those
for the fields w ∈ D(S2(B)) vanishing on ∂B together with all their derivatives.

4.1 The ray transforms

We define the ray transforms acting on symmetric 2-tensor fields below.
The longitudinal ray transform of a symmetric 2-tensor field w = (wij), being a

direct generalization (the definition (18)) of the longitudinal ray transform for vector
fields, takes the form

(Pw)(η, s) =

∫ ∞
−∞

wij(sξ + tη)ηiηjdt. (29)

The transverse ray transform of a symmetric 2-tensor field (wij) is defined by the
formula

(P⊥w)(ξ, s) =

∫ ∞
−∞

wij(sξ + tη)ξiξjdt (30)

and generalize the transverse ray transform for vector fields.
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With increasing of the rank m > 1 of a symmetric tensor field it becomes possible
to define new types of the ray transforms, namely the mixed ray transforms. When
m = 2, the only one type of such transforms is possible.

The mixed ray transform of a symmetric 2-tensor field (wij) is defined by the formula

(P†w)(ξ, s) =

∫ ∞
−∞

wij(sξ + tη)ηiξjdt ≡
∫ ∞
−∞

wijξ
iηjdt. (31)

The last identity means that the integrand, by virtue of the symmetry properties
w12 = w21, is invariant under interchange of vectors ξ ↔ η, i.e. the definition is
correct.

Descriptions of images and kernels of the ray transforms, as well as relationships
between them and the Radon transform of the corresponding potentials, are given in
the following proposition.

Proposition 4.2. Let v ∈ Ck(S2(B)) be a solenoidal, u ∈ Ck(S2(B)), ũ ∈ Ck(S2(B))
— potential 2-tensor fields, k is integer, k ≥ −1, and w = v+ ũ+u. Then the following
properties are valid.

1) (Pũ)(η, s) = (Pu)(η, s) = 0, (P⊥v)(ξ, s) = (P⊥ũ)(ξ, s) = 0,

(P†v)(ξ, s) = (P†u)(ξ, s) = 0.

2) Pw = P
(
(d⊥)2ϕ

)
= Pv, P†w = P†

(
(dd⊥)χ

)
= P†ũ,

P⊥w = P⊥(d2ψ) = P⊥u.

3) The transverse ray transform of a potential 2-tensor field u ∈ Ck(S2(B)), u =
d2ψ, ψ ∈ Ck+2(B), is connected with the Radon transform of its potential ψ by the
relation (

P⊥u
)
(ξ, s) =

∂2

∂s2
Rψ(ξ, s).

4) The longitudinal ray transform of a solenoidal 2-tensor field v ∈ Ck(S2(B)),
v = ( d⊥)2ϕ, ϕ ∈ Ck+2(B), is connected with the Radon transform of its potential ϕ by
the relation (

Pv
)
(ξ⊥, s) =

∂2

∂s2
Rϕ(ξ, s).

5) The mixed ray transform of a potential 2-tensor field ũ ∈ Ck(S2(B)), ũ = (.d⊥)χ,
χ ∈ Ck+2(B), is connected with the Radon transform of its potential χ by the relation

(
P†w

)
(ξ⊥, s) =

(
P†ũ

)
(ξ⊥, s) =

1

2

∂2

∂s2
Rχ(ξ, s).

6) Let ϕ, ψ, χ ∈ Ck(B), k ≥ 1, be potentials. The fields u = d2ϕ, v = ( d⊥)2ϕ,
ũ = (.d⊥)χ are the corresponding symmetric 2-tensor fields. If ϕ = ψ = χ then

(
P⊥u

)
(ξ, s) =

(
Pv
)
(ξ⊥, s) = 2

(
P†ũ

)
(ξ⊥, s) =

∂2

∂s2
Rϕ(ξ, s).
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The proofs of these statements are simple and consist in applications of the prop-
erties of the Radon transform, which were given above, and direct verification. We
emphasize that the 2-tensor fields on the boundary ∂B may be discontinuous, despite
the fact that the potentials and their first derivatives are continuous in R2.

The reconstruction of symmetric 2-tensor fields.
We draw conclusions from the properties formulated in Proposition 4.2.
The property 1 means that there exist invisible 2-tensor fields. That’s potential

fields of the type d2ψ with vanishing on the boundary potential ψ and its first deriva-
tives — for the longitudinal and mixed ray transforms. That’s potential fields of the
type (dd⊥)χ with vanishing on the boundary potential χ and its first derivatives — for
the longitudinal and transverse ray transforms. That,s solenoidal fields with vanishing
on the boundary potential ϕ and its first derivatives — for the mixed and transverse
ray transforms.

It follows from the property 2 that only the solenoidal part v = (d⊥)2ϕ of a symmet-
ric 2-tensor field w is recovered from the longitudinal ray transform of w. The potential
part u = d2ψ of 2-tensor field w is recovered from the transverse ray transform of w.
The potential part ũ = (dd⊥)χ of 2-tensor field w is recovered from the mixed ray
transform of w.

The longitudinal, mixed and transverse ray transforms to be known simultaneously
allow to reconstruct the original symmetric 2-tensor field w entirely.

The relations 3–5 are the base for derivation of inversion formulas for potentials ψ,
ϕ, χ, which are easily derived from the inversion formula for the Radon transforms of
the corresponding potentials.

Statements of the main tomography problems for symmetric 2-tensor fields.

Clearly the statements of the problems depend on the type and completeness (in
terms of presence of the information about the values of all three types of ray trans-
forms) of the input data. The only one of formulated below statements was known
earlier, the others are formulated for the first time.

1. It is necessary to reconstruct the solenoidal part v of the unknown symmetric
2-tensor field w by its known longitudinal ray transform. It was exactly this state-
ment that was known within the framework of the tensor tomography and the integral
geometry of tensor fields.

2. It is necessary to reconstruct the potential part u of the unknown 2-tensor field
w by its known transverse ray transform.

3. It is necessary to reconstruct the potential part ũ of the unknown 2-tensor field
w by its known mixed ray transform.

4. It is necessary to reconstruct the whole original symmetric 2-tensor field w by
its known three ray transforms, i.e. from the longitudinal, mixed and transverse ray
transforms.

5. It is necessary to reconstruct two certain parts (of three) of the original 2-tensor
field by its known two corresponding ray transforms.
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4.2 Inversion formulas

We proceed to derivation of the inversion formulas. First of all with usage of the
properties 3–5 of symmetric 2-tensor fields and their potentials, we present the inversion
formula, which reconstructs a potential of corresponding part of a field w by its known
longitudinal, or mixed, or transverse ray transform. After the reconstruction of the
potential the corresponding part of the field, solenoidal or one of the potentials can be
constructed by double differentiation. As for vector fields the inversion formula for the
potential ϕ is similar to the formula (12),

ϕ(x1, x2) =
1

4π2

∫ 2π

0

∫ ∞
−∞

(P̃w)(α, s+ x1 cosα + x2 sinα) ln |s|ds dα,

where P̃w is the longitudinal (29), the transverse (30) or, multiplied by 2, the mixed
(31) ray transform of symmetric 2-tensor field of the type (28). The solenoidal field
v of the field w constructed on the base of recovered potential ϕ, v = ( d⊥)2ϕ, if the
longitudinal ray transform of the field w was known as input data. One of potential
parts u = d2ϕ, ũ = (dd⊥)ϕ of the field w is reconstructed on the base of recovered
potential ϕ if the mixed or the transverse ray transform was known. Further it is
necessary twice differentiation of the potential numerically and thereby to find the
values of components of corresponding parts of the field.

We turn to the construction of inversion formulas that give the components of a
field. Let w be a symmetric 2-tensor field of the type (28). We assume that all the
ray transforms are known. Namely the longitudinal (29), the transverse (30) and the
mixed (31) ray transforms of the field w are known. We use the same approach that
was used for obtaining the inversion formulas in the case of vector fields. For this
purpose we express the ray transforms of the field w through the Radon transform of
its components,

Pw = sin2 α
(
Rw11

)
− sin 2α

(
Rw12

)
+ cos2 α

(
Rw22

)
P†w = −1

2
sin 2α

(
Rw11

)
+ cos 2α

(
Rw12

)
+

1

2
sin 2α

(
Rw22

)
P⊥w = cos2 α

(
Rw11

)
+ sin 2α

(
Rw12

)
+ sin2 α

(
Rw22

)
.

(32)

The matrix of this system of equations has rank 3 and its determinant is equal to −1.
The system (32) has unique solution,

Rw11 = sin2 α
(
Pw
)
− sin 2α

(
P†w

)
+ cos2 α

(
P⊥w

)
Rw12 = −1

2
sin 2α

(
Pw
)

+ cos 2α
(
P†w

)
+

1

2
sin 2α

(
P⊥w

)
Rw22 = cos2 α

(
Pw
)

+ sin 2α
(
P†w

)
+ sin2 α

(
P⊥w

)
,

(33)

and gives a dependence of the Radon transforms Rw11, Rw12, Rw22 of components
of the field w on the known ray transforms Pw, P†w and P⊥w. Applying any of a
numerous inversion formulas for the Radon transform to both sides of the obtained
expressions, we get the components of the required field.
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Suppose now that two of three ray transforms are given as input data. For example
the longitudinal (29) and transverse (30) ray transforms. By means of the property
1 of Proposition 4.2, we obtain a system of equations of the form (32), in which we
assume P†w = 0. Solving this system we obtain the relations

Rw̃11 = sin2 α
(
Pw
)

+ cos2 α
(
P⊥w

)
Rw̃12 = −1

2
sin 2α

(
Pw
)

+
1

2
sin 2α

(
P⊥w

)
Rw̃22 = cos2 α

(
Pw
)

+ sin2 α
(
P⊥w

)
.

for the Radon transforms Rw̃11, Rw̃12, Rw̃22 of components of the field w̃ = (d⊥)2ϕ+
d2ψ depending on the known ray transforms Pw and P⊥w. It is enough now to apply
any of numerous inversion formulas, known for the Radon transform, to both sides of
the obtained expressions, and we get the corresponding components of the required
field as a result.

Finally we assume that only one of three ray transforms is given as input data. Let
it be the longitudinal ray transform. In this case it is possible to reconstruct only the
solenoidal part v = ( d⊥)2ϕ of the field w. It is necessary for this to use the relations

Rv11 = sin2 α
(
Pw
)
, Rv12 = − sinα cosα

(
Pw
)
, Rv22 = cos2 α

(
Pw
)
.

If the transverse ray transform of the field w is known only, then it is possible to
reconstruct the potential part u = d2ψ of the field w, which components can be found
from the relations

Ru11 = cos2 α
(
P⊥w

)
, Ru12 = sinα cosα

(
P⊥w

)
, Ru22 = sin2 α

(
P⊥w

)
.

Once again we can use all the inversion formulas, which are suitable for a reconstruction
of functions.

It is convenient to present the inversion formulas in operator form (15) or (14) for
γ = 1. At first we need in expressions for back projection operators.

Suppose that the longitudinal ray transform of the field w is known. We should
reconstruct the solenoidal part v of the field w, w = v + ũ+ u,

f(η, s) = Pw =

∫ ∞
−∞

wij(sξ + tη)ηiηj dt.

A symmetric 2-tensor field

µ(x) = P#
2tf

(
f(η, s(x, α))

)
(x)

is the result of action of the back projection operator for the longitudinal ray transform.
It has the components

µij(x
1, x2) =

1

2π

∫ 2π

0

ηi ηj (Pw)(η, s(x, α))dα, i, j = 1, 2, (34)

where η = (− sinα, cosα), s(x, α) = x1 cosα + x2 sinα. It may be checked in direct
way that the field (34) is solenoidal. The inversion formulas

v11 = (−∆)1/2µ11, v12 = (−∆)1/2µ12, v22 = (−∆)1/2µ22,
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give the solenoidal part v of the field w.
Based on the transverse ray transform as on input data, by which we can reconstruct

only the potential part u of the field w,

g(ξ, s) = P⊥w =

∫ ∞
−∞

wij(sξ + tη)ξiξj dt,

we construct a symmetric 2-tensor field

λ(x) =
(
P⊥
)#

2tf

(
g(ξ, s(x, α))

)
(x),

which is the result of action of the back projection operator for the transverse ray
transform. This field has the components

λij(x
1, x2) =

1

2π

∫ 2π

0

ξi ξj (P⊥w)(ξ, s(x, α))dα, i, j = 1, 2,

ξ = (cosα, sinα), s(x, α) = x1 cosα + x2 sinα. The field is potential, δ⊥λ = 0. The
inversion formulas

u11 = (−∆)1/2λ11, u12 = (−∆)1/2λ12, u22 = (−∆)1/2λ22,

give the potential part u of the field w.
It is possible to reconstruction the potential part ũ = (dd⊥)χ of the field w by the

mixed ray transform

h(ξ, s) = P†w =

∫ ∞
−∞

wij(sξ + tη)ηiξj dt

The back projection operator maps the function h(ξ, s) into a symmetric 2-tensor field
by the rule

ν(x) =
(
P†
)#

2tf

(
h(ξ, s(x, α))

)
(x).

Components of the field are

νij(x
1, x2) =

1

2π

∫ 2π

0

ηi ξj (P†w)(ξ, s(x, α))dα, i, j = 1, 2,

Inversion formulas look similarly. They give the components ũ11, ũ12, ũ22 of the poten-
tial field ũ.

The projection theorems for the ray transforms of 2-tensor fields are formulated
below. The notations (Pξw)(s) = (Pw)(ξ, s), (P†ξw)(s) = (P†w)(ξ, s), (P⊥ξ w)(s) =

(P⊥w)(ξ, s), |s| ≤ 1, are used.

Theorem 4.3. If u = d2ϕ, ũ = dd⊥ϕ, v = (d⊥)2ϕ, where ϕ ∈ Ck(B), k ≥ 1, then

(Pξv)̂(σ) = 2(P†ξ ũ)̂(σ) = (P⊥ξ u)̂(σ) = −σ2
√

2π ϕ̂(σξ), σ ∈ R.
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The proof consists in usage of the projection theorem 2.1 for the Radon transform,
property 6 of the ray transforms of symmetric 2-tensor fields and properties of the
Fourier transform.

We wish now to obtain stability estimates for the ray transforms of symmetric
2-tensor fields.
Theorem 4.4. Let w = (d⊥)2ϕ + dd⊥χ + d2ψ be a symmetric 2-tensor field with
potentials ψ, χ, ϕ ∈ H2

0 (B). Then the stability estimates

‖(d⊥)2ϕ‖2
L2(S2(B)) ≤ C2‖Pw‖2

H1(Z),

‖d2ψ‖2
L2(S2(B)) ≤ C⊥2 ‖P⊥w‖2

H1(Z), (35)

‖dd⊥χ‖2
L2(S2(B)) ≤ C†2‖P†w‖2

H1(Z), (36)

are valid with constants C2, C⊥2 and C†2 independent of w.
The proof of this theorem is similar to the proof of theorem 3.2 (for details, see

[109]). The properties 1–2 of the ray transforms imply(
P⊥(d⊥)2ϕ

)
(α, s) =

(
P†(d⊥)2ϕ

)
(α, s) = 0,

(
P(d⊥)2ϕ

)
(α, s) = (Pw) (α, s).

By means of (33) we have(
R((d⊥)2ϕ)11

)
(α, s) = sin2 α(Pw)(α, s),(

R((d⊥)2ϕ)12

)
(α, s) = − sinα cosα(Pw)(α, s),(

R((d⊥)2ϕ)22

)
(α, s) = cos2 α(Pw)(α, s).

Thus the norm ‖R((d⊥)2ϕ)11‖2
H1(Z) can be estimated as

‖R((d⊥)2ϕ)11‖2
H1(Z)

=

∫
Z

( (
R((d⊥)2ϕ)11

)2
+
(
(R((d⊥)2ϕ)11)′s

)2
+
(
(R((d⊥)2ϕ)11)′α

)2
)
dα ds

=

∫
Z

(
(P w)2 sin4 α + ((P w)′s)

2
sin4 α +

(
(P w)′α sin2 α + 2(P w) sinα cosα

)2
)
dα ds

6
∫
Z

(
(P w)2 sin2 α(1 + 7 cos2 α) + ((P w)′s)

2
sin4 α + 2 ((P w)′α)

2
sin4 α

)
dα ds

6
16

7
‖Pw‖2

H1(Z).

The inequalities

‖R((d⊥)2ϕ)12‖2
H1(Z) 6 2‖Pw‖2

H1(Z), ‖R((d⊥)2ϕ)22‖2
H1(Z) 6

16

7
‖Pw‖2

H1(Z)

are deduced in the same way. The estimate (16) leads to the formula

‖(d⊥)2ϕ‖2
L2(S2(B)) = ‖((d⊥)2ϕ)11‖2

L2(B) + 2‖((d⊥)2ϕ)12‖2
L2(B) + ‖((d⊥)2ϕ)22‖2

L2(B)

6 C‖R((d⊥)2ϕ)11‖2
H1(Z) + 2C‖R((d⊥)2ϕ)12‖2

H1(Z) + C‖R((d⊥)2ϕ)22‖2
H1(Z)

6
60

7
C‖P w‖2

H1(Z) = C2‖P w‖2
H1(Z).

The estimates (35) and (36) can be derived in the similar way.
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5 Symmetric m-tensor fields

A construction of symmetricm-tensor fields is carried out with usage of operators d and
d⊥ also. This operators are compositions of the operators of gradient and orthogonal
gradient, acting on tensor fields, with the operators of symmetrization. Below we
present the direct formulas of action of these operators on symmetric tensor fields.

The operator of inner differentiation d : Hk(Sm(B)) → Hk−1(Sm+1(B)), k ≥ 1,
acts on a symmetric m-tensor field w and gives a symmetric (m+ 1)-tensor field u by
the rule

ui1...imj := (dw)i1...imj =
1

m+ 1

(∂wi1...im
∂xj

+
m∑
k=1

∂wi1...ik−1jik+1...im

∂xik

)
.

The operator of inner orthogonal differentiation d⊥ : Hk(Sm(B))→ Hk−1(Sm+1(B)),

(d⊥w)i1...imj =
1

m+ 1

(
(−1)j

∂wi1...im
∂x3−j +

m∑
k=1

(−1)ik
∂wi1...ik−1jik+1...im

∂x3−ik

)
,

acts similarly to the operator d. Here w ∈ Hk(Sm(B)), u ∈ Hk−1(Sm+1(B)), k ≥
1. The operators of divergence and orthogonal divergence δ, δ⊥ : Hk(Sm(B)) →
Hk−1(Sm−1(B)), k ≥ 1, act on symmetric m-tensor field w,

ui1...im−1 := (δw)i1...im−1 =
∂wi1...im−1j

∂xj
≡
∂wi1...im−11

∂x1
+
∂wi1...ßm−12

∂x2
,

vi1...im−1 := (δ⊥w)i1...im−1 = (−1)j
∂wi1...im−1j

∂x3−j ≡ −
∂wi1...im−11

∂x2
+
∂wi1...im−12

∂x1
,

and give symmetric (m− 1)-tensor fields u, v.
One of the statements of Lemma 4.1 consists in the fact that the operators d and

d⊥ are commutative if they act on the potentials. The question arises whether this
property be saved if the operators act on a symmetric m-tensor field? The answer to
this question is positive.

Lemma 5.1. Let w ∈ Hk(Sm(B)), k ≥ 2 be a symmetric m-tensor field. Then

d⊥(dw) = d(d⊥w).

The proof consists in a direct verification. Thus it is necessary to use the property
of independence of the mixed second derivative of the order of differentiation.

Remark 5.1. It should be noted that the operators d and d⊥ commute and when they
act on the arbitrary tensor field, not necessarily symmetric. The proof of this property
is much more difficult but it requires the purely technical additions only.

We give a classification of symmetric m-tensor fields. Let a potential ϕ ∈ Ck(B),
k ≥ m−1, be given. It is easy to see that there are m+1 different symmetric m-tensor
fields (

d⊥
)m
ϕ,
(
d⊥
)m−1

d ϕ, . . . ,
(
d⊥
)m−j

djϕ, . . . , dmϕ,
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generated by the potential ϕ. While constructing these fields we make essential use of
the commutative property of the operators d and d⊥. The field

(
d⊥
)m
ϕ is solenoidal,

δ
(
d⊥
)m
ϕ = 0, the remaining m fields are potential, and δ⊥

(
dj(d⊥)m−j

)
ϕ = 0, j > 0.

As for vector and symmetric 2-tensor fields, using Theorem 4.1 and the method of
mathematical induction, it is easy to obtain a decomposition theorem for a symmetric
m-tensor field.

Theorem 5.1. For every field w ∈ Hk−m(Sm(B)) there exist potential u(1), . . . , u(m) ∈
Hk−m(Sm(B)) and solenoidal v ∈ Hk−m(Sm(B)) symmetric m-tensor fields, k ≥ m,
and potentials ϕ, ψ(1), . . . , ψ(m) ∈ Hk

0 (B) such that

w = v +
m∑
j=1

u(j) ≡
(
d⊥
)m
ϕ+

m∑
j=1

(
d⊥
)m−j(

d
)j
ψ(j). (37)

5.1 The ray transforms

The ray transform operators P(j) : Hk(Sm) → Hk(Z), j = 0, . . . ,m, k ≥ 0, acting on
symmetric m-tensor fields and transforming it into functions g(j)(ξ(α), s), given in the
cylinder Z, are defined by the formula(

P(j)w
)
(ξ, s) =

∫ ∞
−∞

wi1...imξ
i1 . . . ξijηij+1 . . . ηimdt, (38)

where ξ = (cosα, sinα), η = (− sinα, cosα). The transform for j = 0 is the longitudi-
nal ray transform,(

Pw
)
(ξ, s) :=

(
P(0)w

)
(ξ, s) =

∫ ∞
−∞

wi1...imη
i1 . . . ηimdt.

It is the transverse ray transform for j = m,(
P⊥w

)
(ξ, s) :=

(
P(m)w

)
(ξ, s) =

∫ ∞
−∞

wi1...imξ
i1 . . . ξimdt.

For other j, 0 < j < m, the transform P(j) is called mixed ray transform.
We give a description of kernels and images of the ray transformations, as well as

relationships between the ray transforms and the Radon transforms of corresponding
potentials. The proof of this proposition is similar to the analogous for vector and
symmetric 2-tensor fields. It needs in more laborious calculations of a purely technical
nature and therefore is not given.

Proposition 5.1. Let a symmetric m-tensor field w ∈ Hk−m(Sm(B)) be given,

w =
m∑
j=0

u(j) ≡
m∑
j=0

(
d⊥
)m−j(

d
)j
ψ(j),

and u(j) =
(
d⊥
)m−j(

d
)j
ψ(j) ∈ Hk−m(Sm(B)), k ≥ m, for potentials ψ(0), . . . , ψ(m) ∈

Hk
0 (B). Then
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1) (P(j)w)(ξ, s) = (P(j)u(j))(ξ, s), j = 0, . . . ,m.

2) The ray transform P(j) of a symmetric m-tensor field u(j) ∈ Hk(Sm(B)), u(j) =(
d⊥
)m−j(

d
)j
ψ(j), ψ(j) ∈ Hk+m

0 (B), j = 0, . . . ,m, associated with the Radon transform
of its potential ψ(j) by the ratio(

P(j)u(j)
)
(ξ, s) =

1

Cj
m

∂m

∂sm
Rψ(j)(ξ, s), j = 0, . . . ,m,

where Cj
m = m!/(j! (m− j)!).

3) If ψ(j) = ϕ ∈ Hk
0 (B) for all j = 0, . . . ,m, k ≥ m. Then

Cj
m

(
P(j)u(j)

)
(ξ, s) = C l

m

(
P(l)u(l)

)
(ξ, s) =

∂m

∂sm
Rϕ(ξ, s).

5.2 Inversion formulas

We pass to a system of equations connecting the ray transforms P(j)w, j = 0, . . . ,m
of a symmetric m-tensor field w = (wi1...im) (37) with the Radon transform of its
components w1...11, w1...12, . . ., w2...22,

P1w(ξ, s) = ηi1 . . . ηim−1ηimRwi1...im(ξ, s),

P2w(ξ, s) = ηi1 . . . ηim−1ξimRwi1...im(ξ, s),

· · ·
Pm+1w(ξ, s) = ξi1 . . . ξim−1ξimRwi1...im(ξ, s),

(39)

where the notations Pj+1w = P(j)w are used. We would recall that the rule of Ein-
stein’s summation is meant. The system (39) has a unique solution, which gives the
dependence of the Radon transforms Rwi1...im of the field w components from the
known ray transforms Pjw. Let’s find this solution. We use the notations e1 = (1, 0),
e2 = (0, 1), and f1 = η, f2 = ξ. The vectors f1, f2 and e1, e2 are associated between
themselves as follows, {

f1 = − sinα e1 + cosα e2 = f j1ej,

f2 = cosα e1 + sinα e2 = f j2ej,
(40)

{
e1 = − sinα f1 + cosα f2 = el1fl,

e2 = cosα f1 + sinα f2 = el2fl.
(41)

The definitions of the matrices
(
ekj
)
,
(
fkj
)
, j, k = 1, 2 imply that

(
ekj
)

=
(
fkj
)−1. Fur-

thermore, we have f lj = elj, j, l = 1, 2. It follows that
(
fkj
)

=
(
ekj
)

=
(
fkj
)−1

=
(
ekj
)−1

and
(
ekj
)2

=
(
fkj
)2

= E, where E is the identity matrix. Essentially, exactly these
properties of matrices

(
ekj
)
,
(
fkj
)
allow to obtain inversion formulas.

We define a multilinear form R by the rule

Rwi1...im = R〈ei1 , . . . , eim〉. (42)
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A tensor field w is symmetric, therefore the form R is symmetric too,

R〈ei1 , . . . , eij , . . . , eil , . . . , eim〉 = R〈ei1 , . . . , eil , . . . , eij , . . . , eim〉.

Here j, l = 1, . . . ,m, j 6= l. Symmetry of the form R allows to construct a decompo-
sition of the form Rwi1...im values, depending on the set of indices {i1, . . . , im}, into
m+ 1 subsets Rk, k = 1, . . . ,m+ 1,

m+1⋃
k=1

Rkw = R〈ei1 , . . . , eim〉, (43)

where k is such that among the indices i1, . . . , im exactly m− (k− 1) indices are equal
to 1, and the others k − 1 are equal to 2. A multilinear form P (or Pwi1...im) by the
set Pkw is defined by analogy,

Pwi1...im = P〈ei1 , . . . , eim〉 =
m+1⋃
k=1

Pkw, (44)

where k, as well as earlier, is such that among the indices i1, . . . , im exactly m− (k−1)
indices are equal to 1, and the others k − 1 are equal to 2. It should be note that the
new notations and definitions are introduced only for more convenient description of
the system (39).

Taking into account new notations and definitions described above, the system (39)
takes the following form,

P〈ei1 , . . . , eim〉 = R〈fi1 , . . . , fim〉

for all sets of indices i1, . . . , im ∈ {1, 2}. In a more detailed record we have
P〈e1, . . . , e1, e1〉

P〈e1, . . . , e1, e2〉
· · · · · · · · ·
P〈e2, . . . , e2, e2〉

 =


R〈f1, . . . , f1, f1〉

R〈f1, . . . , f1, f2〉
· · · · · · · · ·

R〈f2, . . . , f2, f2〉

 .

We shall check it now. Actually, for fixed k, for which among the indices i1, . . . , im
exactly m − (k − 1) indices are equal to 1 and the others k − 1 are equal to 2, with
usage of (44), (39) and (43) we obtain

Pkw = f j11 . . . f
jm−(k−1)

1 f
jm−(k−2)

2 . . . f jm2 Rwj1...jm

= f j11 . . . f
jm−(k−1)

1 f
jm−(k−2)

2 . . . f jm2 R〈ej1 , . . . , ejm〉

= R〈f j11 ej1 , . . . , f
jm−(k−1)

1 ejm−(k−1)
, f
jm−(k−2)

2 ejm−(k−2)
, . . . , f jm2 ejm〉

= R〈f j1ej, . . . , f
j
1ej︸ ︷︷ ︸

m−(k−1)

, f j2ej, . . . , f
j
2ej︸ ︷︷ ︸

k−1

〉 = Rkw.
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It turns out, that the matrix T (of a size (m + 1) × (m + 1)) of the system of
equations (39), consisting of sums of products of the vectors η, ξ components, can be
determined by the equality (taking into account the notations f1 = η, f2 = ξ)

T


P〈e1, . . . , e1, e1〉

P〈e1, . . . , e1, e2〉
· · · · · · · · ·
P〈e2, . . . , e2, e2〉

 =


P〈f1, . . . , f1, f1〉

P〈f1, . . . , f1, f2〉
· · · · · · · · ·

P〈f2, . . . , f2, f2〉

 . (45)

We are ready now to show that T2 = E. The matrix T can be constructed from
row vectors tk = (tk1, . . . , tk(m+1)), k = 1, . . . ,m + 1, as follows. We fix k. Taking into
account (40) we obtain

Pk := P〈f1, . . . , f1︸ ︷︷ ︸
m−(k−1)

, f2, . . . , f2︸ ︷︷ ︸
k−1

〉 = P〈f j1ej, . . . , f
j
1ej︸ ︷︷ ︸

m−(k−1)

, f j2ej, . . . , f
j
2ej︸ ︷︷ ︸

k−1

〉.

By means of the rules of working with multilinear form we come to the conclusion

Pk = tk


P〈e1, . . . , e1, e1〉

P〈e1, . . . , e1, e2〉
· · · · · · · · ·
P〈e2, . . . , e2, e2〉

 ,

and thus T =

(
t1
t2
···

tm+1

)
. The relations (40), (41) imply that


P〈f1, . . . , f1, f1〉

P〈f1, . . . , f1, f2〉
· · · · · · · · ·

P〈f2, . . . , f2, f2〉

 =


P〈f j1ej, . . . , f

j
1ej, f

j
1ej〉

P〈f j1ej, . . . , f
j
1ej, f

j
2ej〉

· · · · · · · · ·
P〈f j2ej, . . . , f

j
2ej, f

j
2ej〉

 = T


P〈e1, . . . , e1, e1〉

P〈e1, . . . , e1, e2〉
· · · · · · · · ·
P〈e2, . . . , e2, e2〉



= T


P〈ej1fj, . . . , e

j
1fj, e

j
1fj〉

P〈ej1fj, . . . , e
j
1fj, e

j
2fj〉

· · · · · · · · ·
P〈ej2fj, . . . , e

j
2fj, e

j
2fj〉

 = T2


P〈f1, . . . , f1, f1〉

P〈f1, . . . , f1, f2〉
· · · · · · · · ·

P〈f2, . . . , f2, f2〉

 .

As the column vector

(
P〈f1,...,f1,f1〉
... ... ...
P〈f2,...,f2,f2〉

)
(a column of the ray transforms) is arbitrary so

we conclude that T2 = E.

Theorem 5.2. Let a system of linear equations

TX = B
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be given. The matrix T is defined by the relation (45), X is a vector of unknowns with
components

x1 = Rw1...11, x2 = Rw1...12, . . . , xm+1 = Rw2...22;

B is a vector of right part,

b1 = P(0)w, b2 = P(1)w, . . . , bm+1 = P(m)w,

consisting of the values of the ray transforms, defined by (38). Then the relation
X = TB is valid. In more details the following equalities hold

Rw1...11 = ηi1 . . . ηim−1ηimPwi1...im ,

Rw1...12 = ηi1 . . . ηim−1ξimPwi1...im ,
· · · · · · · · ·

Rw2...22 = ξi1 . . . ξim−1ξimPwi1...im ,

(46)

where Pwi1...im = P(k−1)w ≡ bk, k = 1, . . . ,m + 1, if and only if, when among the
indices i1, . . . , im exactly m − (k − 1) indices are equal to 1, and the others k − 1 are
equal to 2.

As in the cases of vector and symmetric 2-tensor fields described above, the formu-
las (46) give the solution to the problem, as knowing of the Radon transform of the
components of required symmetric m-tensor field, we can apply any of the numerous
approaches to its inversion.

The projection theorems for the ray transforms of m-tensor fields are formulated
below. We use the notations (P(j)

ξ w)(s) = (P(j)w)(ξ, s), |s| ≤ 1, here.

Theorem 5.3. If u(j) =
(
d⊥
)m−j(

d
)j
ϕ, j = 0, . . . ,m, where ϕ ∈ Ck(B), k ≥ (m−1),

then

(P(j)
ξ u(j))̂(σ) = (iσ)m

√
2π

Cj
m

ϕ̂(σξ), σ ∈ R.

The proof consists in usage of the projection theorem 2.1 for the Radon transform,
property 3 of ray transforms of m-tensor fields and properties of the Fourier transform.

We pass to obtaining the stability estimates for the ray transforms of symmetric
m-tensor fields.

Theorem 5.4. Let u =
m∑
j=0

u(j) is a symmetric m-tensor field, where

u(j) = (d⊥)m−jdjψ(j),

with potentials ψ(j) ∈ Hm
0 (B), j = 0, . . . ,m. Then the stability estimates

‖u(j)‖2
L2(Sm(B)) ≤ C(j)

m ‖P(j)w‖2
H1(Z), j = 0, . . . ,m, (47)

hold with constants C(j)
m independent of w.
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The proof of this theorem is similar to the proofs of theorems 3.2 and 4.4. The prop-
erty 1 of the ray transforms implies

(
P(l)u(0)

)
(α, s) = 0 for l 6= 0 and

(
P(0)u(0)

)
(α, s) =(

P(0)w
)

(α, s). Applying (46) we get(
Ru(0)

i1...im

)
(α, s) = (−1)k(sinα)k(cosα)m−k(P(0)w)(α, s),

where among the indices i1, . . . , im exactly k indices equal 1, and the others m − k
equal 2. Thus the norm ‖Ru(0)

1...1‖2
H1(Z) can be estimated as

‖Ru(0)
1...1‖2

H1(Z) =

∫
Z

(
(Ru(0)

1...1)2 + ((Ru(0)
1...1)′s)

2 + ((Ru(0)
1...1)′α)2

)
dα ds

=

∫
Z

(
(P(0)w)2(sinα)2m +

(
(P(0)w)′s

)2
(sinα)2m

+
(
(P(0)w)′α(sinα)m +m(P(0)w)(sinα)m−1 cosα

)2
)
dα ds

6
∫
Z

(
(P(0)w)2

(
(sinα)2m + 2m2(sinα)m−2 cos2 α

)
+
(
(P(0)w)′s

)2
(sinα)2m + 2

(
(P(0)w)′α

)2
(sinα)2m

)
dα ds

6 (2m2 + 1)‖P(0)w‖2
H1(Z).

The inequalities ‖Ru(0)
i1...im

‖2
H1(Z) 6 (2m2+1)‖P(0)w‖2

H1(Z) for any set of indices i1, . . . , im
are deduced in the same way. The estimate (16) leads to the formula

‖u(0)‖2
L2(Sm(B)) =

2∑
i1,...,im=1

‖u(0)
i1...im

‖2
L2(B) 6

2∑
i1,...,im=1

C‖Ru(0)
i1...im

‖2
H1(Z)

6 2m(2m2 + 1)C‖P(0)w‖2
H1(Z) = C(0)

m ‖P(0) w‖2
H1(Z).

The estimates (47) for j > 0 follow analogously.

Conclusion and acknowledgement

Symmetric tensor fields given in the plane were investigated in the article. The problem
of reconstruction of a tensor field by its ray transforms was reduced to the problem
of reconstruction of its components by their known Radon transforms. Important for
the practice cases of recovering of vector and symmetric 2-tensor fields are considered
in details. The detailed classification of symmetric tensor fields is established. The
decomposition theorems for the fields are proved. The concepts of transverse and
mixed ray transforms for the vector and symmetric m-tensor fields are introduced.
The operators of back projection acting on the transverse and mixed ray transforms
are suggested. The kernels and images of the transverse and mixed ray transforms are
described. The connections between ray transforms for the fields and Radon transforms
for their potentials are established. The connections allow to establish the projections
theorems for symmetric tensor fields as well as to obtain the inversion formulas for the
components of tensor field and their potentials.
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