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PHASELESS INVERSE SCATTERING
IN THE ONE-DIMENSIONAL CASE

R.G. Novikov

Abstract We consider the one-dimensional Schrödinger equation with a potential satisfying
the standard assumptions of the inverse scattering theory and supported on the half-line
x ≥ 0. For this equation at fixed positive energy we give explicit formulas for finding the
full complex valued reflection coefficient to the left from appropriate phaseless scattering data
measured on the left, i.e. for x < 0. Using these formulas and known inverse scattering
results we obtain global uniqueness and reconstruction results for phaseless inverse scattering
in dimension d = 1.
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1 Introduction

We consider the one-dimensional Schrödinger equation

− d2

dx2
ψ + v(x)ψ = Eψ, x ∈ R, E > 0, (1.1)

where v satisfies the standard assumptions of the inverse scattering theory (see [5]) and
is supported on the half-line x ≥ 0. More precisely, we assume that

v is real− valued, v ∈ L1
1(R), (1.2)

v(x) ≡ 0 for x < 0,

where
L1
1(R) = {u ∈ L1(R) :

∫
R

(1 + |x|)|u(x)|dx <∞}. (1.3)

For equation (1.1) we consider the scattering solution ψ+ = ψ+(·, k), k =
√
E > 0,

continuous and bounded on R and specified by the following asymptotics:

ψ+(x, k) =

{
eikx + s21(k)e−ikx as x→ −∞,
s22(k)eikx + o(1) as x→ +∞, (1.4)

for some a priori unknown s21 and s22. In addition, the coefficients s21 and s22 arising
in (1.4) are the reflection coefficient to the left and transmission coefficient to the right,
respectively, for equation (1.1).
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In order to find ψ+ and s21, s22 from v one can use well-known results of the one-
dimensional direct scattering theory, see e.g. [5]. And properties of ψ+, s21, s22 are
known in detail, see [4], [5], [7], [12].

In particular, it is well-known that

|s21(k)|2 + |s22(k)|2 = 1, |s21(k)|2 < 1, k > 0. (1.5)

Let
R+ =]0,+∞[, R− =]−∞, 0[. (1.6)

We consider the following two types of scattering data measured on the left for
equation (1.1): (a) s21(k) and (b) ψ+(x, k), x ∈ X− ⊆ R−, where k =

√
E > 0.

In addition, we consider the following inverse scattering problems:
Problem 1.1a. Reconstruct potential v on R from its reflection coefficient s21 on

R+.
Problem 1.1b. Reconstruct potential v on R from its scattering data ψ+(x, ·) on

R+ at fixed x ∈ R−.
Problem 1.2a. Reconstruct potential v on R from its phaseless scattering data

|s21|2 on R+.
Problem 1.2b. Reconstruct potential v on R from its phaseless scattering data

|ψ+|2 on X− × R+ for some appropriate X−.
Problem 1.2c. Reconstruct potential v on R from its phaseless scattering data

|s21|2 on R+ and |ψ+|2 on X− × R+ for some appropriate X−.
Note that in quantum mechanical scattering experiments in the framework of model

described by equation (1.1) the phaseless scattering data |s21|2, |ψ+|2 of Problems
1.2a-1.2c can be measured directly, whereas the complex-valued scattering data s21,
ψ+ of Problems 1.1a, 1.1b are not accessible for direct measurements. Therefore,
Problems 1.2 are of particular applied interest in the framework of inverse scattering of
quantum mechanics. However, Problems 1.1 are much more considered in the literature
than Problems 1.2. See [3]-[5], [12]-[14], [17] and references therein in connection with
Problem 1.1a and [1], [11] in connection with Problem 1.2a and its modification.

In particular, work [17] gives global uniqueness and reconstruction results for Prob-
lem 1.1a; see also [2], [6] and references given in [2]. And , obviously, Problem 1.1b is
reduced to Problem 1.1a by the formula

s21(k) = eikxψ+(x, k)− e2ikx, x ∈ R−, k ∈ R+. (1.7)

On the other hand, for Problem 1.2a it is well known that the phaseless scattering
data |s21|2 on R+ do not determine v uniquely, in general. In particular, we have that

s21,y(k) = e2ikys21(k), (1.8)

|s21,y(k)|2 = |s21(k)|2, k ∈ R+, y ∈ R,

where s21 is the reflection coefficient to the left for v and s21,y is the reflection coefficient
to the left for vy, where

vy(x) = v(x− y), x ∈ R, y ∈ R. (1.9)
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This well-known nonuniqueness result on Problem 1.2a motivates our considerations
of Problems 1.2b and 1.2c.

In the present work we continue studies of [16]. We recall that article [16] gives,
in particular, explicit asymptotic formulas for finding the complex-valued scattering
amplitude from appropriate phaseless scattering data for the Schrödinger equation at
fixed energy in dimension d ≥ 2. Then using these formulas related phaseless inverse
scattering problems are reduced in [16] in dimension d ≥ 2 to well developed inverse
scattering from the complex-valued scattering amplitude. And, as a corollary, [16]
contains different results on inverse scattering without phase information in dimension
d ≥ 2.

In connection with recent results on phaseless inverse scattering in dimension d ≥ 2,
see also [8]-[10], [15] and references therein.

In order to present results of the present work we use the notations:

S1(x1, x2, k) = {|s21(k)|2, |ψ+(·, k)|2 on X−}, (1.10)

where X− = {x1, x2 ∈ R− : x1 6= x2}, k ∈ R+;

S2(x1, x2, x3, k) = |ψ+(·, k)|2 on X−, (1.11)

where X− = {x1, x2, x3 ∈ R− : xi 6= xj if i 6= j}, k ∈ R+;

S3(x, k) = {|ψ+(x, k)|2, d|ψ
+(x, k)|2

dx
}, x ∈ R−, k ∈ R+. (1.12)

Using these notations the main results of the present work can be summarized as
follows:

(A1) We give explicit formulas for finding s21(k) from S1(x1, x2, k) for fixed x1, x2
and k, where x1 6= x2 mod(π(2k)−1); see Theorem 2.1 of Section 2.

(A2) We give explicit formulas for finding s21(k) from S2(x1, x2, x3, k) for fixed x1,
x2, x3 and k, where xi 6= xj mod(πk−1) if i 6= j; see Theorem 2.2 of Section 2.

(A3) We give explicit formulas for finding s21(k) from S3(x, k) for fixed x and k;
see Theorem 2.3 of Section 2.

(B) We give global uniqueness and reconstruction results (1) for finding v on R
from S1(x1, x2, ·) on R+ for fixed x1, x2, (2) for finding v on R from S2(x1, x2, x3, ·) on
R+ for fixed x1, x2, x3, and (3) for finding v on R from S3(x, ·) on R+ at fixed x; see
Theorem 2.4 of Section 2.

Note that results of (B1)-(B3) follow from (A1)-(A3) and the aforementioned results
of [17] on Problem 1.1a. In addition, the results of (B1) are global results on Problem
1.2c and the results of (B2), (B3) are global results on Problem 1.2b.

The main results of the present work are presented in detail in Section 2.

2 Main results

We represent s21 of (1.4) as follows:

s21(k) = |s21(k)|eiα(k), k ∈ R+. (2.1)

We consider
a(x, k) = |ψ+(x, k)|2 − 1, x ∈ R−, k ∈ R+, (2.2)
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where ψ+ is the scattering solutions of (1.4).

Theorem 2.1. Let potential v satisfy (1.2) and s21, a be the functions of (1.4),
(2.2). Let x1, x2 ∈ R−, k ∈ R+, x1 6= x2 mod (π(2k)−1). Then:

|s21|
(

cosα
sinα

)
= (2 sin(2k(x2 − x1)))−1×(

sin(2kx2) − sin(2kx1)
− cos(2kx2) cos(2kx1)

)(
a(x1, k)− |s21|2
a(x2, k)− |s21|2

)
,

(2.3)

where |s21| = |s21(k)|, α = α(k).
Theorem 2.1 is proved in Section 3.
One can see that Theorem 2.1 gives explicit formulas for finding s21(k) from

S1(x1, x2, k) of (1.10) for fixed x1, x2 and k, where x1 6= x2 mod(π(2k)−1).

Theorem 2.2. Let potential v satisfy (1.2) and s21, a be the functions of (1.4),
(2.2). Let x1, x2, x3 ∈ R−, k ∈ R+, xi 6= xj mod(πk−1) if i 6= j. Then:

|s21|
(

cosα
sinα

)
= (8(sin(k(x2 − x3)) sin(k(x2 − x1)) sin(k(x1 − x3)))−1× (2.4)

(
sin(2kx3)− sin(2kx1) − sin(2kx2) + sin(2kx1)
− cos(2kx3) + cos(2kx1) cos(2kx2)− cos(2kx1)

)(
a(x2, k)− a(x1, k)
a(x3, k)− a(x1, k),

)
where |s21| = |s21(k)|, α = α(k).

Theorem 2.2 is proved in Section 3.
One can see that Theorem 2.2 gives explicit formulas for finding s21(k) from

S2(x1, x2, x3, k) of (1.11) for fixed x1, x2, x3 and k, where x1 6= x2 mod(πk−1) if i 6= j.

Theorem 2.3. Let potential v satisfy (1.2) and s21, ψ+ be the functions of (1.4).
Then the following formulas hold:

Re (s21(k)e−ikx) = −1 + (|ψ+(x, k)|2 − |Im (s21(k)e−ikx)|2)1/2, (2.5)

Im (s21(k)e−ikx) =
1

4k

d|ψ+(x, k)|2

dx
, (2.6)

where x ∈ R−, k ∈ R+, and (·)1/2 > 0 in (2.5).
Theorem 2.3 is proved in Section 3.
One can see that Theorem 2.3 gives explicit formulas for finding s21(k) from S3(x, k)

of (1.12).
As corollaries of Theorems 2.1, 2.2, 2.3 and results of [17], we obtain the following

global uniqueness and reconstruction results on phaseless inverse scattering for equation
(1.1):

Theorem 2.4. Let potential v satisfy (1.2) and S1, S2, S3 be the phaseless scatter-
ing data of (1.10), (1.11), (1.12). Then: (1) S1(x1, x2, ·) on R+, for fixed x1, x2, uniquely
determine v on R via formulas (2.1)-(2.3) and results of [17]; (2) S2(x1, x2, x3, ·) on R+,
for fixed x1, x2, x3, uniquely determine v on R via formulas (2.1), (2.2), (2.4) and
results of [17]; (3) S3(x, ·) on R+, for fixed x, uniquely determine v on R via formulas
(2.5), (2.6) and results of [17].
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3 Proofs of Theorems 2.1, 2.2 and 2.3

Proof of Theorem 2.1.
Using (1.4) we obtain that

|ψ+(x, k)|2 = ψ+(x, k)ψ+(x, k) = (3.1)

1 + 2Re (s21(k)e−2ikx) + |s21(k)|2, x ∈ R−, k ∈ R+.

In addition, in view of (2.1) we have that

2Re (s21(k)e−2ikx) = 2|s21(k)| cos(2kx− α(k)). (3.2)

Using (2.2), (3.1), (3.2) we obtain that

|s21(k)| cos(2kx) cos(α(k)) + sin(2kx) sin(α(k)) = (3.3)

2−1(a(x, k)− |s21(k)|2), x ∈ R−, k ∈ R+.

Using (3.3) for x = x1 and x = x2, we obtain the system(
cos(2kx1) sin(2kx1)
cos(2kx2) sin(2kx2)

)
|s21|

(
cosα
sinα

)
=

2−1

(
a(x1, k)− |s21|2
a(x2, k)− |s21|2

)
,

(3.4)

where |s21| = |s21(k)|, α = α(k).
Formula (2.3) follows from (3.4).
Theorem 2.1 is proved.

Proof of Theorem 2.2. Subtracting equality (3.3) for x = x1 from equality (3.3) for
x = x2 and from equality (3.3) for x = x3, we obtain the system(

cos(2kx2)− cos(2kx1) sin(2kx2)− sin(2kx1)
cos(2kx3)− cos(2kx1) sin(2kx3)− sin(2kx1)

)
|s21|

(
cosα
sinα

)
=

2−1

(
a(x2, k)− a(x1, k)
a(x3, k)− a(x1, k)

)
,

(3.5)

where |s21| = |s21(k)|, α = α(k).
One can see that

∆ = sin(2k(x3 − x2)) + sin(2k(x2 − x1)) + sin(2k(x1 − x3)), (3.6)

where ∆ is the determinant of the system (3.5). In addition, using the formulas

sinϕ1 + sinϕ2 = 2 cos
(ϕ1 − ϕ2

2

)
sin
(ϕ1 + ϕ2

2

)
, (3.7)

sin(ϕ1 + ϕ2) = 2 cos
(ϕ1 + ϕ2

2

)
sin
(ϕ1 + ϕ2

2

)
,
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sinϕ1 + sinϕ2 − sin(ϕ1 + ϕ2) = 4 sin
(ϕ1 + ϕ2

2

)
sin
(ϕ1

2

)
sin
(ϕ2

2

)
for ϕ1 = 2k(x2 − x1), ϕ2 = 2k(x1 − x3), we obtain

∆ = 4 sin(k(x2 − x3)) sin(k(x2 − x1)) sin(k(x1 − x3)). (3.8)

Formula (2.4) follows from (3.5), (3.8).
Theorem 2.2 is proved.

Proof of Theorem 2.3. Using (3.1) we obtain that

(Re (s21(k)e−2ikx) + 1)2 + (Im (s21(k)e−2ikx))2 = |ψ+(x, k)|2. (3.9)

Formula (2.5), where (·)1/2 > 0, follows from (3.9) and the property that |s21(k)| < 1,
see (1.5).

Using (2.1), (3.1), (3.2) we obtain that

d|ψ+(x, k)|2

dx
= 4k|s21(k)| sin (α(k)− 2kx) = 4kIm (s21(k)e−2ikx). (3.10)

Formula (2.6) follows from (3.10).
Theorem 2.3 is proved.
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